Search results for: marine water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9283

Search results for: marine water

7963 Distribution and Characterization of Thermal Springs in Northern Oman

Authors: Fahad Al Shidi, Reginald Victor

Abstract:

This study was conducted in Northern Oman to assess the physical and chemical characteristics of 40 thermal springs distributed in Al Hajar Mountains in northern Oman. Physical measurements of water samples were carried out in two main seasons in Oman (winter and summer 2019). Studied springs were classified into three groups based on water temperature, four groups based on water pH values and two groups based on conductivity. Ten thermal alkaline springs that originated in Ophiolite (Samail Napp) were dominated by high pH (> 11), elevated concentration of Cl- and Na+ ions, relatively low temperature and discharge ratio. Other springs in the Hajar Super Group massif recorded high concentrations of Ca2+ and SO2-4 ions controlled by rock dominance, geochemistry processes, and mineralization. There was only one spring which has brackish water with very high conductivity (5500 µs/cm) and Total Dissolved Solids and it is not suitable for irrigation purposes because of the high abundance of Na+, Cl−, and Ca2+ ions.

Keywords: alkaline springs, geothermal, HSG, ophiolite

Procedia PDF Downloads 144
7962 Harnessing Environmental DNA to Assess the Environmental Sustainability of Commercial Shellfish Aquaculture in the Pacific Northwest United States

Authors: James Kralj

Abstract:

Commercial shellfish aquaculture makes significant contributions to the economy and culture of the Pacific Northwest United States. The industry faces intense pressure to minimize environmental impacts as a result of Federal policies like the Magnuson-Stevens Fisheries Conservation and Management Act and the Endangered Species Act. These policies demand the protection of essential fish habitat and declare several salmon species as endangered. Consequently, numerous projects related to the protection and rehabilitation of eelgrass beds, a crucial ecosystem for countless fish species, have been proposed at both state and federal levels. Both eelgrass beds and commercial shellfish farms occupy the same physical space, and therefore understanding the effects of shellfish aquaculture on eelgrass ecosystems has become a top ecological and economic priority of both government and industry. This study evaluates the organismal communities that eelgrass and oyster aquaculture habitats support. Water samples were collected from Willapa Bay, Washington; Tillamook Bay, Oregon; Humboldt Bay, California; and Sammish Bay, Washington to compare species diversity in eelgrass beds, oyster aquaculture plots, and boundary edges between these two habitats. Diversity was assessed using a novel technique: environmental DNA (eDNA). All organisms constantly shed small pieces of DNA into their surrounding environment through the loss of skin, hair, tissues, and waste. In the marine environment, this DNA becomes suspended in the water column allowing it to be easily collected. Once extracted and sequenced, this eDNA can be used to paint a picture of all the organisms that live in a particular habitat making it a powerful technology for environmental monitoring. Industry professionals and government officials should consider these findings to better inform future policies regulating eelgrass beds and oyster aquaculture. Furthermore, the information collected in this study may be used to improve the environmental sustainability of commercial shellfish aquaculture while simultaneously enhancing its growth and profitability in the face of ever-changing political and ecological landscapes.

Keywords: aquaculture, environmental DNA, shellfish, sustainability

Procedia PDF Downloads 247
7961 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water

Authors: Nadia Hammouda, K. Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water

Procedia PDF Downloads 482
7960 Managing the Water Projects and Controlling Its Boundary Disturbances Which Affect the Water Supply

Authors: Sead A. Bakheet, Salah M. Elkoum, Asharaf A. Almaghribi

Abstract:

Disturbance defined as activity that malfunction, intrusion, or interruption. We have to look around for the source of the disturbance affecting the inputs and outputs of engineering projects, take the necessary actions to control them. In this paper we will present and discuss a production system consisting of three elements, inputs, the production process and outputs. The production process which we chose is the production of large diameter pre-stressed concrete cylinder pipes (out puts), in reality, the outputs are the starting points of the operation (laying the concrete pipes for transporting drinkable water). The main objective also to address the controlling methods of the natural resources and raw materials (basic inputs), study the disturbances affecting them as well as the output quality. The importance of making the right decision, which effect the final product quality will be summarized. Finally, we will address the proposals regarding the managing of secure water supply to the customers.

