Search results for: region weight learning
14207 Geographical Information System for Sustainable Management of Water Resources
Authors: Vakhtang Geladze, Nana Bolashvili, Nino Machavariani, Tamazi Karalashvili, Nino Chikhradze, Davit Kartvelishvili
Abstract:
Fresh water deficit is one of the most important global problems today. In the countries with scarce water resources, they often become a reason of armed conflicts. The peaceful settlement of relations connected with management and water consumption issues within and beyond the frontiers of the country is an important guarantee of the region stability. The said problem is urgent in Georgia as well because of its water objects are located at the borders and the transit run-off that is 12% of the total one. Fresh water resources are the major natural resources of Georgia. Despite of this, water supply of population at its Eastern part is an acute issue. Southeastern part of the country has been selected to carry out the research. This region is notable for deficiency of water resources in the country. The region tends to desertification which aggravates fresh water problem even more and presumably may lead to migration of local population from the area. The purpose of study was creation geographical information system (GIS) of water resources. GIS contains almost all layers of different content (water resources, springs, channels, hydrological stations, population water supply, etc.). The results of work provide an opportunity to identify the resource potential of the mentioned region, control and manage it, carry out monitoring and plan regional economy.Keywords: desertification, GIS, irrigation, water resources
Procedia PDF Downloads 69314206 Effects of Different Load on Physiological, Hematological, Biochemical, Cytokines Indices of Zanskar Ponies at High Altitude
Authors: Prince Vivek, Vijay Kumar Bharti, Deepak Kumar, Rohit Kumar, Kapil Nehra, Dhananjay Singh, Om Prakash Chaurasia, Bhuvnesh Kumar
Abstract:
High altitude native people still rely heavily on animal transport for logistic support at eastern and northern Himalayas regions. The prevalent mountainous terrains and rugged region are not suitable for the motorized vehicle to use in logistic transport. Therefore, people required high endurance pack animals for load carrying and riding. So far to the best of our knowledge, no studies have been taken to evaluate the effect of loads on the physiology of ponies in high altitude region. So, in this view, we evaluated variation in physiological, hematological, biochemical, and cytokines indices of Zanskar ponies during load carrying at high altitude. Total twelve (12) of Zanskar ponies, mare, age 4-6 years selected for this study, Feed was offered at 2% of body weight, and water ad libitum. Ponies were divided into three groups; group-A (without load), group-B (60 kg), and group-C (80 kg) of backpack loads. The track was very narrow and slippery with gravel, uneven with a rocky surface and has a steep gradient of 4 km uphill at altitude 3291 to 3500m. When we evaluate these parameters, it is understood that the heart rate, pulse rate, and respiration rate was significantly increased in 80 kg group among the three groups. The hematology parameters viz. hemoglobin significantly increased in 80 kg group on 1st day after load carrying among the three groups which was followed by control and 60 kg whereas, PCV, lymphocytes, monocytes percentage significantly increased however, ESR and eosinophil % significantly decreased in 80 kg group after load carrying on 7th day after load carrying among the three groups which were followed by control and 60 kg group. In biochemical parameters viz. LA, LDH, TP, hexokinase (HK), cortisol (CORT), T3, GPx, FRAP and IL-6 significantly increased in 80 kg group on the 7th day after load carrying among the three groups which were followed by control and 60 kg group. The ALT, ALB, GLB, UR, and UA significantly increased in 80 kg group on the 7th day before and after load carrying among the three groups which were followed by control and 60 kg group. The CRT, AST, and CK-MB were significantly increased in 80 kg group on the 1st and 7th day after load carrying among the three groups which were followed by control and 60 kg group. It has been concluded that, heart rate, respiration rate, hematological indices like PCV, lymphocytes, monocytes, Hb and ESR, biochemical indices like lactic acid, LDH, TP, HK, CORT, T3, ALT, AST and CRT, ALB, GLB, UR, UA, GPx, FRAP and IL-6 are important biomarkers to assess effect of load on animal physiology and endurance. Further, this result has revealed the strong correlation of change in biomarkers level with performance in ponies during load carry. Hence, these parameters might be used for the performance of endurance of Zanskar ponies in the high mountain region.Keywords: biochemical, endurance, high altitude, load, ponies
Procedia PDF Downloads 28414205 Comparison of Bone Mineral Density of Lumbar Spines between High Level Cyclists and Sedentary
Authors: Mohammad Shabani
Abstract:
The physical activities depending on the nature of the mechanical stresses they induce on bone sometimes have brought about different results. The purpose of this study was to compare bone mineral density (BMD) of the lumbar spine between the high-level cyclists and sedentary. Materials and Methods: In the present study, 73 cyclists senior (age: 25.81 ± 4.35 years; height: 179.66 ± 6.31 cm; weight: 71.55 ± 6.31 kg) and 32 sedentary subjects (age: 28.28 ± 4.52 years; height: 176.56 ± 6.2 cm; weight: 74.47 ± 8.35 kg) participated voluntarily. All cyclists belonged to the different teams from the International Cycling Union and they trained competitively for 10 years. BMD of the lumbar spine of the subjects was measured using DXA X-ray (Lunar). Descriptive statistics calculations were performed using computer software data processing (Statview 5, SAS Institute Inc. USA). The comparison of two independent distributions (BMD high level cyclists and sedentary) was made by the Student T Test standard. Probability 0.05 (p≤0 / 05) was adopted as significance. Results: The result of this study showed that the BMD values of the lumbar spine of sedentary subjects were significantly higher for all measured segments. Conclusion and Discussion: Cycling is firstly a common sport and on the other hand endurance sport. It is now accepted that weight bearing exercises have an osteogenic effect compared to non-weight bearing exercises. Thus, endurance sports such as cycling, compared to the activities imposing intense force in short time, seem not to really be osteogenic. Therefore, it can be concluded that cycling provides low stimulates osteogenic because of specific biomechanical forces of the sport and its lack of impact.Keywords: BMD, lumbar spine, high level cyclist, cycling
Procedia PDF Downloads 26914204 Mentor and Mentee Based Learning
Authors: Erhan Eroğlu
Abstract:
This paper presents a new method called Mentor and Mentee Based Learning. This new method is becoming more and more common especially at workplaces. This study is significant as it clearly underlines how it works well. Education has always aimed at equipping people with the necessary knowledge and information. For many decades it went on teachers’ talk and chalk methods. In the second half of the nineteenth century educators felt the need for some changes in delivery systems. Some new terms like self- discovery, learner engagement, student centered learning, hands on learning have become more and more popular for such a long time. However, some educators believe that there is much room for better learning methods in many fields as they think the learners still cannot fulfill their potential capacities. Thus, new systems and methods are still being developed and applied at education centers and work places. One of the latest methods is assigning some mentors for the newly recruited employees and training them within a mentor and mentee program which allows both parties to see their strengths and weaknesses and the areas which can be improved. This paper aims at finding out the perceptions of the mentors and mentees on the programs they are offered at their workplaces and suggests some betterment alternatives. The study has been conducted via a qualitative method whereby some interviews have been done with both mentors and mentees separately and together. Results show that it is a great way to train inexperienced one and also to refresh the older ones. Some points to be improved have also been underlined. The paper shows that education is not a one way path to follow.Keywords: learning, mentor, mentee, training
Procedia PDF Downloads 22814203 A Case Study of Deep Learning for Disease Detection in Crops
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture
Procedia PDF Downloads 26014202 Hacking the Spatial Limitations in Bridging Virtual and Traditional Teaching Methodologies in Sri Lanka
Authors: Manuela Nayantara Jeyaraj
Abstract:
Having moved into the 21st century, it is way past being arguable that innovative technology needs to be incorporated into conventional classroom teaching. Though the Western world has found presumable success in achieving this, it is still a concept under battle in developing countries such as Sri Lanka. Reaching the acme of implementing interactive virtual learning within classrooms is a struggling idealistic fascination within the island. In order to overcome this problem, this study is set to reveal facts that limit the implementation of virtual, interactive learning within the school classrooms and provide hacks that could prove the augmented use of the Virtual World to enhance teaching and learning experiences. As each classroom moves along with the usage of technology to fulfill its functionalities, a few intense hacks provided will build the administrative onuses on a virtual system. These hacks may divulge barriers based on social conventions, financial boundaries, digital literacy, intellectual capacity of the staff, and highlight the impediments in introducing students to an interactive virtual learning environment and thereby provide the necessary actions or changes to be made to succeed and march along in creating an intellectual society built on virtual learning and lifestyle. This digital learning environment will be composed of multimedia presentations, trivia and pop quizzes conducted on a GUI, assessments conducted via a virtual system, records maintained on a database, etc. The ultimate objective of this study could enhance every child's basic learning environment; hence, diminishing the digital divide that exists in certain communities.Keywords: digital divide, digital learning, digitization, Sri Lanka, teaching methodologies
