Search results for: multivariate logistic regression
2487 Predictors of Pericardial Effusion Requiring Drainage Following Coronary Artery Bypass Graft Surgery: A Retrospective Analysis
Authors: Nicholas McNamara, John Brookes, Michael Williams, Manish Mathew, Elizabeth Brookes, Tristan Yan, Paul Bannon
Abstract:
Objective: Pericardial effusions are an uncommon but potentially fatal complication after cardiac surgery. The goal of this study was to describe the incidence and risk factors associated with the development of pericardial effusion requiring drainage after coronary artery bypass graft surgery (CABG). Methods: A retrospective analysis was undertaken using prospectively collected data. All adult patients who underwent CABG at our institution between 1st January 2017 and 31st December 2018 were included. Pericardial effusion was diagnosed using transthoracic echocardiography (TTE) performed for clinical suspicion of pre-tamponade or tamponade. Drainage was undertaken if considered clinically necessary and performed via a sub-xiphoid incision, pericardiocentesis, or via re-sternotomy at the discretion of the treating surgeon. Patient demographics, operative characteristics, anticoagulant exposure, and postoperative outcomes were examined to identify those variables associated with the development of pericardial effusion requiring drainage. Tests of association were performed using the Fischer exact test for dichotomous variables and the Student t-test for continuous variables. Logistic regression models were used to determine univariate predictors of pericardial effusion requiring drainage. Results: Between January 1st, 2017, and December 31st, 2018, a total of 408 patients underwent CABG at our institution, and eight (1.9%) required drainage of pericardial effusion. There was no difference in age, gender, or the proportion of patients on preoperative therapeutic heparin between the study and control groups. Univariate analysis identified preoperative atrial arrhythmia (37.5% vs 8.8%, p = 0.03), reduced left ventricular ejection fraction (47% vs 56%, p = 0.04), longer cardiopulmonary bypass (130 vs 84 min, p < 0.01) and cross-clamp (107 vs 62 min, p < 0.01) times, higher drain output in the first four postoperative hours (420 vs 213 mL, p <0.01), postoperative atrial fibrillation (100% vs 32%, p < 0.01), and pleural effusion requiring drainage (87.5% vs 12.5%, p < 0.01) to be associated with development of pericardial effusion requiring drainage. Conclusion: In this study, the incidence of pericardial effusion requiring drainage was 1.9%. Several factors, mainly related to preoperative or postoperative arrhythmia, length of surgery, and pleural effusion requiring drainage, were identified to be associated with developing clinically significant pericardial effusions. High clinical suspicion and low threshold for transthoracic echo are pertinent to ensure this potentially lethal condition is not missed.Keywords: coronary artery bypass, pericardial effusion, pericardiocentesis, tamponade, sub-xiphoid drainage
Procedia PDF Downloads 1592486 A Two Phase VNS Algorithm for the Combined Production Routing Problem
Authors: Nejah Ben Mabrouk, Bassem Jarboui, Habib Chabchoub
Abstract:
Production and distribution planning is the most important part in supply chain management. In this paper, a NP-hard production-distribution problem for one product over a multi-period horizon is investigated. The aim is to minimize the sum of costs of three items: production setups, inventories and distribution, while determining, for each period, the amount produced, the inventory levels and the delivery trips. To solve this difficult problem, we propose a bi-phase approach based on a Variable Neighbourhood Search (VNS). This heuristic is tested on 90 randomly generated instances from the literature, with 20 periods and 50, 100, 200 customers. Computational results show that our approach outperforms existing solution procedures available in the literatureKeywords: logistic, production, distribution, variable neighbourhood search
Procedia PDF Downloads 3342485 Differences in Patient Satisfaction Observed between Female Japanese Breast Cancer Patients Who Receive Breast-Conserving Surgery or Total Mastectomy
Authors: Keiko Yamauchi, Motoyuki Nakao, Yoko Ishihara
Abstract:
The increase in the number of women with breast cancer in Japan has required hospitals to provide a higher quality of medicine so that patients are satisfied with the treatment they receive. However, patients’ satisfaction following breast cancer treatment has not been sufficiently studied. Hence, we investigated the factors influencing patient satisfaction following breast cancer treatment among Japanese women. These women underwent either breast-conserving surgery (BCS) (n = 380) or total mastectomy (TM) (n = 247). In March 2016, we conducted a cross-sectional internet survey of Japanese women with breast cancer in Japan. We assessed the following factors: socioeconomic status, cancer-related information, the role of medical decision-making, the degree of satisfaction regarding the treatments received, and the regret arising from the medical decision-making processes. We performed logistic regression analyses with the following dependent variables: extreme satisfaction with the treatments received, and regret regarding the medical decision-making process. For both types of surgery, the odds ratio (OR) of being extremely satisfied with the cancer treatment was significantly higher among patients who did not have any regrets compared to patients who had. Also, the OR tended to be higher among patients who chose to play a wanted role in the medical decision-making process, compared with patients who did not. In the BCS group, the OR of being extremely satisfied with the treatment was higher if, at diagnosis, the patient’s youngest child was older than 19 years, compared with patients with no children. The OR was also higher if patient considered the stage and characteristics of their cancer significant. The OR of being extremely satisfied with the treatments was lower among patients who were not employed on full-time basis, and among patients who considered the second medical opinions and medical expenses to be significant. These associations were not observed in the TM group. The OR of having regrets regarding the medical decision-making process was higher among patients who chose to play a role in the decision-making process as they preferred, and was also higher in patients who were employed on either a part-time or contractual basis. For both types of surgery, the OR was higher among patients who considered a second medical opinion to be significant. Regardless of surgical type, regret regarding the medical decision-making process decreases treatment satisfaction. Patients who received breast-conserving surgery were more likely to have regrets concerning the medical decision-making process if they could not play a role in the process as they preferred. In addition, factors associated with the satisfaction with treatment in BCS group but not TM group included the second medical opinion, medical expenses, employment status, and age of the youngest child at diagnosis.Keywords: medical decision making, breast-conserving surgery, total mastectomy, Japanese
Procedia PDF Downloads 1462484 Investigating the Relationship between Emotional Intelligence and Self-Efficacy of Physical Education Teachers in Ilam Province
Authors: Ali Heyrani, Maryam Saidyousefi
Abstract:
The aim of the present study was to investigate the relationship between emotional intelligence and Self-Efficacy of physical education teachers in Ilam province. The research method is descriptive correlational. The study participants were of 170 physical education teachers (90 males, 80 females) with an age range of 20 to 50 years, who were selected randomly. The instruments for data collection were Emotional Intelligence Questionnaire Bar-on (1997) to assess the Emotional Intelligence teachers and Self-Efficacy Questionnaire to measure their Self-Efficacy. The questionnaires used in the interior are reliable and valid. To analyze the data, descriptive statistics and inferential tests (Kolmogorov-Smirnov test, Pearson correlation and multiple regression) at a significance level of P <0/ 05 were used. The Results showed that there is a significant positive relationship between totall emotional intelligence and Self-Efficacy of teachers, so the more emotional intelligence of physical education teachers the better the extent of Self-Efficacy. Also, the results arising from regression analysis gradually showed that among components of emotional intelligence, three components, the General Mood, Adaptability, and Interpersonal Communication to Self-Efficacy are of a significant positive relationship and are able to predict the Self-Efficacy of physical education teachers. It seems the application of this study ҆s results can help to education authorities to promote the level of teachers’ emotional intelligence and therefore the improvement of their Self-Efficacy and success in learners’ teaching and training.Keywords: emotional intelligence, self-efficacy, physical education teachers, Ilam province
Procedia PDF Downloads 5192483 Unravelling the Relationship Between Maternal and Fetal ACE2 Gene Polymorphism and Preeclampsia Risk