Keywords: disturbances, management, inputs, outputs, decision

Procedia PDF Downloads 62
7959 Graphene Based Materials as Novel Membranes for Water Desalination and Boron Separation

Authors: Francesca Risplendi, Li-Chiang Lin, Jeffrey C. Grossman, Giancarlo Cicero

Abstract:

Desalination is one of the most employed approaches to supply water in the context of a rapidly growing global water shortage. However, the most popular water filtration method available is the reverse osmosis (RO) technique, still suffers from important drawbacks, such as a large energy demands and high process costs. In addition some serious limitations have been recently discovered, among them, the boron problem seems to have a critical meaning. Boron has been found to have a dual effect on the living systems on Earth and the difference between boron deficiency and boron toxicity levels is quite small. The aim of this project is to develop a new generation of RO membranes based on porous graphene or reduced graphene oxide (rGO) able to remove salts from seawater and to reduce boron concentrations in the permeate to the level that meets the drinking or process water requirements, by means of a theoretical approach based on density functional theory and classical molecular dynamics. Computer simulations have been employed to investigate the relationship between the atomic structure of nanoporous graphene or rGO monolayer and its membrane properties in RO applications (i.e. water permeability and resilience at RO pressures). In addition, an emphasis has been given to multilayer nanoporous rGO and rGO flakes based membranes. By means of non-equilibrium MD simulations, we investigated the water transport mechanism permeating through such multilayer membrane focusing on the effect of slit widths and sheet geometries. These simulations allowed us to establish the implications of these graphene based materials as promising membrane properties for desalination plants and as boron filtration.

Keywords: boron filtration, desalination, graphene membrane, reduced graphene oxide membrane

Procedia PDF Downloads 300
7958 Freshwater Lens Observation: Case Study of Laura Island, Majuro Atoll, Republic of the Marshall Islands

Authors: Kazuhisa Koda, Tsutomu Kobayashi, Rebecca Lorennji, Alington Robert, Halston DeBrum, Julious Lucky, Paul Paul

Abstract:

Atolls are low-lying small islands with highly permeable ground that does not allow rivers and lakes to develop. As the water resources on these atolls basically rely on precipitation, groundwater becomes a very important water resource during droughts. Freshwater lenses develop as groundwater on relatively large atoll islands and play a key role in the stable water supply. Atoll islands in the Pacific Ocean sometimes suffer from drought due to El Nino. The global warming effects are noticeable, particularly on atoll islands. The Republic of the Marshall Islands in Oceania is burdened with the problems common to atoll islands. About half of its population lives in the capital, Majuro, and securing water resources for these people is a crucial issue. There is a freshwater lens on the largest, Laura Island, which serves as a water source for the downtown area. A serious drought that occurred in 1998 resulted in excessive water intake from the freshwater lens on Laura Island causing up-coning. Up-coning mixes saltwater into groundwater pumped from water-intake wells. Because up-coning makes the freshwater lens unusable, there was a need to investigate the freshwater lens on Laura Island. In this study, we observed the electrical conductivities of the groundwater at different depths in existing monitoring wells to determine the total storage volume of the freshwater lens on Laura Island from 2010 to 2013. Our results indicated that most of the groundwater that seeped into the freshwater lens had flowed out into the sea.

Keywords: Atoll islands, drought, El-Nino, freshwater lens, groundwater observation

Procedia PDF Downloads 323
7957 The Study of Effective Microorganism's Biopreperation for Wastewater Treatment

Authors: Batsukh Chultem, Oyunbileg Natsagdorj, Namsrai Steyrmunkh

Abstract:

Many industries, tourist camps and houses, discharge aqueous effluents containing relatively high levels of heavy metals, harmful organic compounds water. Untreated effluent from these manufacturing processes has an adverse impact on the environment. A specific problem associated with waste water in the environment is accumulation in the food chain and persistence in the environment. The screening of microorganisms resistant to pollution and able to detoxification them is essential for the development of clean-up technologies. The purpose of this study is to use advanced microbiological technology products for oxidizing organic and heavy metals pollutants as a biological treatment, to reduce water pollution, which arise as a result of waste water due to day-to-day operations of industries and houses of Ulaanbaatar city and tourist camps located around the lake Hovsgol, in Hovsgol province of Mongolia. By comparing the results from tests of effective microorganism’s bio-preparation treated sewage samples and not treated sewage samples shows that the treated sewage samples pollution decreased defending on treatment period and ratio. Treated water analyses show that: the suspended solids 352 mg/l, pH 5.85-7.95, ammonium nitrate 81.25-221.2 mg NH₄/l, nitrite 0.088-0.227 mg NO₂/l, nitrate 8.5-11.5 mg NO₃/l, and orthophosphate 1.06-15.46 mg PO₄/l. Also, heavy metals were decreased and microbiological test results defined parameters, respectively show the waste water pollution was reduced.

