Search results for: panel data regression analysis
41574 Genome-Wide Association Study Identify COL2A1 as a Susceptibility Gene for the Hand Development Failure of Kashin-Beck Disease
Authors: Feng Zhang
Abstract:
Kashin-Beck disease (KBD) is a chronic osteochondropathy. The mechanism of hand growth and development failure of KBD remains elusive now. In this study, we conducted a two-stage genome-wide association study (GWAS) of palmar length-width ratio (LWR) of KBD, totally involving 493 Chinese Han KBD patients. Affymetrix Genome Wide Human SNP Array 6.0 was applied for SNP genotyping. Association analysis was conducted by PLINK software. Imputation analysis was performed by IMPUTE against the reference panel of the 1000 genome project. In the GWAS, the most significant association was observed between palmar LWR and rs2071358 of COL2A1 gene (P value = 4.68×10-8). Imputation analysis identified 3 SNPs surrounding rs2071358 with significant or suggestive association signals. Replication study observed additional significant association signals at both rs2071358 (P value = 0.017) and rs4760608 (P value = 0.002) of COL2A1 gene after Bonferroni correction. Our results suggest that COL2A1 gene was a novel susceptibility gene involved in the growth and development failure of hand of KBD.Keywords: Kashin-Beck disease, genome-wide association study, COL2A1, hand
Procedia PDF Downloads 21741573 Exploration and Evaluation of the Effect of Multiple Countermeasures on Road Safety
Authors: Atheer Al-Nuaimi, Harry Evdorides
Abstract:
Every day many people die or get disabled or injured on roads around the world, which necessitates more specific treatments for transportation safety issues. International road assessment program (iRAP) model is one of the comprehensive road safety models which accounting for many factors that affect road safety in a cost-effective way in low and middle income countries. In iRAP model road safety has been divided into five star ratings from 1 star (the lowest level) to 5 star (the highest level). These star ratings are based on star rating score which is calculated by iRAP methodology depending on road attributes, traffic volumes and operating speeds. The outcome of iRAP methodology are the treatments that can be used to improve road safety and reduce fatalities and serious injuries (FSI) numbers. These countermeasures can be used separately as a single countermeasure or mix as multiple countermeasures for a location. There is general agreement that the adequacy of a countermeasure is liable to consistent losses when it is utilized as a part of mix with different countermeasures. That is, accident diminishment appraisals of individual countermeasures cannot be easily added together. The iRAP model philosophy makes utilization of a multiple countermeasure adjustment factors to predict diminishments in the effectiveness of road safety countermeasures when more than one countermeasure is chosen. A multiple countermeasure correction factors are figured for every 100-meter segment and for every accident type. However, restrictions of this methodology incorporate a presumable over-estimation in the predicted crash reduction. This study aims to adjust this correction factor by developing new models to calculate the effect of using multiple countermeasures on the number of fatalities for a location or an entire road. Regression models have been used to establish relationships between crash frequencies and the factors that affect their rates. Multiple linear regression, negative binomial regression, and Poisson regression techniques were used to develop models that can address the effectiveness of using multiple countermeasures. Analyses are conducted using The R Project for Statistical Computing showed that a model developed by negative binomial regression technique could give more reliable results of the predicted number of fatalities after the implementation of road safety multiple countermeasures than the results from iRAP model. The results also showed that the negative binomial regression approach gives more precise results in comparison with multiple linear and Poisson regression techniques because of the overdispersion and standard error issues.Keywords: international road assessment program, negative binomial, road multiple countermeasures, road safety
Procedia PDF Downloads 23941572 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines
Procedia PDF Downloads 10341571 Rejection Sensitivity and Romantic Relationships: A Systematic Review and Meta-Analysis
Authors: Mandira Mishra, Mark Allen
Abstract:
This meta-analysis explored whether rejection sensitivity relates to facets of romantic relationships. A comprehensive literature search identified 60 studies (147 effect sizes; 16,955 participants) that met inclusion criteria. Data were analysed using inverse-variance weighted random effects meta-analysis. Mean effect sizes from 21 meta-analyses provided evidence that more rejection sensitive individuals report lower levels of relationship satisfaction and relationship closeness, lower levels of perceived partner satisfaction, a greater likelihood of intimate partner violence (perpetration and victimization), higher levels of relationship concerns and relationship conflict, and higher levels of jealousy and self-silencing behaviours. There was also some evidence that rejection sensitive individuals are more likely to engage in risky sexual behaviour and are more prone to sexual compulsivity. There was no evidence of publication bias and various levels of heterogeneity in computed averages. Random effects meta-regression identified participant age and sex as important moderators of pooled mean effects. These findings provide a foundation for the theoretical development of rejection sensitivity in romantic relationships and should be of interest to relationship and marriage counsellors and other relationship professionals.Keywords: intimate partner violence, relationship satisfaction, commitment, sexual orientation, risky sexual behaviour