Authors: Sonia Tamanna, Akramul Hassan, Mohammad Shakil Mahmood, Farzana Ansari, Gowhar Rashid, Mir Fahim Faisal, M. Zakir Hossain Howlader
Abstract:
Background: Preeclampsia (PE), a pregnancy-specific hypertensive disorder, significantly impacts maternal and fetal health. It is particularly prevalent in underdeveloped countries and is linked to preterm delivery and fetal growth. The renin-angiotensin system (RAS) plays a crucial role in ensuring a successful pregnancy outcome, with Angiotensin-Converting Enzyme 2 (ACE2) being a key component. ACE2 converts ANG II to Ang-(1-7), offering protection against ANG II-induced stress and inflammation while regulating blood pressure and osmotic balance during pregnancy. The reduced maternal plasma angiotensin-converting enzyme 2 (ACE2) seen in preeclampsia might contribute to its pathogenesis. However, there has been a dearth of comprehensive research into the association between ACE2 gene polymorphism and preeclampsia. In the South Asian population, hypertension is strongly linked to two SNPs: rs2285666 and rs879922. This genotype was therefore considered, and the possible association of maternal and fetal ACE2 gene polymorphism with preeclampsia within the Bangladeshi population was evaluated. Method: DNA was extracted from peripheral white blood cells (WBCs) using the organic method, and SNP genotyping was done via PCR-RFLP. Odds ratios (OR) with 95% confidence intervals (95% CI) were calculated using logistic regression to determine relative risk. Result: A comprehensive case-control study was conducted on 51 PE patients and their infants, along with 56 control subjects and their infants. Maternal single nuvleotide polymorphisms (SNP) (rs2285666) analysis revealed a strong association between the TT genotype and preeclampsia, with a four-fold increased risk in mothers (P=0.024, OR=4.00, 95% CI=1.36-11.37) compared to their ancestral genotype CC. However, the CT genotype (rs2285666) showed no significant difference (P=0.46, OR=1.54, 95% CI=0.57-4.14). Notably, no significant correlation was found in infants, regardless of their gender. For rs879922, no significant association was observed in both mothers and infants. This pioneering study suggests that mothers carrying the ACE2 gene variant rs2285666 (TT allele) may be at higher risk for preeclampsia, potentially influencing hypertension characteristics, whereas rs879922 does not appear to be associated with developing preeclampsia. Conclusion: This study sheds light on the role of ACE2 gene polymorphism, particularly the rs2285666 TT allele, in maternal susceptibility to preeclampsia. However, rs879922 does not appear to be linked to the risk of PE. This research contributes to our understanding of the genetic underpinnings of preeclampsia, offering insights into potential avenues for prevention and management.Keywords: ACE2, PCR-RFLP, preeclampsia, single nuvleotide polymorphisms (SNPs)
Procedia PDF Downloads 602482 Robust Inference with a Skew T Distribution
Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici
Abstract:
There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness
Procedia PDF Downloads 3962481 Medication Side Effects: Implications on the Mental Health and Adherence Behaviour of Patients with Hypertension
Authors: Irene Kretchy, Frances Owusu-Daaku, Samuel Danquah
Abstract:
Hypertension is the leading risk factor for cardiovascular diseases, and a major cause of death and disability worldwide. This study examined whether psychosocial variables influenced patients’ perception and experience of side effects of their medicines, how they coped with these experiences and the impact on mental health and medication adherence to conventional hypertension therapies. Methods: A hospital-based mixed methods study, using quantitative and qualitative approaches was conducted on hypertensive patients. Participants were asked about side effects, medication adherence, common psychological symptoms, and coping mechanisms with the aid of standard questionnaires. Information from the quantitative phase was analyzed with the Statistical Package for Social Sciences (SPSS) version 20. The interviews from the qualitative study were audio-taped with a digital audio recorder, manually transcribed and analyzed using thematic content analysis. The themes originated from participant interviews a posteriori. Results: The experiences of side effects – such as palpitations, frequent urination, recurrent bouts of hunger, erectile dysfunction, dizziness, cough, physical exhaustion - were categorized as no/low (39.75%), moderate (53.0%) and high (7.25%). Significant relationships between depression (x 2 = 24.21, P < 0.0001), anxiety (x 2 = 42.33, P < 0.0001), stress (x 2 = 39.73, P < 0.0001) and side effects were