Keywords: effective microorganims, environment, pollution, treatment

Procedia PDF Downloads 133
7956 Demographic Impact on Wastewater: A Systemic Analysis of Human Impact on Wastewater Quality in Dhaka, Bangladesh

Authors: Dewan Hasin Mahtab, Farzana Sadia

Abstract:

At present, wastewater treatment has become essential to maintain a constant supply of safe water as well as to protect the environment. Due to overpopulation and overconsumption, the water quality from various surface water sources is degrading every day. Being one of the megacities in the world, Dhaka City, is going through rapid industrialization and urbanization. The effluents from these industries and factories are mostly discharged directly into the rivers without any treatment. As such, the quality of water of Buriganga is being afflicted with a noisome problem of pollution. The water of the Buriganga River has become detrimental to humans, animals, and the environment. It has become crucial to conserve the environment so that we can save both ourselves and the environment. The first step towards it should be analyzing the wastewater to decide the further steps of the treatment process. Increased population and increased consumption both contribute to water pollution. Mohammadpur is a developing area of Dhaka City, and Kamrangirchar is one of the largest slum areas in Dhaka City. The total study area is 6.13 sq. Km of Dhaka city with a population of 4,73,310 people. Of them, 86.47% had their own latrine, 47% were directly connected to the drain, 55% had septic tanks, and 70.09% of them cleaned their septic tank once a year. The pH, Dissolved Oxygen, Chemical Oxygen Demand, Biochemical Oxygen Demand, Total Dissolved Solid, Total Suspended and total coliforms of wastewater from two samples of both Mohammadpur and Kamrangirchar was analyzed. The DO level from the water bodies of Kamrangirchar was found very low, making the water bodies inhabitable for aquatic plants and animals. The BOD and COD level was extremely high from samples collected from Mohammadpur. The total coliforms count was found too high during the wet season, making it a potential health concern in the wet season in these two areas.

Keywords: Dhaka, environmental conservation rule, sanitation, wastewater

Procedia PDF Downloads 130
7955 Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration

Authors: P. Barreto, A. Guevara, V. Ibujes

Abstract:

In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water.

Keywords: arsenic, natural water, plant species, rhizofiltration, synthetic solutions

Procedia PDF Downloads 123
7954 Mechanistic Insights Into The Change Behavior; Its Relationship With Water Velocity, Nanoparticles, Gut Bacterial Composition, And Its Functional Metabolites

Authors: Mian Adnan Kakakhel, NIshita Narwal, Majid Rasta, Shi Xiaotao

Abstract:

The widespread use of nanoparticles means that they are significantly increasing in the aquatic ecosystem, where they are likely to pose threat to aquatic organism. In particular, the influence of nanoparticles exposure combined with varying water velocities on fish behavior remain poorly understood. Emerging evidences suggested a probable correlation between fish swimming behavior and gut bacterial dysbiosis. Therefore, the current study aimed to investigate the effects of nanomaterials in different water velocities on fish gut bacterial composition, which in results change in fish swimming behavior. The obtained findings showed that the contamination of nanoparticles was reduced as the velocity increased. However, the synergetic effects of nanoparticles and water velocity significantly (p < 0.05) decreased the bacterial composition, which plays a critical role in fish development, metabolism, digestion, enzymes production, and energy production such as Bacteroidetes and Firmicutes. This group of bacterial also support fish in swimming behavior by providing them a significant energy during movement. The obtained findings of this study suggested that the presence of nanoparticles in different water velocities have had a significant correlation with fish gut bacterial dysbiosis, as results the gut dysbiosis had been linked to the change in fish behavior. The study provides an important insight into the mechanisms by which the nanoparticles possibly affect the fish behavior.

Keywords: water velocities, fish behavior, gut bacteria, secondary metabolites, regulation

Procedia PDF Downloads 83
7953 Modular Probe for Basic Monitoring of Water and Air Quality

Authors: Andrés Calvillo Téllez, Marianne Martínez Zanzarric, José Cruz Núñez Pérez

Abstract:

A modular system that performs basic monitoring of both water and air quality is presented. Monitoring is essential for environmental, aquaculture, and agricultural disciplines, where this type of instrumentation is necessary for data collection. The system uses low-cost components, which allows readings close to those with high-cost probes. The probe collects readings such as the coordinates of the geographical position, as well as the time it records the target parameters of the monitored. The modules or subsystems that make up the probe are the global positioning (GPS), which shows the altitude, latitude, and longitude data of the point where the reading will be recorded, a real-time clock stage, the date marking the time, the module SD memory continuously stores data, data acquisition system, central processing unit, and energy. The system acquires parameters to measure water quality, conductivity, pressure, and temperature, and for air, three types of ammonia, dioxide, and carbon monoxide gases were censored. The information obtained allowed us to identify the schedule of modification of the parameters and the identification of the ideal conditions for the growth of microorganisms in the water.

Keywords: calibration, conductivity, datalogger, monitoring, real time clock, water quality

Procedia PDF Downloads 104
7952 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids

Authors: S. Etaig, R. Hasan, N. Perera

Abstract:

This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.