Procedia PDF Downloads 35614201 Assessing the Prevalence of Accidental Iatrogenic Paracetamol Overdose in Adult Hospital Patients Weighing <50kg: A Quality Improvement Project
Authors: Elisavet Arsenaki
Abstract:
Paracetamol overdose is associated with significant and possibly permanent consequences including hepatotoxicity, acute and chronic liver failure, and death. This quality improvement project explores the prevalence of accidental iatrogenic paracetamol overdose in hospital patients with a low body weight, defined as <50kg and assesses the impact of educational posters in trying to reduce it. The study included all adult inpatients on the admissions ward, a short stay ward for patients requiring 12-72 hour treatment, and consisted of three cycles. Each cycle consisted of 3 days of data collection in a given month (data collection for cycle 1 occurred in January 2022, February 2022 for cycle 2 and March 2022 for cycle 3). All patients given paracetamol had their prescribed dose checked against their charted weight to identify the percentage of adult inpatients <50kg who were prescribed 1g of paracetamol instead of 500mg. In the first cycle of the audit, data were collected from 83 patients who were prescribed paracetamol on the admissions ward. Subsequently, four A4 educational posters were displayed across the ward, on two separate occasions and with a one-month interval in between each poster display. The aim of this was to remind prescribing doctors of their responsibility to check patient body weight prior to prescribing paracetamol. Data were collected again one week after each round of poster display, from 72 and 70 patients respectively. Over the 3 cycles with a cumulative 225 patients, 15 weighed <50kg (6.67%) and of those, 5 were incorrectly prescribed 1g of paracetamol, yielding a 33.3% prevalence of accidental iatrogenic paracetamol overdose in adult inpatients. In cycle 1 of the project, 3 out of 6 adult patients weighing <50kg were overdosed on paracetamol, meaning that 50% of low weight patients were prescribed the wrong dose of paracetamol for their weight. In the second data collection cycle, 1 out of 5 <50kg patients were overdosed (20%) and in the third cycle, 1 out of 4 (25%). The use of educational posters resulted in a lower prevalence of accidental iatrogenic paracetamol overdose in low body weight adult inpatients. However, the differences observed were statistically insignificant (p value 0.993 and 0.995 respectively). Educational posters did not induce a significant decrease in the prevalence of accidental iatrogenic paracetamol overdose. More robust strategies need to be employed to further decrease paracetamol overdose in patients weighing <50kg.Keywords: iatrogenic, overdose, paracetamol, patient, safety
Procedia PDF Downloads 11414200 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases
Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury
Abstract:
Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification
Procedia PDF Downloads 9314199 Security System for Safe Transmission of Medical Image
Authors: Mohammed Jamal Al-Mansor, Kok Beng Gan
Abstract:
This paper develops an optimized embedding of payload in medical image by using genetic optimization. The goal is to preserve region of interest from being distorted because of the watermark. By using this developed system there is no need of manual defining of region of interest through experts as the system will apply the genetic optimization to select the parts of image that can carry the watermark with guaranteeing less distortion. The experimental results assure that genetic based optimization is useful for performing steganography with less mean square error percentage.Keywords: AES, DWT, genetic algorithm, watermarking
Procedia PDF Downloads 41114198 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance
Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan
Abstract:
A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection
Procedia PDF Downloads 12614197 Seed Yield and Quality of Late Planted Rabi Wheat Crop as Influenced by Basal and Foliar Application of Urea
Authors: Omvati Verma, Shyamashrre Roy
Abstract:
A field experiment was conducted with three basal nitrogen levels (90, 120 and 150 kg N/ha) and five foliar application of urea (absolute control, water spray, 3% urea spray at anthesis, 7 and 14 days after anthesis) at G.B. Pant University of Agriculture & Technology, Pantnagar, U.S. Nagar (Uttarakhand) during rabi season in a factorial randomized block design with three replications. Results revealed that nitrogen application of 150 kg/ha produced the highest seed yield, straw and biological yield and it was significantly superior to 90 kg N/ha and was at par with 120 kg N/ha. The number of tillers increased significantly with increase in nitrogen doses up to 150 kg N/ha. Spike length, number of grains per spike, grain weight per spike and thousand seed weight showed significantly higher values with 120 kg N/ha than 90 kg N/ha and were at par with that of 150 kg N/ha. Also, plant height showed similar trend. Leaf area index and