observed. A logistic regression model using the adjusted results for this association are reported – depression [OR = 1.9 (1.03 – 3.57), p = 0.04], anxiety [OR = 1.5 (1.22 – 1.77), p = < 0.001], and stress [OR = 1.3 (1.02 – 1.71), p = 0.04]. Side effects significantly increased the probability of individuals to be non-adherent [OR = 4.84 (95% CI 1.07 – 1.85), p = 0.04] with social factors, media influences and attitudes of primary caregivers further explaining this relationship. The personal adoption of medication modifying strategies, espousing the use of complementary and alternative treatments, and interventions made by clinicians were the main forms of coping with side effects. Conclusions: Results from this study show that contrary to a biomedical approach, the experience of side effects has biological, social and psychological interrelations. The result offers more support for the need for a multi-disciplinary approach to healthcare where all forms of expertise are incorporated into health provision and patient care. Additionally, medication side effects should be considered as a possible cause of non-adherence among hypertensive patients, thus addressing this problem from a Biopsychosocial perspective in any intervention may improve adherence and invariably control blood pressure.Keywords: biopsychosocial, hypertension, medication adherence, psychological disorders
Procedia PDF Downloads 3702480 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict
Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks
Procedia PDF Downloads 4862479 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 22478 An Optimal Bayesian Maintenance Policy for a Partially Observable System Subject to Two Failure Modes
Authors: Akram Khaleghei Ghosheh Balagh, Viliam Makis, Leila Jafari
Abstract:
In this paper, we present a new maintenance model for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model. A cost-optimal Bayesian control policy is developed for maintaining the system. The control problem is formulated in the semi-Markov decision process framework. An effective computational algorithm is developed and illustrated by a numerical example.Keywords: partially observable system, hidden Markov model, competing risks, multivariate Bayesian control
Procedia PDF Downloads 4552477 Secure Image Encryption via Enhanced Fractional Order Chaotic Map
Authors: Ismail Haddad, Djamel Herbadji, Aissa Belmeguenai, Selma Boumerdassi
Abstract:
in this paper, we provide a novel approach for image encryption that employs the Fibonacci matrix and an enhanced fractional order chaotic map. The enhanced map overcomes the drawbacks of the classical map, especially the limited chaotic range and non-uniform distribution of chaotic sequences, resulting in a larger encryption key space. As a result, this strategy improves the encryption system's security. Our experimental results demonstrate that our proposed algorithm effectively encrypts grayscale images with exceptional efficiency. Furthermore, our technique is resistant to a wide range of potential attacks, including statistical and entropy attacks.Keywords: image encryption, logistic map, fibonacci matrix, grayscale images
Procedia PDF Downloads 3152476 Monitoring Blood Pressure Using Regression Techniques
Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim
Abstract:
Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.Keywords: blood pressure, noninvasive optical system, principal component analysis, PCA, continuous monitoring
Procedia PDF Downloads 1602475 Bioeconomic Modeling for the Sustainable Exploitation of Three Key Marine Species in Morocco
Authors: I. Ait El Harch, K. Outaaoui, Y. El Foutayeni
Abstract:
This study aims to deepen the understanding and optimize fishing activity in Morocco by holistically integrating biological and economic aspects. We develop a biological equilibrium model in which these competing species present their natural growth by logistic equations, taking into account density and competition between them. The integration of human intervention adds a realistic dimension to our model. A company specifically targets the three species, thus influencing population dynamics according to their fishing activities. The aim of this work is to determine the fishing effort that maximizes the company’s profit, taking into account the constraints associated with conserving ecosystem equilibrium.Keywords: bioeconomical modeling, optimization techniques, linear complementarity problem LCP, biological equilibrium, maximizing profits
Procedia PDF Downloads 222474 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery
Authors: Marlin Mubarak
Abstract:
Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.