Keywords: computational fluid dynamics, natural convection, nanofluid and thermal conductivity

Procedia PDF Downloads 427
7951 Institutional Design for Managing Irrigation Problems: A Case Study of Farmers'- and Agency-Managed Irrigation Systems of Nepal

Authors: Tirtha Raj Dhakal, Brian Davidson, Bob Farquharson

Abstract:

Institutional design is an important aspect in efficient water resource management. In Nepal, the water supply in both farmers’- and agency-managed irrigation systems has become sub-standard because of the weak institutional framework. This study characterizes both forms of the schemes and links existing institution and governance of the schemes with its performance with reference to cost recovery, maintenance of the schemes and water distribution throughout the schemes. For this, two types of surveys were conducted. A management survey of ten farmers’-managed and five agency-managed schemes of Chitwan valley and its periphery was done. Also, a farm survey comprising 25 farmers from each of head, middle and tail regions of both schemes; Narayani Lift Irrigation Project (agency-managed) and Khageri Irrigation System (farmers’-managed) of Chitwan Valley as a case study was conducted. The results showed that cost recovery of agency-managed schemes in 2015 was less than two percent whereas service fee collection rate in farmers’-managed schemes was nearly 2/3rd that triggered poor maintenance of the schemes and unequal distribution of water throughout the schemes. Also, the institution on practice is unable to create any incentives for farmers for economical use of water as well as willingness to pay for its use. This, thus, compels the need of refined institutional framework which has been suggested in this paper aiming to improve the cost recovery and better water distribution throughout the irrigation schemes.

Keywords: cost recovery, governance, institution, schemes' performance

Procedia PDF Downloads 261
7950 Study of the Transport of ²²⁶Ra Colloidal in Mining Context Using a Multi-Disciplinary Approach

Authors: Marine Reymond, Michael Descostes, Marie Muguet, Clemence Besancon, Martine Leermakers, Catherine Beaucaire, Sophie Billon, Patricia Patrier

Abstract:

²²⁶Ra is one of the radionuclides resulting from the disintegration of ²³⁸U. Due to its half-life (1600 y) and its high specific activity (3.7 x 1010 Bq/g), ²²⁶Ra is found at the ultra-trace level in the natural environment (usually below 1 Bq/L, i.e. 10-13 mol/L). Because of its decay in ²²²Rn, a radioactive gas with a shorter half-life (3.8 days) which is difficult to control and dangerous for humans when inhaled, ²²⁶Ra is subject to a dedicated monitoring in surface waters especially in the context of uranium mining. In natural waters, radionuclides occur in dissolved, colloidal or particular forms. Due to the size of colloids, generally ranging between 1 nm and 1 µm and their high specific surface areas, the colloidal fraction could be involved in the transport of trace elements, including radionuclides in the environment. The colloidal fraction is not always easy to determine and few existing studies focus on ²²⁶Ra. In the present study, a complete multidisciplinary approach is proposed to assess the colloidal transport of ²²⁶Ra. It includes water sampling by conventional filtration (0.2µm) and the innovative Diffusive Gradient in Thin Films technique to measure the dissolved fraction (<10nm), from which the colloidal fraction could be estimated. Suspended matter in these waters were also sampled and characterized mineralogically by X-Ray Diffraction, infrared spectroscopy and scanning electron microscopy. All of these data, which were acquired on a rehabilitated former uranium mine, allowed to build a geochemical model using the geochemical calculation code PhreeqC to describe, as accurately as possible, the colloidal transport of ²²⁶Ra. Colloidal transport of ²²⁶Ra was found, for some of the sampling points, to account for up to 95% of the total ²²⁶Ra measured in water. Mineralogical characterization and associated geochemical modelling highlight the role of barite, a barium sulfate mineral well known to trap ²²⁶Ra into its structure. Barite was shown to be responsible for the colloidal ²²⁶Ra fraction despite the presence of kaolinite and ferrihydrite, which are also known to retain ²²⁶Ra by sorption.

Keywords: colloids, mining context, radium, transport

Procedia PDF Downloads 157
7949 Development of Sustainable Farming Compartment with Treated Wastewater in Abu Dhabi

Authors: Jongwan Eun, Sam Helwany, Lakshyana K. C.

Abstract:

The United Arab Emirates (UAE) is significantly dependent on desalinated water and groundwater resource, which is expensive and highly energy intensive. Despite the scarce water resource, stagnates only 54% of the recycled water was reused in 2012, and due to the lack of infrastructure to reuse the recycled water, the portion is expected to decrease with growing water usage. In this study, an “Oasis” complex comprised of Sustainable Farming Compartments (SFC) was proposed for reusing treated wastewater. The wastewater is used to decrease the ambient temperature of the SFC via an evaporative cooler. The SFC prototype was designed, built, and tested in an environmentally controlled laboratory and field site to evaluate the feasibility and effectiveness of the SFC subjected to various climatic conditions in Abu Dhabi. Based on the experimental results, the temperature drop achieved in the SFC in the laboratory and field site were5 ̊C from 22 ̊C and 7- 15 ̊C (from 33-45 ̊C to average 28 ̊C at relative humidity < 50%), respectively. An energy simulation using TRNSYS was performed to extend and validate the results obtained from the experiment. The results from the energy simulation and experiments show statistically close agreement. The total power consumption of the SFC system was approximately three and a half times lower than that of an electrical air conditioner. Therefore, by using treated wastewater, the SFC has a promising prospect to solve Abu Dhabi’s ecological concern related to desertification and wind erosion.