chlorophyll content showed significant increase with an increase in nitrogen levels at different stages. In the case of foliar spray treatments, urea spray at anthesis showed highest value for yield and yield attributes. In case of spike length and thousand seed weight, it was similar with the urea spray at 7 and 14 days after anthesis, but for rest of the yield attributes, it was significantly higher than rest of the treatments. Among seed quality parameters protein and sedimentation value showed significant increase due to increase in nitrogen rates whereas, starch and hectolitre weight had a decreasing trend. Wet gluten content was not influenced by nitrogen levels. Foliar urea spray at anthesis resulted in highest value of protein and hectolitre weight whereas, urea spray at 7 days after anthesis showed highest value of sedimentation value and wet gluten content.Keywords: foliar application, nitrogenous fertilizer, seed quality, yield
Procedia PDF Downloads 28014196 Relationship between Learning Methods and Learning Outcomes: Focusing on Discussions in Learning
Authors: Jaeseo Lim, Jooyong Park
Abstract:
Although there is ample evidence that student involvement enhances learning, college education is still mainly centered on lectures. However, in recent years, the effectiveness of discussions and the use of collective intelligence have attracted considerable attention. This study intends to examine the empirical effects of discussions on learning outcomes in various conditions. Eighty eight college students participated in the study and were randomly assigned to three groups. Group 1 was told to review material after a lecture, as in a traditional lecture-centered class. Students were given time to review the material for themselves after watching the lecture in a video clip. Group 2 participated in a discussion in groups of three or four after watching the lecture. Group 3 participated in a discussion after studying on their own. Unlike the previous two groups, students in Group 3 did not watch the lecture. The participants in the three groups were tested after studying. The test questions consisted of memorization problems, comprehension problems, and application problems. The results showed that the groups where students participated in discussions had significantly higher test scores. Moreover, the group where students studied on their own did better than that where students watched a lecture. Thus discussions are shown to be effective for enhancing learning. In particular, discussions seem to play a role in preparing students to solve application problems. This is a preliminary study and other age groups and various academic subjects need to be examined in order to generalize these findings. We also plan to investigate what kind of support is needed to facilitate discussions.Keywords: discussions, education, learning, lecture, test
Procedia PDF Downloads 17714195 Deep Reinforcement Learning Model for Autonomous Driving
Authors: Boumaraf Malak
Abstract:
The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning
Procedia PDF Downloads 8514194 Machine Learning Approach for Mutation Testing
Authors: Michael Stewart
Abstract:
Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing
Procedia PDF Downloads 20114193 Use of Smartphone in Practical Classes to Facilitate Teaching and Learning of Microscopic Analysis and Interpretation of Tissues Sections
Authors: Lise P. Labéjof, Krisnayne S. Ribeiro, Nicolle P. dos Santos
Abstract:
An unrecorded experiment of use of the smartphone as a tool for practical classes of histology is presented in this article. Behavior, learning of the students of three science courses at the University were analyzed and compared as well as the mode of teaching of this discipline and the appreciation of the students, using either digital photographs taken by phone or drawings for record microscopic observations, analyze and interpret histological sections of human or animal tissues.Keywords: cell phone, digital micrographies, learning of sciences, teaching practices
Procedia PDF Downloads 59814192 Videoconference Technology: An Attractive Vehicle for Challenging and Changing Tutors Practice in Open and Distance Learning Environment
Authors: Ramorola Mmankoko Ziphorah
Abstract:
Videoconference technology represents a recent experiment of technology integration into teaching and learning in South Africa. Increasingly, videoconference technology is commonly used as a substitute for the traditional face-to-face approaches to teaching and learning in helping tutors to reshape and change their teaching practices. Interestingly, though, some studies point out that videoconference technology is commonly used for knowledge dissemination by tutors and not so much for the actual teaching of course content in Open and Distance Learning context. Though videoconference technology has become one of the dominating technologies available among Open and Distance Learning institutions, it is not clear that it has been used as effectively to bridge the learning distance in time, geography, and economy. While tutors are prepared theoretically, in most tutor preparation programs, on the use of videoconference technology, there are still no practical guidelines on how they should go about integrating this technology