Procedia PDF Downloads 7941570 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm
Authors: Zachary Huffman, Joana Rocha
Abstract:
Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations
Procedia PDF Downloads 13441569 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing
Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao
Abstract:
The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.Keywords: bearing, force measurement, IoT, strain gauge
Procedia PDF Downloads 13941568 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.Keywords: forecasting, generalized extreme value (GEV), meteorology, return level
Procedia PDF Downloads 47741567 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders
Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh
Abstract:
Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches
Procedia PDF Downloads 7141566 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region
Authors: Musab Isah
Abstract:
This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool
Procedia PDF Downloads 6241565 Effects of Crisis-Induced Emotions on in-Crisis Protective Behavior and Post-Crisis Perception: An Analysis of Survey Data for the 2015 Middle East Respiratory Syndrome in South Korea
Authors: Myoungsoon You, Heejung Son
Abstract:
Background: In the current study, we investigated the effects of emotions induced by an infectious disease outbreak on the various protective behaviors taken during the crisis and on the perception after the crisis. The investigation was based on two psychological theories of appraisal tendency and action tendency. Methods: A total of 900 participants in South Korea who experienced the 2015 Middle East Respiratory Syndrome outbreak were sampled by a professional survey agency. To assess the influence of the emotions fear and anger, a regression approach was used. The effect of emotions on various protective behaviors and perceptions was observed using a hierarchical regression method. Results: Fear and anger induced by the infectious disease outbreak were both associated with increased protective behaviors during the crisis. However, the differences between the emotions were observed. While protective behaviors with avoidance tendency (adherence to recommendations, self-mitigation), were raised by both fear and anger, protective behaviors with approach tendency (information-seeking) were increased by anger, but not fear. Regarding the effect of emotion on the risk perception after the crisis, only fear was associated with a higher level of risk perception. Conclusions: This study confirmed the role of emotions in crisis protective behaviors and post-crisis perceptions regarding an infectious disease outbreak. These findings could enhance understanding of the public’s protective behaviors during infectious disease outbreaks and afterward risk perception corresponding to emotions. The results also suggested strategies for communicating with the public that takes into account emotions that are prominently induced by crises associated with disease outbreaks.Keywords: crisis communication, emotion, infectious disease outbreak, protective behavior, risk perception
Procedia PDF Downloads 27541564 Analysis of Spatial and Temporal Data Using Remote Sensing Technology
Authors: Kapil Pandey, Vishnu Goyal
Abstract:
Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing
Procedia PDF Downloads 43141563 Factors Influencing Family Resilience and Quality of Life in Pediatric Cancer Patients and Their Caregivers: A Cluster Analysis
Authors: Li Wang, Dan Shu, Shiguang Pang, Lixiu Wang, Bing Xiang Yang, Qian Liu
Abstract:
Background: Cancer is one of the most severe diseases in childhood; long-term treatment and its side effects significantly impact the patient's physical, psychological, social functioning and quality of life while also placing substantial physical and psychological burdens on caregivers and families. Family resilience is crucial for children with cancer, helping them cope better with the disease and supporting the family in facing challenges together. As a family-level variable, family resilience requires information from multiple family members. However, to our best knowledge, there is currently no research investigating family resilience from both the perspectives of pediatric cancer patients and their caregivers. Therefore, this study aims to investigate the family resilience and quality of life of pediatric cancer patients from a patient–caregiver dyadic perspective. Methods: A total of 149 dyads of patients diagnosed with pediatric cancer patients and their principal caregivers were recruited from oncology departments of 4 tertiary hospitals in Wuhan and Taiyuan, China. All participants completed questionnaires that identified their demographic and clinical characteristics as well as assessed their family resilience and quality of life for both the patients and their caregivers. K-means cluster analysis was used to identify different clusters of family resilience based on the reports from patients and caregivers. Multivariate logistic regression and linear regression