Keywords: ecological farming system, energy simulation, evaporative cooling system, temperature, treated waste water, temperature

Procedia PDF Downloads 250
7948 Water Immersion Recovery for Swimmers in Hot Environments

Authors: Thanura Randula Abeywardena

Abstract:

This study recognized the effectiveness of cold-water immersion recovery post exhaustive short-term exercise. The purpose of this study was to understand if 16- 20°C of cold-water immersion would be beneficial in a tropical environment to achieve optimal recovery in sprint swim performance in comparison to 10-15°C of water immersion. Two 100m-sprint swim performance times were measured along with blood lactate (BLa), heart rate (HR) and rate of perceived exertion (RPE) in a 25m swimming pool with full body head out horizontal water immersions of 10-15°C, 16-20°C and 29-32°C (pool temperature) for 10 minutes followed by 5 minutes of seated passive rest outside; in between the two swim performances. Twelve well-trained adult swimmers (5 male and 5 female) within the top twenty in the Sri Lankan national swimming championships in 100m Butterfly and Freestyle in the years 2020 & 2021 volunteered for this study. One-way ANOVA analysis (p<0.05) suggested performance time, Bla and HR had no significant differences between the 3 conditions after the second sprint; however, RPE was significantly different with p=0.034 between 10-15°C and 16-20°C immersion conditions. The study suggested that the recovery post the two cold-water immersion conditions were similar in terms of performance and physiological factors; however, the 16-20°C temperature had a better “feel good” factor post sprint 2. Further study is recommended as there was participant bias with the swimmers not reaching optimal levels in sprint 1. Therefore, they might have possibly fully recovered before sprint 2, invalidating the physiological effect of recovery.

Keywords: hydrotherapy, blood lactate, fatigue, recovery, sprint-performance, sprint-swimming

Procedia PDF Downloads 102
7947 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 345
7946 Water Treatment Using Eichhornia crassipes and Avifauna Control in The "La Mansión" Pond

Authors: Milda A. Cruz-Huaranga, Natalí Carbo-Bustinza, Javier Linkolk López-Gonzales, K. Depaz, Gina M. Tito T., Soledad Torres-Calderón

Abstract:

The objective of this study was to improve water quality in the “La Mansión” pond in order to irrigate green spaces on the Peruvian Union University campus (Lima, Peru) using the aquatic species Eichhornia Crassipes. Furthermore, tree trimming and cleaning activities were performed that reduced water pollution caused by organic deposits and feathers from wild birds. The impaired waterbody is located on the campus of the Peruvian Union University, 580 meters above sea level, with a volume of 6,405.336 m3, an area of 3,050.16 m2, 256.81 m perimeter, and 0.12 m3/s input flow. Seven 1.8 m2 floating systems were implemented, with 12 common water hyacinth plants in each system. Before implementing this system, a water quality analysis was performed to analyse the physical-chemical, microbiological, and organoleptic parameters. The pre-analysis revealed the pond’s critical condition, with electrical conductivity: 556 mg/l; phosphate: < 0.5; pH: 7.06; total solids: 412 mg/l; arsenic: <0.01; lead: 0.115; BOD5: 14; COD: 16.94; dissolved oxygen: 13; total coliforms: 24000 MCL/100 ml; and thermo-tolerant coliforms: 11000 MCL/100 ml. After implementing the system, the following results were obtained: EC: 495 mg/l; DO:9.2 mg/l; TS: 235 mg/l; BOD5: 7.7; COD: 8.47; Pb: 0.001 mg/l; TC: 460 MCL/100 ml; FC: 240 MCL/100 ml. Thus, we confirmed that the system is 78.79% efficient regarding the Peruvian ECA (Environmental Quality Standards) established for water according to DS #015-2015-MINAM. Therefore, the water is suitable for plant irrigation. Finally, we concluded that treating wastewater with the species Eichhornia Crassipes is efficient since an improvement was achieved in the impaired waterbody.

Keywords: Eichhornia crassipes, plantlets, cleaning, impaired waterbody, pond

Procedia PDF Downloads 141
7945 A Comparison between Underwater Image Enhancement Techniques

Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha

Abstract:

In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.

Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex

Procedia PDF Downloads 89
7944 Application of Shore Protective Structures in Optimum Land Using of Defense Sites Located in Coastal Cities

Authors: Mir Ahmad Lashteh Neshaei, Hamed Afsoos Biria, Ata Ghabraei, Mir Abdolhamid Mehrdad

Abstract:

Awareness of effective land using issues in coastal area including protection of natural ecosystems and coastal environment due to the increasing of human life along the coast is of great importance. There are numerous valuable structures and heritages which are located in defence sites and waterfront area. Marine structures such as groins, sea walls and detached breakwaters are constructed in coast to improve the coast stability against bed erosion due to changing wave and climate pattern. Marine mechanisms and interaction with the shore protection structures need to be intensively studied. Groins are one of the most prominent structures that are used in shore protection to create a safe environment for coastal area by maintaining the land against progressive coastal erosion. The main structural function of a groin is to control the long shore current and littoral sediment transport. This structure can be submerged and provide the necessary beach protection without negative environmental impact. However, for submerged structures adopted for beach protection, the shoreline response to these structures is not well understood at present. Nowadays, modelling and computer simulation are used to assess beach morphology in the vicinity of marine structures to reduce their environmental impact. The objective of this study is to predict the beach morphology in the vicinity of submerged groins and comparison with non-submerged groins with focus on a part of the coast located in Dahane sar Sefidrood, Guilan province, Iran where serious coast erosion has occurred recently. The simulations were obtained using a one-line model which can be used as a first approximation of shoreline prediction in the vicinity of groins. The results of the proposed model are compared with field measurements to determine the shape of the coast. Finally, the results of the present study show that using submerged groins can have a good efficiency to control the beach erosion without causing severe environmental impact to the coast. The important outcome from this study can be employed in optimum designing of defence sites in the coastal cities to improve their efficiency in terms of re-using the heritage lands.

Keywords: submerged structures, groin, shore protective structures, coastal cities

Procedia PDF Downloads 318
7943 Corrosion Behavior of Fe-Ni-Cr and Zr Alloys in Supercritical Water Reactors

Authors: Igor Svishchev, Kashif Choudhry

Abstract:

Progress in advanced energy technologies is not feasible without understanding how engineering materials perform under extreme environmental conditions. The corrosion behaviour of Fe-Ni-Cr and Zr alloys has been systematically examined under high-temperature and supercritical water flow conditions. The changes in elemental release rate and dissolved gas concentration provide valuable insights into the mechanism of passivation by forming oxide films. A non-intrusive method for monitoring the extent of surface oxidation based on hydrogen release rate has been developed. This approach can be used for the on-line monitoring corrosion behavior of reactor materials without the need to interrupt the flow and remove corrosion coupons. Surface catalysed thermochemical reactions may generate sufficient hydrogen to have an effect on the accumulation of oxidizing species generated by radiolytic processes in the heat transport systems of the supercritical water cooled nuclear reactor.

Keywords: high-temperature corrosion, non-intrusive monitoring, reactor materials, supercritical water

Procedia PDF Downloads 137
7942 Wave Velocity-Rock Property Relationships in Shallow Marine Libyan Carbonate Reservoir

Authors: Tarek S. Duzan, Abdulaziz F. Ettir

Abstract:

Wave velocities, Core and Log petrophysical data were collected from recently drilled four new wells scattered through-out the Dahra/Jofra (PL-5) Reservoir. The collected data were analyzed for the relationships of Wave Velocities with rock property such as Porosity, permeability and Bulk Density. Lots of Literature review reveals a number of differing results and conclusions regarding wave velocities (Compressional Waves (Vp) and Shear Waves (Vs)) versus rock petrophysical property relationships, especially in carbonate reservoirs. In this paper, we focused on the relationships between wave velocities (Vp , Vs) and the ratio Vp/Vs with rock properties for shallow marine libyan carbonate reservoir (Real Case). Upon data analysis, a relationship between petrophysical properties and wave velocities (Vp, Vs) and the ratio Vp/Vs has been found. Porosity and bulk density properties have shown exponential relationship with wave velocities, while permeability has shown a power relationship in the interested zone. It is also clear that wave velocities (Vp , Vs) seems to be a good indicator for the lithology change with true vertical depth. Therefore, it is highly recommended to use the output relationships to predict porosity, bulk density and permeability of the similar reservoir type utilizing the most recent seismic data.

Keywords: conventional core analysis (porosity, permeability bulk density) data, VS wave and P-wave velocities, shallow carbonate reservoir in D/J field

Procedia PDF Downloads 332
7941 Tomato Quality Produced in Saline Soils Using Irrigation with Treated Electromagnetic Water

Authors: Angela Vacaro de Souza, Fernando Ferrari Putti

Abstract:

One of the main plants cultivated in protected environment is tomato crop, which presents significant growth in its demand, because it is a tasty fruit, rich in nutrients and of high added value, however, poor management of fertilizers induces the process of soil salinization, causing several consequences, from reduced productivity to even soil infertility. These facts are derived from the increased concentration of salts, which hampers the process of water absorption by the plant, resulting in a biochemical and nutritional imbalance in the plant. Thus, this study aimed to investigate the effects of untreated and electromagnetically treated water in salinized soils on physical, physicochemical, and biochemical parameters in tomato fruits. The experiment was conducted at the Faculty of Science and Engineering, Tupã Campus (FCE/UNESP). A randomized complete block design with two types of treated water was adopted, with five different levels of initial salinity (0; 1.5; 2.5; 4; 5.5; 7 dS m⁻¹) by fertigation. Although the effects of salinity on fruit quality parameters are evident, no beneficial effects on increasing or maintaining postharvest quality of fruits whose plants were treated with electromagnetized water were evidenced.