into their course teaching. Therefore, there is an urgent need to focus on tutor development, specifically on their capacities and skills to use videoconference technology. The assumption is that if tutors become competent in the use of the videoconference technology for course teaching, then their use in Open and Distance Learning environment will become more commonplace. This is the imperative of the 4th Industrial Revolution (4IR) on education generally. Against the current vacuum in the practice of using videoconference technology for course teaching, the current study proposes a qualitative phenomenological approach to investigate the efficacy of videoconferencing as an approach to student learning. Using interviews and observation data from ten participants in Open and Distance Learning institution, the author discusses how dialogue and structure interacted to provide the participating tutors with a rich set of opportunities to deliver course content. The findings to this study highlight various challenges experienced by tutors when using videoconference technology. The study suggests tutor development programs on their capacity and skills and on how to integrate this technology with various teaching strategies in order to enhance student learning. The author argues that it is not merely the existence of the structure, namely the videoconference technology, that provides the opportunity for effective teaching, but that is the interactions, namely, the dialogue amongst tutors and learners that make videoconference technology an attractive vehicle for challenging and changing tutors practice.Keywords: open distance learning, transactional distance, tutor, videoconference
Procedia PDF Downloads 12914191 The Relationships between How and Why Students Learn and Academic Achievement
Authors: S. Chee Choy, Daljeet Singh Sedhu
Abstract:
This study examines the relationships between how and why students learned and academic achievement for 2646 university students from various faculties. The LALQ, a self-report measure of student approaches to learning was administered and academic achievement data were obtained from student CGPA. The results showed significant differences in the approach to learning of male and female students. How and why students learned can influence their achievement and efficacy as well. High and low achievers have different learning behaviours. High female achievers were more likely to learn for a better future and be persistent in it. Meanwhile high male achievers were more likely to seek approval from their peers and be more confident about graduating on time from their university. The implications of individual differences and limitations of the study are discussed.Keywords: student learning, learner awareness, student achievement, LALQ
Procedia PDF Downloads 34614190 Creation of an Integrated Development Environment to Assist and Optimize the Learning the Languages C and C++
Authors: Francimar Alves, Marcos Castro, Marllus Lustosa
Abstract:
In the context of the teaching of computer programming, the choice of tool to use is very important in the initiation and continuity of learning a programming language. The literature tools do not always provide usability and pedagogical dynamism clearly and accurately for effective learning. This hypothesis implies fall in productivity and difficulty of learning a particular programming language by students. The integrated development environments (IDEs) Dev-C ++ and Code :: Blocks are widely used in introductory courses for undergraduate courses in Computer Science for learning C and C ++ languages. However, after several years of discontinuity maintaining the source code of Dev-C ++ tool, the continued use of the same in the teaching and learning process of the students of these institutions has led to difficulties, mainly due to the lack of update by the official developers, which resulted in a sequence of problems in using it on educational settings. Much of the users, dissatisfied with the IDE Dev-C ++, migrated to Code :: Blocks platform targeting the more dynamic range in the learning process of the C and C ++ languages. Nevertheless, there is still the need to create a tool that can provide the resources of most IDE's software development literature, however, more interactive, simple, accurate and efficient. This motivation led to the creation of Falcon C ++ tool, IDE that brings with features that turn it into an educational platform, which focuses primarily on increasing student learning index in the early disciplines of programming and algorithms that use the languages C and C ++ . As a working methodology, a field research to prove the truth of the proposed tool was used. The test results and interviews with entry-level students and intermediate in a postsecondary institution gave basis for the composition of this work, demonstrating a positive impact on the use of the tool in teaching programming, showing that the use of Falcon C ++ software is beneficial in the teaching process of the C and C ++ programming languages.Keywords: ide, education, learning, development, language
Procedia PDF Downloads 44514189 Developing Abbreviated Courses
Authors: Lynette Nickleberry Stewart
Abstract:
The present presentation seeks to explore distinction across disciplines in the appropriateness of accelerated courses and suggestions for implementing accelerated courses in various disciplines. Grounded in a review of research on accelerated learning (AL), this presentation will discuss the intradisciplinary appropriateness of accelerated courses for various topics and student types, and make suggestions for implementing augmented courses. Meant to inform an emerging ‘handbook’ of accelerated course development, facilitators will lead participants in a discussion of personal challenges and triumphs in their attempts at accelerated course design.Keywords: adult learning, abbreviated courses, accelerated learning, course design
Procedia PDF Downloads 12114188 First Approximation to Congenital Anomalies in Kemp's Ridley Sea Turtle (Lepidochelys kempii) in Veracruz, Mexico
Authors: Judith Correa-Gomez, Cristina Garcia-De la Pena, Veronica Avila-Rodriguez, David R. Aguillon-Gutierrez
Abstract:
Kemp's ridley (Lepidochelys kempii) is the smallest species of sea turtle. It nests on the beaches of the Gulf of Mexico during summer. To date, there is no information about congenital anomalies in this species, which could be an important factor to be considered as a survival threat. The aim of this study was to determine congenital anomalies in dead embryos and hatchlings of Kemp's ridley sea turtle during 2020 nesting season. Fieldwork was conducted at the 'Campamento Tortugero Barra Norte', on the shores of Tuxpan, Veracruz, Mexico. A total of 95 nests were evaluated, from which 223 dead embryos and hatchlings were collected. Anomalies were detected by detailed physical examinations. Photographs of each anomaly were taken. From the 223 dead turtles, 213 (95%) showed a congenital anomaly. A total of 53 types of congenital anomalies were found: 22 types on the head region, 21 on the carapace region, 6 on the flipper region, and 4 regarding the entire body. The most prevalent anomaly in the head region was the presence of prefrontal supernumerary scales (42%, 93 occurrences). On the carapace region, the most common anomaly was the presence of supernumerary gular scales (59%, 131 occurrences). The two most common anomalies on the flipper region were amelia in fore flippers and rear bifurcation of flippers (0.9%, 2 occurrences each). The most common anomaly involving the entire body was hypomelanism (35%, 79 occurrences). These results agree with the recent studies on congenital malformations on sea turtles, being the head and the carapace regions the ones with the highest number of congenital anomalies. It is unknown whether the reported anomalies can be related to the death of these individuals. However, it is necessary to develop embryological studies in this species. To our best knowledge, this is the first worldwide report on Kemp’s ridley sea turtle anomalies.Keywords: Amelia, hypomelanism, morphology, supernumerary scales
Procedia PDF Downloads 16014187 Normal Weight Obesity among Female Students: BMI as a Non-Sufficient Tool for Obesity Assessment
Authors: Krzysztof Plesiewicz, Izabela Plesiewicz, Krzysztof Chiżyński, Marzenna Zielińska
Abstract:
Background: Obesity is an independent risk factor for cardiovascular diseases. There are several anthropometric parameters proposed to estimate the level of obesity, but until now there is no agreement which one is the best predictor of cardiometabolic risk. Scientists defined metabolically obese normal weight, who suffer from metabolic abnormalities, the same as obese individuals, and defined this syndrome as normal weight obesity (NWO). Aim of the study: The aim of our study was to determine the occurrence of overweight and obesity in a cohort of young, adult women, using standard and complementary methods of obesity assessment and to indicate those, who are at risk of obesity. The second aim of our study was to test additional methods of obesity assessment and proof that body mass index using alone is not sufficient parameter of obesity assessment. Materials and methods: 384 young women, aged 18-32, were enrolled into the study. Standard anthropometric parameters (waist to hips ratio (WTH), waist to height ratio (WTHR)) and two other methods of body fat percentage measurement (BFPM) were used in the study: electrical bioimpendance analysis (BIA) and skinfold measurement test by digital fat body mass clipper (SFM). Results: In the study group 5% and 7% of participants had waist to hips ratio and accordingly waist to height ratio values connected with visceral obesity. According to BMI 14% participants were overweight and obese. Using additional methods of body fat assessment, there were 54% and 43% of obese for BIA and SMF method. In the group of participants with normal BMI and underweight (not overweight, n =340) there were individuals with the level of BFPM above the upper limit, for the BIA 49% (n =164) and for the SFM 36 % (n=125). Statistical analysis revealed strong correlation between BIA and SFM methods. Conclusion: BMI using alone is not a sufficient parameter of obesity assessment. High percentage of young women with normal BMI values seem to be normal weight obese.Keywords: electrical bioimpedance, normal weight obesity, skin-fold measurement test, women
Procedia PDF Downloads 27514186 Effects of Closed-Caption Programs on EFL Learners' Listening Comprehension and Vocabulary Learning