are used to analyze the factors influencing family resilience and quality of life, as well as the relationship between the two. Results: Three clusters of family resilience were identified: a cluster of high family resilience (HR), a cluster of low family resilience (LR), and a cluster of discrepant family resilience (DR). Most (67.1%) families fell into the cluster with low resilience. Characteristics such as the types of caregivers perceived social support of the patient were different among the three clusters. Compared to the LR group, families where the mother is the caregiver and where the patient has high social support are more likely to be assigned to the HR. The quality of life for caregivers was consistently highest in the HR cluster and lowest in the LR cluster. The patient's quality of life is not related to family resilience. In the linear regression analysis of the patient's quality of life, patients who are the first-born have higher quality of life, while those living with their parents have lower quality of life. The participants' characteristics were not associated with the quality of life for caregivers. Conclusions: In most families, family resilience was low. Families with maternal caregivers and patients receiving high levels of social support are more inclined to be higher levels of family resilience. Family resilience was linked to the quality of life of caregivers of pediatric cancer patients. The clinical implications of this findings suggest that healthcare and social support organizations should prioritize and support the participation of mothers in caregiving responsibilities. Furthermore, they should assist families in accessing social support to enhance family resilience. This study also emphasizes the importance of promoting family resilience for enhancing family health and happiness, as well as improving the quality of life for caregivers.Keywords: pediatric cancer, cluster analysis, family resilience, quality of life
Procedia PDF Downloads 3641562 Analysis of Active Compounds in Thai Herbs by near Infrared Spectroscopy
Authors: Chaluntorn Vichasilp, Sutee Wangtueai
Abstract:
This study aims to develop a new method to detect active compounds in Thai herbs (1-deoxynojirimycin (DNJ) in mulberry leave, anthocyanin in Mao and curcumin in turmeric) using near infrared spectroscopy (NIRs). NIRs is non-destructive technique that rapid, non-chemical involved and low-cost determination. By NIRs and chemometrics technique, it was found that the DNJ prediction equation conducted with partial least square regression with cross-validation had low accuracy R2 (0.42) and SEP (31.87 mg/100g). On the other hand, the anthocyanin prediction equation showed moderate good results (R2 and SEP of 0.78 and 0.51 mg/g) with Multiplication scattering correction at wavelength of 2000-2200 nm. The high absorption could be observed at wavelength of 2047 nm and this model could be used as screening level. For curcumin prediction, the good result was obtained when applied original spectra with smoothing technique. The wavelength of 1400-2500 nm was created regression model with R2 (0.68) and SEP (0.17 mg/g). This model had high NIRs absorption at a wavelength of 1476, 1665, 1986 and 2395 nm, respectively. NIRs showed prospective technique for detection of some active compounds in Thai herbs.Keywords: anthocyanin, curcumin, 1-deoxynojirimycin (DNJ), near infrared spectroscopy (NIRs)
Procedia PDF Downloads 38041561 The role of Financial Development and Institutional Quality in Promoting Sustainable Development through Tourism Management
Authors: Hashim Zameer
Abstract:
Effective tourism management plays a vital role in promoting sustainability and supporting ecosystems. A common principle that has been in practice over the years is “first pollute and then clean,” indicating countries need financial resources to promote sustainability. Financial development and the tourism management both seems very important to promoting sustainable development. However, without institutional support, it is very difficult to succeed. In this context, it seems prominently significant to explore how institutional quality, tourism development, and financial development could promote sustainable development. In the past, no research explored the role of tourism development in sustainable development. Moreover, the role of financial development, natural resources, and institutional quality in sustainable development is also ignored. In this regard, this paper aims to investigate the role of tourism development, natural resources, financial development, and institutional quality in sustainable development in China. The study used time-series data from 2000–2021 and employed the Bayesian linear regression model because it is suitable for small data sets. The robustness of the findings was checked using a quantile regression approach. The results reveal that an increase in tourism expenditures stimulates the economy, creates jobs, encourages cultural exchange, and supports sustainability initiatives. Moreover, financial development and institution quality have a positive effect on sustainable development. However, reliance on natural resources can result in negative economic, social, and environmental outcomes, highlighting the need for resource diversification and management to reinforce sustainable development. These results highlight the significance of financial development, strong institutions, sustainable tourism, and careful utilization of natural resources for long-term sustainability. The study holds vital insights for policy formulation to promote sustainable tourism.Keywords: sustainability, tourism development, financial development, institutional quality