Keywords: Solanum lycopersicum, soil salinization, protected environment, fertigation

Procedia PDF Downloads 119
7940 Possible Approach for Interlinking of Ponds to Mitigate Drought in Sivaganga Villages at Micro Level

Authors: Manikandan Sathianarayanan, Pernaidu Pasala

Abstract:

This paper presents the results of our studies concerning the implementation and exploitation of a Geographical Information System (GIS) dedicated to the support and assistance of decisions requested by drought management. In this study on diverting of surplus water through canals, pond sand check dams in the study area was carried out. The remote sensing data and GIS data was used to identify the drought prone villages in sivaganga taluk and to generate present land use, drainage pattern as well as slope and contour. This analysis was carried out for diverting surplus water through proposed canal and pond. The results of the study indicate that if the surplus water from the ponds and streams are diverted to the drought villages in Sivaganga taluk, it will definitely improve the agricultural production due to availability of water in the ponds. The improvements in agricultural production will help to improve the economical condition of the farmers in the region.

Keywords: interlinking, spatial analysis, remote sensing, GIS

Procedia PDF Downloads 253
7939 Biobased Sustainable Films from the Algerian Opuntia Ficus-Indica Cladodes Powder: Effect of Plasticizer Content

Authors: Nadia Chougui, Nawal Makhloufi, Farouk Rezgui, Elias Benramdane, Carmen S. R. Freire, Carla Vilela, Armando J. D. Silvestre

Abstract:

Native to Mexico, Opuntia ficus-indica was introduced in southern Spain, and thereafter, it was spread throughout the Mediterranean Basin by the Spanish conquerors in the 16th and 17th centuries. O. ficus-indica is a tropical and subtropical plant able to grow in arid and semi-arid regions, such as the Mediterranean and Central America regions. The culture of Opuntia covers about 200,000 ha in North Africa. This tree is used against soil erosion and desertification for fruit production and is encouraged to promote the livestock sector. It has recently received ever-increasing attention from researchers worldwide for the multivalent pharmaceutical and cosmetical potential of its different compartments (fruits, seeds, cladodes). The present study investigated the elaboration by casting method and characterization of new biodegradable films composed of cladodes powder (CP) of the plant raw material mentioned above, and a marine seaweed derivative, namely agar (A). The effect of glycerol concentration on the properties of the films was evaluated at four different contents (30, 40, 50 and 60 wt.%). The films present UV-blocking properties, thermal stability as well as moderate mechanical performance and water vapor transmission rate (WVTR). The results point to an increase in thickness, elongation at break, moisture content, water solubility, and WVTR with increasing glycerol content. On the contrary, Young’s modulus, tensile strength and contact angle decreased as glycerol concentration increased. The best combination is obtained for the film with 30% glycerol, based on an intermediate compromise between physical, mechanical, thermal and barrier properties. All these outcomes express the potentiality of the powder obtained from grinding the OFI cladodes as raw material to produce low-cost films for the development of sustainable packaging materials.

Keywords: Opuntia ficus-indica cladodes powder, agar, biobased films, effect of plasticizer, sustainable packaging

Procedia PDF Downloads 76
7938 Water Reclamation and Reuse in Asia’s Largest Sewage Treatment Plant

Authors: Naveen Porika, Snigdho Majumdar, Niraj Sethi

Abstract:

Water, food and energy securities are emerging as increasingly important and vital issues for India and the world. Hyderabad urban agglomeration (HUA), the capital city of Andhra Pradesh State in India, is the sixth largest city has a population of about 8.2 million. The Musi River, which is a tributary of Krishna river flows from west to east right through the heart of Hyderabad, about 80% of the water used by people is released back as sewage, which flows back into Musi every day with detrimental effects on the environment and people downstream of the city. The average daily sewage generated in Hyderabad city is 950 MLD, however, treatment capacity exists only for 541 Million Liters per Day (MLD) but only 407 MLD of sewage is treated. As a result, 543 MLD of sewage daily flows into Musi river. Hyderabad’s current estimated water demand stands at 320 Million Gallons per Day (MGD). However, its installed capacity is merely 270 MGD; by 2020 estimated demand will grow to 400 MGD. There is huge gap between current supply and demand, and this is likely to widen by 2021. Developing new fresh water sources is a challenge for Hyderabad, as the fresh water sources are few and far from the City (about 150-200 km) and requires excessive pumping. The constraints presented above make the conventional alternatives for supply augmentation unsustainable and unattractive .One such dependable and captive source of easily available water is the treated sewage. With proper treatment, water of desired quality can be recovered from the waste water (sewage) for recycle and reuse. Hyderabad Amberpet sewage treatment of capacity 339 MLD is Asia’s largest sewage treatment plant. Tertiary sewage treatment Standard basic engineering modules of 30 MLD,60 MLD, 120MLD & 180 MLD for sewage treatment plants has been developed which are utilized for developing Sewage Reclamation & Reuse model in Asia’s largest sewage treatment plant. This paper will focus on Hyderabad Water Supply & Demand, Sewage Generation & Treatment, Technical aspects of Tertiary Sewage Treatment and Utilization of developed standard modules for reclamation & reuse of treated sewage to overcome the deficit of 130 MGD as projected by 2021.