Procedia PDF Downloads 3522473 A Longitudinal Study on the Relationship between Physical Activity and Gestational Weight Gain
Authors: Chia-Ching Sun, Li-Yin Chien, Chun-Ting Hsiao
Abstract:
Background: Appropriate gestation weight gain benefits pregnant women and their children; however, excessive weight gain could raise the risk of adverse health outcomes and chronicle diseases. Nevertheless, there is currently limited evidence on the effect of physical activities on pregnant women’s gestational weight gain. Purpose: This study aimed to explore the correlation between the level of physical activity and gestation weight gain during the second and third trimester of pregnancy. Methods: This longitudinal study enrolled 800 healthy pregnant women aged over 20 from six hospitals in northern Taiwan. Structured questionnaires were used to collect data twice for each participant during 14-27 and 28-40 weeks of gestation. Variables included demographic data, maternal health history, and lifestyle. The International Physical Activity Questionnaire-short form was used to measure the level of physical activity from walking and of moderate-intensity and vigorous-intensity before and during pregnancy. Weight recorded at prenatal checkups were used to calculate average weight gain in each trimester of pregnancy. T-tests, ANOVA, chi-squared tests, and multivariable logistic regression models were applied to determine the predicting factors for weight gain during the second and third trimester. Result: Participants who had achieved recommended physical activity level (150 minutes of moderate physical activity or 75 minutes of vigorous physical activity a week) before pregnancy (aOR=1.85, 95% CI=1.27-2.67) or who achieved recommended walking level (150 minutes a week) during the second trimester of pregnancy (aOR=1.43, 95% CI= 1.00-2.04) gained significantly more weight during the second trimester. Compared with those who did not reach recommended level of moderate-intensity physical activity (150 minutes a week), women who had reached that during the second trimester were more likely to be in the less than recommended weight gain group than in the recommended weight gain group (aOR=2.06, CI=1.06-4.00). However, there was no significant correlation between physical activity level and weight gain in the third trimester. Other predicting factors of excessive weight gain included education level which showed a negative correlation (aOR=0.38, CI=0.17-0.88), whereas overweight and obesity before pregnancy showed a positive correlation (OR=3.97, CI=1.23-12.78). Conclusions/implications for practice: Participants who had achieved recommended physical activity level before pregnancy significantly reduced exercise during pregnancy and gained excessive weight during the second trimester. However, women who engaged in the practice of physical activity as recommended could effectively control weight gain in the third trimester. Healthcare professionals could suggest that pregnant women who exercise maintain their pre-pregnancy level of physical activity, given activities requiring physical contact or causing falls are avoided. For those who do not exercise, health professionals should encourage them to gradually increase the level of physical activity. Health promotion strategies related to weight control and physical activity level achievement should be given to women before pregnancy.Keywords: pregnant woman, physical activity, gestation weight gain, obesity, overweight
Procedia PDF Downloads 1542472 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 942471 Optimization of Hemp Fiber Reinforced Concrete for Various Environmental Conditions
Authors: Zoe Chang, Max Williams, Gautham Das
Abstract:
The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. Hemp fibers were obtained from the manufacturer and hand-processed to ensure uniformity in width and length. The fibers were added to the concrete as both wet and dry mixes to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375, indicating a variation in the mixing process. While completing the dry mix, the addition of plain hemp fibers caused them to intertwine, creating lumps and inconsistency. However, during the wet mixing process, combining water and hemp fibers before incorporation allows the fibers to uniformly disperse within the mix; hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes; however, more research surrounding its characteristics needs to be conducted.Keywords: hemp fibers, hemp reinforced concrete, wet & dry, freeze thaw testing, compressive strength
Procedia PDF Downloads 1962470 Impact Factor Analysis for Spatially Varying Aerosol Optical Depth in Wuhan Agglomeration
Authors: Wenting Zhang, Shishi Liu, Peihong Fu
Abstract:
As an indicator of air quality and directly related to concentration of ground PM2.5, the spatial-temporal variation and impact factor analysis of Aerosol Optical Depth (AOD) have been a hot spot in air pollution. This paper concerns the non-stationarity and the autocorrelation (with Moran’s I index of 0.75) of the AOD in Wuhan agglomeration (WHA), in central China, uses the geographically weighted regression (GRW) to identify the spatial relationship of AOD and its impact factors. The 3 km AOD product of Moderate Resolution Imaging Spectrometer (MODIS) is used in this study. Beyond the economic-social factor, land use density factors, vegetable cover, and elevation, the landscape metric is also considered as one factor. The results suggest that the GWR model is capable of dealing with spatial varying relationship, with R square, corrected Akaike Information Criterion (AICc) and standard residual better than that of ordinary least square (OLS) model. The results of GWR suggest that the urban developing, forest, landscape metric, and elevation are the major driving factors of AOD. Generally, the higher AOD trends to located in the place with higher urban developing, less forest, and flat area.Keywords: aerosol optical depth, geographically weighted regression, land use change, Wuhan agglomeration
Procedia PDF Downloads 3562469 Fear of Negative Evaluation, Social Support and Wellbeing in People with Vitiligo
Authors: Rafia Rafique, Mutmina Zainab
Abstract:
The present study investigated the relationship between fear of negative evaluation (FNE), social support and well-being in people with Vitiligo. It was hypothesized that low level of FNE and greater social support is likely to predict well-being. It was also hypothesized that social support is likely to moderate the relationship between FNE and well-being. Correlational research design was used for the present study. Non-probability purposive sampling technique was used to collect a sample (N=122) of people with Vitiligo. Hierarchical Moderated Regression analysis was used to test prediction and moderation. Brief Fear of Negative Evaluation Scale, Multidimensional Scale of Perceived Social Support (MSPSS) and Mental Health Continuum-Short form (MHC-SF) were used to evaluate the study variables. Fear of negative evaluation negatively predicted well-being (emotional and psychological). Social support from significant others and friends predicted social well-being. Social Support from family predicted emotional and psychological well-being. It was found that social support from significant others moderated the relationship between FNE and emotional well-being and social support from family moderated the relationship between FNE and social well-being. Dermatologists treating people with Vitiligo need to educate them and their families about the buffering role of social support (family and significant others). Future studies need to focus on other important mediating factors that can possibly explain the relationship between fear of negative evaluation and wellbeing.Keywords: fear of negative evaluation, hierarchical moderated regression, vitiligo, well-being
Procedia PDF Downloads 3012468 Transformational Justice for Employees' Job Satisfaction
Authors: Hassan Barau Singhry
Abstract:
Purpose: Leadership or the absence of it is an important behaviour affecting employees’ job satisfaction. Although, there are many models of leadership, one that stands out in a period of change is the transformational behaviour. The aim of this study is to investigate the role of an organizational justice on the relationship between transformational leadership and employee job satisfaction. The study is based on the assumption that change begins with leaders and leaders should be fair and just. Methodology: A cross-sectional survey through structured questionnaire was employed to collect the data of this study. The population is selected the three tiers of government such as the local, state, and federal governments in Nigeria. The sampling method used in this research is stratified random sampling. 418 middle managers of public organizations respondents to the questionnaire. Multiple regression aided by structural equation modeling was employed to test 4 hypothesized relationships. Finding: The regression results support for the mediating role of organizational justice such as distributive, procedural, interpersonal and informational justice in the link between transformational leadership and job satisfaction. Originality/value: This study adds to the literature of human resource management by empirically validating and integrating transformational leadership behaviour with the four dimensions of organizational justice theory. The study is expected to be beneficial to the top and middle-level administrators as well as theory building and testing.Keywords: distributive justice, job satisfaction, organizational justice, procedural justice, transformational leadership
Procedia PDF Downloads 1722467 Application of Groundwater Level Data Mining in Aquifer Identification
Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen
Abstract:
Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.Keywords: aquifer identification, decision tree, groundwater, Fourier transform
Procedia PDF Downloads 1552466 Blood Glucose Level Measurement from Breath Analysis
Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman
Abstract:
The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.Keywords: blood glucose level, breath acetone concentration, diabetes, linear regression
Procedia PDF Downloads 1692465 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles
Procedia PDF Downloads 4422464 Use of Protection Motivation Theory to Assess Preventive Behaviors of COVID-19
Authors: Maryam Khazaee-Pool, Tahereh Pashaei, Koen Ponnet
Abstract:
Background: The global prevalence and morbidity of Coronavirus disease 2019 (COVID-19) are high. Preventive behaviors are proven to reduce the damage caused by the disease. There is a paucity of information on determinants of preventive behaviors in response to COVID-19 in Mazandaran province, north of Iran. So, we aimed to evaluate the protection motivation theory (PMT) in promoting preventive behaviors of COVID-19 in Mazandaran province. Materials and Methods: In this descriptive cross-sectional study, 1220 individuals participated. They were selected via social networks using convenience sampling in 2020. Data were collected online using a demographic questionnaire and a valid and reliable scale based on PMT. Data analysis was done using the Pearson correlation coefficient and linear regression in SPSS V24. Result: The mean age of the participants was 39.34±8.74 years. The regression model showed perceived threat (ß =0.033, P =0.007), perceived costs (ß=0.039, P=0.045), perceived self-efficacy (ß =0.116, P>0.001), and perceived fear (ß=0.131, P>0.001) as the significant predictors of COVID-19 preventive behaviors. This model accounted for 78% of the variance in these behaviors. Conclusion: According to constructs of the PMT associated with protection against COVID-19, educational programs and health promotion based on the theory and benefiting from social networks could be helpful in increasing the motivation of people towards protective behaviors against COVID-19.Keywords: questionnaire development, validation, intention, prevention, covid-19
Procedia PDF Downloads 412463 Analysis of Commercial Cow and Camel Milk by Nuclear Magnetic Resonance
Authors: Lucia Pappalardo, Sara Abdul Majid Azzam
Abstract:
Camel milk is widely consumed by people living in arid areas of the world, where it is also known for its potential therapeutic and medical properties. Indeed it has been used as a treatment for several diseases such as tuberculosis, dropsy, asthma, jaundice and leishmaniasis in India, Sudan and some parts of Russia. A wealth of references is available in literature for the composition of milk from different diary animals such as cows, goats and sheep. Camel milk instead has not been extensively studied, despite its nutritional value. In this study commercial cow and camel milk samples, bought from the local market, were analyzed by 1D 1H-NMR and multivariate statistics in order to identify the different composition of the low-molecular-weight compounds in the milk mixtures. The samples were analyzed in their native conditions without any pre-treatment. Our preliminary study shows that the two different types of milk samples differ in the content of metabolites such as orotate, fats and more.Keywords: camel, cow, milk, Nuclear Magnetic Resonance (NMR)
Procedia PDF Downloads 5642462 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure
Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser
Abstract:
Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.Keywords: principal component analysis, dengue fever, negative binomial regression model, poisson regression model
Procedia PDF Downloads 4432461 A Regression Analysis Study of the Applicability of Side Scan Sonar based Safety Inspection of Underwater Structures
Authors: Chul Park, Youngseok Kim, Sangsik Choi
Abstract:
This study developed an electric jig for underwater structure inspection in order to solve the problem of the application of side scan sonar to underwater inspection, and analyzed correlations of empirical data in order to enhance sonar data resolution. For the application of tow-typed sonar to underwater structure inspection, an electric jig was developed. In fact, it was difficult to inspect a cross-section at the time of inspection with tow-typed equipment. With the development of the electric jig for underwater structure inspection, it was possible to shorten an inspection time over 20%, compared to conventional tow-typed side scan sonar, and to inspect a proper cross-section through accurate angle control. The indoor test conducted to enhance sonar data resolution proved that a water depth, the distance from an underwater structure, and a filming angle influenced a resolution and data quality. Based on the data accumulated through field experience, multiple regression analysis was conducted on correlations between three variables. As a result, the relational equation of sonar operation according to a water depth was drawn.Keywords: underwater structure, SONAR, safety inspection, resolution
Procedia PDF Downloads 2642460 Epidemiology, Clinical, Immune, and Molecular Profiles of Microsporidiosis and Cryptosporidiosis among HIV/AIDS patients
Authors: Roger WUMBA
Abstract:
The objective of this study was to determine the prevalence of intestinal parasites, with special emphasis on microsporidia and Cryptosporidium, as well as their association with human immunodeficiency virus (HIV) symptoms, risk factors, and other digestive parasites. We also wish to determine the molecular biology definitions of the species and genotypes of microsporidia and Cryptosporidium in HIV patients. In this cross-sectional study, carried out in Kinshasa, Democratic Republic of the Congo, stool samples were collected from 242 HIV patients (87 men and 155 women) with referred symptoms and risk factors for opportunistic intestinal parasites. The analysis of feces specimen were performed using Ziehl–Neelsen stainings, real-time polymerase chain reaction (PCR), immunofluorescence indirect monoclonal antibody, nested PCR-restriction fragment length polymorphism, and PCR amplification and sequencing. Odds ratio (OR) and 95% confidence intervals were used to quantify the risk. Of the 242 HIV patients, 7.8%, 0.4%, 5.4%, 0.4%, 2%, 10.6%, and 2.8% had Enterocytozoon bieneusi, Encephalitozoon intestinalis, Cryptosporidium spp., Isospora belli, pathogenic intestinal protozoa, nonpathogenic intestinal protozoa, and helminths, respectively. We found five genotypes of E. bieneusi: two older, NIA1 and D, and three new, KIN1, KIN2, and KIN3. Only 0.4% and 1.6% had Cryptosporidium parvum and Cryptosporidium hominis, respectively. Of the patients, 36.4%, 34.3%, 31%, and 39% had asthenia, diarrhea, a CD4 count of ,100 cells/mm³, and no antiretroviral therapy (ART), respectively. The majority of those with opportunistic intestinal parasites and C. hominis, and all with C. parvum and new E. bieneusi genotypes, had diarrhea, low CD4+ counts of ,100 cells/mm³, and no ART. There was a significant association between Entamoeba coli, Kaposi sarcoma, herpes zoster, chronic diarrhea, and asthenia, and the presence of 28 cases with opportunistic intestinal parasites. Rural areas, public toilets, and exposure to farm pigs were the univariate risk factors present in the 28 cases with opportunistic intestinal parasites. In logistic regression analysis, a CD4 count of ,100 cells/mm³ (OR = 4.60; 95% CI 1.70–12.20; P = 0.002), no ART (OR = 5.00; 95% CI 1.90–13.20; P , 0.001), and exposure to surface water (OR = 2.90; 95% CI 1.01–8.40; P = 0.048) were identified as the significant and independent determinants for the presence of opportunistic intestinal parasites. E. bieneusi and Cryptosporidium are becoming more prevalent in Kinshasa, Congo. Based on the findings, we recommend epidemiology surveillance and prevention by means of hygiene, the emphasis of sensitive PCR methods, and treating opportunistic intestinal parasites that may be acquired through fecal–oral transmission, surface water, normal immunity, rural area-based person–person and animal–human nfection, and transmission of HIV. Therapy, including ART and treatment with fumagillin, is needed.Keywords: diarrhea, enterocytozoon bieneusi, cryptosporidium hominis, cryptosporidium parvum, risk factors, africans
Procedia PDF Downloads 1242459 Evaluation of Three Commercially Available Materials in Reducing the White Spot Lesions During Fixed Orthodontic Treatment: A Prospective Randomized Controlled Trial
Authors: Sayeeda Laeque Bangi
Abstract:
Objectives: Treating white spot lesions (WSL) to create a sound and esthetically pleasing enamel surface is a question yet to be fully answered. The objective of this randomized controlled trial was to measure and compare the degree of regression of WSL during orthodontic treatment achieved by using three commercially available materials. Methods: A single-blinded randomized prospective clinical trial, comprising 80 patients categorized into four groups (one control group and three experimental groups, with 20 subjects per group) using block randomization, was conducted. Group A (control group): Colgate strong toothpaste; and experiments groups were Group B: GC tooth mousse, Group C: Phos-Flur mouthwash and Group D: SHY-NM. Subjects were instructed to use the designated dentifrice/mouthwash and photographs were taken at baseline, third and sixth months, and white spot lesions were reassessed in the maxillomandibular anterior teeth. Results: All the three groups had shown an improvement in WSL. But Group B has shown the greatest difference in mean values of decalcification index (DI) scores. Conclusion: All three commercially available products showed a regression of WSL over a 6-month duration. GC tooth mousse proved to be the most effective means of treating WSL over other regimens.Keywords: white spot lesions, dentifrices, orthodontic therapy, remineralization
Procedia PDF Downloads 1962458 The Role of Self-Confidence, Adversity Quotient, and Self-Efficacy Critical Thinking: Path Model
Authors: Bayu Dwi Cahyo, Ekohariadi, Theodorus Wiyanto Wibowo, I. G. P. Asto Budithahjanto, Eppy Yundra
Abstract:
The objective of this study is to examine the effects of self-confidence, adversity quotient, and self-efficacy variables on critical thinking. This research's participants are 137 cadets of Aviation Polytechnics of Surabaya with the sampling technique that was purposive sampling. In this study, the data collection method used a questionnaire with Linkert-scale and distributed or given to respondents by the specified number of samples. The SPSS AMOS v23 was used to test a number of a priori multivariate growth curve models and examining relationships between the variables via path analysis. The result of path analysis was (χ² = 88.463, df= 71, χ² /df= 1.246, GFI= .914, CFI= .988, P= .079, AGFI= .873, TLI= .985, RMSEA= .043). According to the analysis, there is a positive and significant relationship between self-confidence, adversity quotient, and self-efficacy variables on critical thinking.Keywords: self-confidence, adversity quotient, self-efficacy variables, critical thinking
Procedia PDF Downloads 142