Procedia PDF Downloads 7941560 Artificial Intelligence in the Design of High-Strength Recycled Concrete
Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh
Abstract:
The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials
Procedia PDF Downloads 1041559 Effects of Parental Socio-Economic Status and Individuals' Educational Achievement on Their Socio-Economic Status: A Study of South Korea
Authors: Eun-Jeong Jang
Abstract:
Inequality has been considered as a core issue in public policy. Korea is categorized into one of the countries in the high level of inequality, which matters to not only current but also future generations. The relationship between individuals' origin and destination has an implication of intergenerational inequality. The previous work on this was mostly conducted at macro level using panel data to our knowledge. However, in this level, there is no room to track down what happened during the time between origin and destination. Individuals' origin is represented by their parents' socio-economic status, and in the same way, destination is translated into their own socio-economic status. The first research question is that how origin is related to the destination. Certainly, destination is highly affected by origin. In this view, people's destination is already set to be more or less than a reproduction of previous generations. However, educational achievement is widely believed as an independent factor from the origin. From this point of view, there is a possibility to change the path given by parents by educational attainment. Hence, the second research question would be that how education is related to destination and also, which factor is more influential to destination between origin and education. Also, the focus lies in the mediation of education between origin and destination, which would be the third research question. Socio-economic status in this study is referring to class as a sociological term, as well as wealth including labor and capital income, as an economic term. The combination of class and wealth would be expected to give more accurate picture about the hierarchy in a society. In some cases of non-manual and professional occupations, even though they are categorized into relatively high class, their income is much lower than those who in the same class. Moreover, it is one way to overcome the limitation of the retrospective view during survey. Education is measured as an absolute term, the years of schooling, and also as a relative term, the rank of school. Moreover, all respondents were asked the effort scaled by time intensity, self-motivation, before and during the course of their college based on a standard questionnaire academic achieved model provides. This research is based on a survey at an individual level. The target for sampling is an individual who has a job, regardless of gender, including income-earners and self-employed people and aged between thirties and forties because this age group is considered to reach the stage of job stability. In most cases, the researcher met respondents person to person visiting their work place or home and had a chance to interview some of them. One hundred forty individual data collected from May to August in 2017. It will be analyzed by multiple regression (Q1, Q2) and structural equation modeling (Q3).Keywords: class, destination, educational achievement, effort, income, origin, socio-economic status, South Korea
Procedia PDF Downloads 27341558 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty
Authors: D. S. Gomes, A. T. Silva
Abstract:
Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation
Procedia PDF Downloads 28941557 A Statistical Approach to Air Pollution in Mexico City and It's Impacts on Well-Being
Authors: Ana B. Carrera-Aguilar , Rodrigo T. Sepulveda-Hirose, Diego A. Bernal-Gurrusquieta, Francisco A. Ramirez Casas
Abstract:
In recent years, Mexico City has presented high levels of atmospheric pollution; the city is also an example of inequality and poverty that impact metropolitan areas around the world. This combination of social and economic exclusion, coupled with high levels of pollution evidence the loss of well-being among the population. The effect of air pollution on quality of life is an area of study that has been overlooked. The purpose of this study is to find relations between air quality and quality of life in Mexico City through statistical analysis of a regression model and principal component analysis of several atmospheric contaminants (CO, NO₂, ozone, particulate matter, SO₂) and well-being indexes (HDI, poverty, inequality, life expectancy and health care index). The data correspond to official information (INEGI, SEDEMA, and CEPAL) for 2000-2018. Preliminary results show that the Human Development Index (HDI) is affected by the impacts of pollution, and its indicators are reduced in the presence of contaminants. It is necessary to promote a strong interest in this issue in Mexico City. Otherwise, the problem will not only remain but will worsen affecting those who have less and the population well-being in a generalized way.Keywords: air quality, Mexico City, quality of life, statistics
Procedia PDF Downloads 14341556 Resiliency, Peer and Parental Support as Determinants of Adolescents' Social Adjustment among Secondary Students in Ilorin, Kwara State
Authors: Titilola Adebowale
Abstract:
Some factors are responsible for the social adjustment among the adolescents. The study investigated resiliency, peer and parental support as factors that could determine social adjustment among adolescents in Ilorin, Kwara state. The study adopted descriptive survey research design. A sample size of 300 SS1 & SS2 students from ten secondary schools, six public and four private schools were randomly selected within Ilorin Metropolis. Self-structured questionnaire that was validated and the reliability ensured was used to collect data from the respondents. Four hypotheses were postulated and tested at 0.05 level of significance. Data collected was analysed using Pearson Product Moment Correlation (PPMC) and Regression Analysis. The findings revealed that there was a positive relationship between resiliency and social adjustment: r (298) = .402, p<0.01, r2 = .162; that there was a positive relationship between peer support and social adjustment: r (298) = .570, p<0.01, r2 = .325; that there was a positive relationship between parental support and social adjustment: r (298) = .451, p<0.01, r2 = .203; also reveals significant joint contribution of the independent variables (resilience, peer support, parental support) to the prediction of social adjustment: F (3,296) = 55.587, P<0.01. Various recommendations were given which includes the roles of government, agencies, individuals, parents, teachers, religious and marriage institutions.Keywords: resiliency, peer support, parental support, adolescents, social adjustment
Procedia PDF Downloads 17541555 The Roles of Local Administration Management to Promote the Culture Based On Philosophy of Sufficiency Economy
Authors: Sukanya Sripho
Abstract:
The purpose of this research was to study the role of local administration management to promote culture based on philosophy of sufficiency economy to many communities in Thailand. The philosophy was given to the Thai people by their King and become one of the important policies from the Thai government. A total of 375 local people in main district, Amnadcharoen province were selected by random sampling. A questionnaire was used as the tool for collecting data. Descriptive statistics in this research included percentage, mean, and multiple regression analysis. The findings revealed that the role of facilitator was utilized the most from the management in order to promote culture based on philosophy of sufficiency economy to many communities in Thailand.Keywords: administration, management, philosophy of sufficiency economy, facilitator
Procedia PDF Downloads 38841554 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade
Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim
Abstract:
Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade
Procedia PDF Downloads 22241553 Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement
Authors: Chao Xu
Abstract:
Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result.Keywords: vulnerability, probability seismic demand analysis, ground motion intensity measure, sufficiency, efficiency, inelastic time history analysis
Procedia PDF Downloads 35041552 Trajectories of Depression Anxiety and Stress among Breast Cancer Patients: Assessment at First Year of Diagnosis
Authors: Jyoti Srivastava, Sandhya S. Kaushik, Mallika Tewari, Hari S. Shukla
Abstract:
Little information is available about the development of psychological well being over time among women who have been undergoing treatment for breast cancer. The aim of this study was to identify the trajectories of depression anxiety and stress among women with early-stage breast cancer. Of the 48 Indian women with newly diagnosed early-stage breast cancer recruited from surgical oncology unit, 39 completed an interview and were assessed for depression anxiety and stress (Depression Anxiety Stress Scale-DASS 21) before their first course of chemotherapy (baseline) and follow up interviews at 3, 6 and 9 months thereafter. Growth mixture modeling was used to identify distinct trajectories of Depression Anxiety and Stress symptoms. Logistic Regression analysis was used to evaluate the characteristics of women in distinct groups. Most women showed mild to moderate level of depression and anxiety (68%) while normal to mild level of stress (71%). But one in 11 women was chronically anxious (9%) and depressed (9%). Young age, having a partner, shorter education and receiving chemotherapy but not radiotherapy might characterize women whose psychological symptoms remain strong nine months after diagnosis. By looking beyond the mean, it was found that several socio-demographic and treatment factors characterized the women whose depression, anxiety and stress level remained severe even nine months after diagnosis. The results suggest that support provided to cancer patients should have a special focus on a relatively small group of patient most in need.Keywords: psychological well being, growth mixture modeling, logistic regression analysis, socio-demographic factors
Procedia PDF Downloads 14641551 Allergy to Animal Hair in the Algerian Population
Authors: Meriche Hacene, Gadiri Sabiha
Abstract:
Introduction: Allergy to animal hair is hypersensitivity to animal appendages to look for in front of any rhinoconjunctivitis or asthma. An anamnesis associated with the prick-tests makes it possible to guide the diagnosis, which will be supplemented in case of doubt by specific immunoglobulin E (IgE) assays. The objective of our study is to study the characteristics of patients sensitized to animal hair. Patients and methods: Retrospective study conducted on 105 adult patients and 69 children over a period of 3 years, including patients who received a specific IgE assay (respiratory panel and pediatric panel) by immunodot method. Result: 105 adult patients, including 74 women and 31 men, with an average age of 41 years, of which 8.5% had sensitization to animal hair (5 men and 4 women), namely: cat (5%), horse (4.7%) and dog (3.8%). For the 69 children, a slight female predominance was noted (56%), with an average age of 7.5 years, of which (13%) are sensitized to animal hair (5 girls and 4 boys): cat (10%), while awareness of dog and horse hair was less frequent with an identical prevalence of (4.34%). The dominant symptoms are rhinorrhea and sneezing for both categories, respectively (40% and 26.6% in adults and 23% for both symptoms in children). Cross-sensitization was observed in the 2 series: 1 single cat-dog and cat-horse case and 2 dog-horse cases in adults. In children 100% of patients with sensitization to dog hair had cross-sensitization to cat hair, only 1 case was observed for cat-horse cross-reactivity. Conclusion: This work shows that allergy to animal hair is common. Studies on more representative samples are recommended.Keywords: children, allegy to animals, specific Ig E, hypersensitivity
Procedia PDF Downloads 6441550 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data
Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene
Abstract:
Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging
Procedia PDF Downloads 26841549 Audit Committee Financial Expertise and Financial Reporting Timeliness in Emerging Market: The Role of Audit Committee Chair
Authors: Saeed Rabea Baatwah, Zalailah Salleh, Norsiah Ahmad
Abstract:
This study examines whether audit committee chair with financial expertise enhances the audit committee role in financial reporting quality in emerging market. We investigate this influence by employing the direct effect and moderating effect of audit committee chair with financial expertise on financial reporting timeliness. By using Omani data and the panel data method for two proxies for financial reporting timeliness, we find that audit committee chair with financial expertise enhances the timeliness of financial reporting through making the disclosure of annual reports timely. Further, we report evidence showing that both accounting and non-accounting financial expertise on the audit committee have a positive and significant influence on the timeliness of financial reporting. We also document that the association between financial expertise and the timeliness of financial reporting is more pronounced when the chair of the audit committee has financial expertise. This study is among the first to comprehensively prove that audit committee chair with financial expertise contributes to the quality of financial reporting in emerging market.Keywords: audit committee, chair with financial expertise, timeliness of financial reporting, Oman
Procedia PDF Downloads 26741548 Artificial Neural Network Regression Modelling of GC/MS Retention of Terpenes Present in Satureja montana Extracts Obtained by Supercritical Carbon Dioxide
Authors: Strahinja Kovačević, Jelena Vladić, Senka Vidović, Zoran Zeković, Lidija Jevrić, Sanja Podunavac Kuzmanović
Abstract:
Supercritical extracts of highly valuated medicinal plant Satureja montana were prepared by application of supercritical carbon dioxide extraction in the carbon dioxide pressure range from 125 to 350 bar and temperature range from 40 to 60°C. Using GC/MS method of analysis chemical profiles (aromatic constituents) of S. montana extracts were obtained. Self-training artificial neural networks were applied to predict the retention time of the analyzed terpenes in GC/MS system. The best ANN model obtained was multilayer perceptron (MLP 11-11-1). Hidden activation was tanh and output activation was identity with Broyden–Fletcher–Goldfarb–Shanno training algorithm. Correlation measures of the obtained network were the following: R(training) = 0.9975, R(test) = 0.9971 and R(validation) = 0.9999. The comparison of the experimental and predicted retention times of the analyzed compounds showed very high correlation (R = 0.9913) and significant predictive power of the established neural network.Keywords: ANN regression, GC/MS, Satureja montana, terpenes
Procedia PDF Downloads 45141547 Prediction on the Pursuance of Separation of Catalonia from Spain
Authors: Francis Mark A. Fernandez, Chelca Ubay, Armithan Suguitan
Abstract:
Regions or provinces in a definite state certainly contribute to the economy of their mainland. These regions or provinces are the ones supplying the mainland with different resources and assets. Thus, with a certain region separating from the mainland would indeed impinge the heart of an entire state to develop and expand. With these, the researchers decided to study on the effects of the separation of one’s region to its mainland and the consequences that will take place if the mainland would rule out the region to separate from them. The researchers wrote this paper to present the causes of the separation of Catalonia from Spain and the prediction regarding the pursuance of this region to revolt from its mainland, Spain. In conducting this research, the researchers utilized two analyses, namely: qualitative and quantitative. In qualitative, numerous of information regarding the existing experiences of the citizens of Catalonia were gathered by the authors to give certainty to the prediction of the researchers. Besides this undertaking, the researchers will