Keywords: water reclamation, reuse, Andhra Pradesh, hyderabad, musi river, sewage, demand and supply, recycle, Amberpet, 339 MLD, engineering modules, tertiary treatment

Procedia PDF Downloads 617
7937 Numerical Investigation on Transient Heat Conduction through Brine-Spongy Ice

Authors: S. R. Dehghani, Y. S. Muzychka, G. F. Naterer

Abstract:

The ice accretion of salt water on cold substrates creates brine-spongy ice. This type of ice is a mixture of pure ice and liquid brine. A real case of creation of this type of ice is superstructure icing which occurs on marine vessels and offshore structures in cold and harsh conditions. Transient heat transfer through this medium causes phase changes between brine pockets and pure ice. Salt rejection during the process of transient heat conduction increases the salinity of brine pockets to reach a local equilibrium state. In this process the only effect of passing heat through the medium is not changing the sensible heat of the ice and brine pockets; latent heat plays an important role and affects the mechanism of heat transfer. In this study, a new analytical model for evaluating heat transfer through brine-spongy ice is suggested. This model considers heat transfer and partial solidification and melting together. Properties of brine-spongy ice are obtained using properties of liquid brine and pure ice. A numerical solution using Method of Lines discretizes the medium to reach a set of ordinary differential equations. Boundary conditions are chosen using one of the applicable cases of this type of ice; one side is considered as a thermally isolated surface, and the other side is assumed to be suddenly affected by a constant temperature boundary. All cases are evaluated in temperatures between -20 C and the freezing point of brine-spongy ice. Solutions are conducted using different salinities from 5 to 60 ppt. Time steps and space intervals are chosen properly to maintain the most stable and fast solution. Variation of temperature, volume fraction of brine and brine salinity versus time are the most important outputs of this study. Results show that transient heat conduction through brine-spongy ice can create a various range of salinity of brine pockets from the initial salinity to that of 180 ppt. The rate of variation of temperature is found to be slower for high salinity cases. The maximum rate of heat transfer occurs at the start of the simulation. This rate decreases as time passes. Brine pockets are smaller at portions closer to the colder side than that of the warmer side. A the start of the solution, the numerical solution tends to increase instabilities. This is because of sharp variation of temperature at the start of the process. Changing the intervals improves the unstable situation. The analytical model using a numerical scheme is capable of predicting thermal behavior of brine spongy ice. This model and numerical solutions are important for modeling the process of freezing of salt water and ice accretion on cold structures.

Keywords: method of lines, brine-spongy ice, heat conduction, salt water

Procedia PDF Downloads 217
7936 Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process

Authors: Heba M. Gobara, Ahmed A. M. El-Naggar, Rasha S. El-Sayed, Amal A. AlKahlawy

Abstract:

In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process.

Keywords: hydrogen production, water splitting, photocatalysts, Graphene

Procedia PDF Downloads 188
7935 Mapping the Intrinsic Vulnerability of the Quaternary Aquifer of the Eastern Mitidja (Northern Algeria)

Authors: Abida Haddouche, Ahmed Chrif Toubal

Abstract:

The Neogene basin of the Eastern Mitidja, object of the study area, represents potential water resources and especially groundwater reserves. This water is an important economic; this resource is highly sensitive which need protection and preservation. Unfortunately, these waters are exposed to various forms of pollution, whether from urban, agricultural, industrial or merely accidental. This pollution is a permanent risk of limiting resource. In this context, the work aims to evaluate the intrinsic vulnerability of the aquifer to protect and preserve the quality of this resource. It will focus on the disposal of water and land managers a cartographic document accessible to locate the areas where the water has a high vulnerability. Vulnerability mapping of the Easter Mitidja quaternary aquifer is performed by applying three methods (DRASTIC, DRIST, and GOD). Comparison and validation results show that the DRASTIC method is the most suitable method for aquifer vulnerability of the study area.

Keywords: Aquifer of Mitidja, DRASTIC method, geographic information system (GIS), vulnerability mapping

Procedia PDF Downloads 385
7934 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic

Authors: Aneta Oblouková, Eva Vítková

Abstract:

The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.

Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate

Procedia PDF Downloads 120