Authors: Bahman Gorjian
Abstract:
This study investigated the effects of closed-captioning on vocabulary learning and listening comprehension of English-language movies. Captioning is thus an effective language-learning tool for persons learning English as a second language. Because students may learn a foreign language "passively," utilizing subtitles on television could make learning English enjoyable for them. Closed captioning is an electrical technique that converts spoken words from a television program's audio into written text that mimics subtitles in another language. The findings of this study showed the importance of using closed-captioning software when learning a foreign language. As a result, these must be considered when teaching EFL/ESL. The influence of watching movies with closed captions on vocabulary and hearing is compared in this study. This goal can be reached by employing a closed-captioned movie as a teaching tool in the classroom. This research was critical because it demonstrates the advantages of closed-captioning programs in EFL classrooms for both teachers and students. The study's findings assisted teachers in better understanding how to employ closed captioning as a teaching tool in the classroom. The effects will be seen as even more significant for language learners who use the method.Keywords: closed-captions, listening, comprehension, vcabulary
Procedia PDF Downloads 8914185 Performance Evaluation of Microcontroller-Based Fuzzy Controller for Fruit Drying System
Authors: Salisu Umar
Abstract:
Fruits are a seasonal crop and get spoiled quickly. They are dried to be preserved for a long period. The natural drying process requires more time. The investment on space requirement and infrastructure is large, and cannot be afforded by a middle class farmer. Therefore there is a need for a comparatively small unit with reduced drying times, which can be afforded by a middle class farmer. A controlled environment suitable for fruit drying is developed within a closed chamber and is a three step process. Firstly, the infrared light is used internally to preheated the fruit to speedily remove the water content inside the fruit for fast drying. Secondly, hot air of a specified temperature is blown inside the chamber to maintain the humidity below a specified level and exhaust the humid air of the chamber. Thirdly the microcontroller idles disconnecting the power to the chamber after the weight of the fruits is reduced to a known value of its original weight. This activates a buzzer for duration of ten seconds to indicate the end of the drying process. The results obtained indicate that the system is significantly reducing the drying time without affecting the quality of the fruits compared with the existing dryers.Keywords: fruit, fuzzy controller, microcontroller, temperature, weight and humidity
Procedia PDF Downloads 44514184 Uses and Manufacturing of Beech Corrugated Plywood
Authors: Prochazka Jiri, Beranek Tomas, Podlena Milan, Zeidler Ales
Abstract:
The poster deals with the issue of ISO shipping containers’ sheathing made of corrugated plywood instead of traditional corrugated metal sheets. It was found that the corrugated plywood is a suitable material for the sheathing due to its great flexural strength perpendicular to the course of the wave, sufficient impact resistance, surface compressive strength and low weight. Three sample sets of different thicknesses 5, 8 and 10 mm were tested in the experiments. The tests have shown that the 5 cm corrugated plywood is the most suitable thickness for sheathing. Experiments showed that to increase bending strength at needed value, it was necessary to increase the weight of the timber only by 1.6%. Flat cash test showed that 5 mm corrugated plywood is sufficient material for sheathing from a mechanical point of view. Angle of corrugation was found as a very important factor which massively affects the mechanical properties. The impact strength test has shown that plywood is relatively tough material in direction of corrugation. It was calculated that the use of corrugated plywood sheathing for the containers can reduce the weight of the walls up to 75%. Corrugated plywood is also suitable material for web of I-joists and wide interior design applications.Keywords: corrugated plywood, veneer, beech plywood, ISO shipping container, I-joist
Procedia PDF Downloads 33814183 Growth Pattern, Condition Factor and Relative Condition Factor of Twenty Important Demersal Marine Fish Species in Nigerian Coastal Water
Authors: Omogoriola Hannah Omoloye
Abstract:
Fish is a key ingredient on the global menu, a vital factor in the global environment and an important basis for livelihood worldwide1. The length – weight relationships (LWRs) is of great importance in fishery assessment2,3. Its importance is pronounced in estimated the average weight at a given length group4 and in assessing the relative well being of a fish population5. Length and weight measurement in conjunction with age data can give information on the stock composition, age at maturity, life span, mortality, growth and production4,5,6,7. In addition, the data on length and weight can also provides important clues to climatic and environmental changes and the change in human consumption practices8,9. However, the size attained by the individual fish may also vary because of variation in food supply, and these in turn may reflect variation in climatic parameters and in the supply of nutrient or in the degree of competition for food. Environment deterioration, for example, may reduce growth rates and will cause a decrease in the average age of the fish. The condition factor and the relative condition factor10 are the quantitative parameters of the well being state of the fish and reflect recent feeding condition of the fish. It is based on the hypothesis that heavier fish of a given length are in better condition11. This factor varies according to influences of physiological factors, fluctuating according to different stages of the development. Condition factor has been used as an index of growth and feeding intensity12. Condition factor decrease with increase in length 12,13 and also influences the reproductive cycle in fish14. The objective here is to determine the length-weight relationships and condition factor for direct use in fishery assessment and for future comparisons between populations of the same species at different locations. To provide quantitative information on the biology of marine fish species trawl from Nigeria coastal water.Keywords: condition factor, growth pattern, marine fish species, Nigerian Coastal water
Procedia PDF Downloads 41814182 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study
Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier
Abstract:
Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.Keywords: eating disorders, risk factors, physical activity, machine learning
Procedia PDF Downloads 8314181 Optical Characterization and Surface Morphology of SnO2 Thin Films Prepared by Spin Coating Technique
Authors: J. O. Ajayi, S. S. Oluyamo, D. B. Agunbiade
Abstract:
In this work, tin oxide thin films (SnO2) were prepared using the spin coating technique. The effects of precursor concentration on the thin film properties were investigated. Tin oxide was synthesized from anhydrous Tin (II) Chloride (SnCl2) dispersed in Methanol and Acetic acid. The metallic oxide (SnO2) films deposited were characterized using the UV Spectrophotometer and the Scanning Electron Microscope (SEM). From the absorption spectra, absorption increases with decrease in precursor concentration. Absorbance in the VIS region is lower than 0 % at higher concentration. The optical transmission spectrum shows that transmission increases as the concentration of precursor decreases and the maximum transmission in visible region is about 90% for films prepared with 0.2 M. Also, there is increase in the reflectance of thin films as concentration of precursor increases. The films have high transparency (more than 85%) and low reflectance (less than 40%) in the VIS region. Investigation showed that the direct band gap value increased from 3.79eV, to 3.82eV as the precursor concentration decreased from 0.6 M to 0.2 M. Average direct bandgap energy for all the tin oxide films was estimated to be 3.80eV. The effect of precursor concentration was directly observed in crystal outgrowth and surface particle densification. They were found to increase proportionately with higher concentration.Keywords: anhydrous TIN (II) chloride, densification, NIS- VIS region, spin coating technique
Procedia PDF Downloads 26214180 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 13014179 Introducing and Effectiveness Evaluation of Innovative Logistics System Simulation Teaching: Theoretical Integration and Verification
Authors: Tsai-Pei Liu, Zhi-Rou Zheng, Tzu-Tzu Wen
Abstract:
Innovative logistics system simulation teaching is to extract the characteristics of the system through simulation methodology. The system has randomness and interaction problems in the execution time. Therefore, the simulation model can usually deal with more complex logistics process problems, giving students different learning modes. Students have more autonomy in learning time and learning progress. System simulation has become a new educational tool, but it still needs to accept many tests to use it in the teaching field. Although many business management departments in Taiwan have started to promote, this kind of simulation system teaching is still not popular, and the prerequisite for popularization is to be supported by students. This research uses an extension of Integration Unified Theory of Acceptance and Use of Technology (UTAUT2) to explore the acceptance of students in universities of science and technology to use system simulation as a learning tool. At the same time, it is hoped that this innovation can explore the effectiveness of the logistics system simulation after the introduction of teaching. The results indicated the significant influence of performance expectancy, social influence and learning value on students’ intention towards confirmed the influence of facilitating conditions and behavioral intention. The extended UTAUT2 framework helps in understanding students’ perceived value in the innovative logistics system teaching context.Keywords: UTAUT2, logistics system simulation, learning value, Taiwan
Procedia PDF Downloads 11614178 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 113