also gather needed information and figures through books, journals and the published news and reports. In addition, to further support this prediction under qualitative analysis, the researchers intended to operate the Phenomenological research in which the examiners will exemplify the lived experiences of each citizen in Catalonia. Moreover, the researchers will utilize one of the types of Phenomenological research which is hermeneutical phenomenology by Van Manen. In quantitative analysis, the researchers utilized the regression analysis in which it will ascertain the causality in an underlying theory in understanding the relationship of the variables. The researchers assigned and identified different variables, wherein the dependent variable or the y which represents the prediction of the researchers, the independent variable however or the x represents the arising problems that grounds the partition of the region, the summation of the independent variable or the ∑x represents the sum of the problem and finally the summation of the dependent variable or the ∑y is the result of the prediction. With these variables, using the regression analysis, the researchers will be able to show the connections and how a single variable could affect the other variables. From these approaches, the prediction of the researchers will be specified. This research could help different states dealing with this kind of problem. It will further help certain states undergoing this problem by analyzing the causes of these insurgencies and the effects on it if it will obstruct its region to consign their full-pledge autonomy.Keywords: autonomy, liberty, prediction, separation
Procedia PDF Downloads 25041546 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique
Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani
Abstract:
Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.Keywords: regression, machine learning, scan radiation, robot
Procedia PDF Downloads 7641545 Negative Perceptions of Ageing Predicts Greater Dysfunctional Sleep Related Cognition Among Adults Aged 60+
Authors: Serena Salvi
Abstract:
Ageistic stereotypes and practices have become a normal and therefore pervasive phenomenon in various aspects of everyday life. Over the past years, renewed awareness towards self-directed age stereotyping in older adults has given rise to a line of research focused on the potential role of attitudes towards ageing on seniors’ health and functioning. This set of studies has showed how a negative internalisation of ageistic stereotypes would discourage older adults in seeking medical advice, in addition to be associated to negative subjective health evaluation. An important dimension of mental health that is often affected in older adults is represented by sleep quality. Self-reported sleep quality among older adults has shown to be often unreliable when compared to their objective sleep measures. Investigations focused on self-reported sleep quality among older adults have suggested how this portion of the population would tend to accept disrupted sleep if believed to be up to standard for their age. On the other hand, unrealistic expectations, and dysfunctional beliefs towards sleep in ageing, might prompt older adults to report sleep disruption even in the absence of objective disrupted sleep. Objective of this study is to examine an association between personal attitudes towards ageing in adults aged 60+ and dysfunctional sleep related cognition. More in detail, this study aims to investigate a potential association between personal attitudes towards ageing, sleep locus of control and dysfunctional beliefs towards sleep among this portion of the population. Data in this study were statistically analysed in SPSS software. Participants were recruited through the online participants recruitment system Prolific. Inclusion of attention check questions throughout the questionnaire and consistency of responses were looked at. Prior to the commencement of this study, Ethical Approval was granted (ref. 39396). Descriptive statistics were used to determine the frequency, mean, and SDs of the variables. Pearson coefficient was used for interval variables, independent T-test for comparing means between two independent groups, analysis of variance (ANOVA) test for comparing the means in several independent groups, and hierarchical linear regression models for predicting criterion variables based on predictor variables. In this study self-perceptions of ageing were assessed using APQ-B’s subscales, while dysfunctional sleep related cognition was operationalised using the SLOC and the DBAS16 scales. Of the final subscales taken in consideration in the brief version of the APQ questionnaire, Emotional Representations (ER), Control Positive (PC) and Control and Consequences Negative (NC) have shown to be of particularly relevance for the remits of this study. Regression analysis show how an increase in the APQ-B subscale Emotional Representations (ER) predicts an increase in dysfunctional beliefs and attitudes towards sleep in this sample, after controlling for subjective sleep quality, level of depression and chronological age. A second regression analysis showed that APQ-B subscales Control Positive (PC) and Control and Consequences Negative (NC) were significant predictors in the change of variance of SLOC, after controlling for subjective sleep quality, level of depression and dysfunctional beliefs about sleep.Keywords: sleep-related cognition, perceptions of aging, older adults, sleep quality
Procedia PDF Downloads 102