Search results for: link data
24708 Automatic MC/DC Test Data Generation from Software Module Description
Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau
Abstract:
Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that is highly recommended or required for safety-critical software coverage. Therefore, many testing standards include this criterion and require it to be satisfied at a particular level of testing (e.g. validation and unit levels). However, an important amount of time is needed to meet those requirements. In this paper we propose to automate MC/DC test data generation. Thus, we present an approach to automatically generate MC/DC test data, from software module description written over a dedicated language. We introduce a new merging approach that provides high MC/DC coverage for the description, with only a little number of test cases.Keywords: domain-specific language, MC/DC, test data generation, safety-critical software coverage
Procedia PDF Downloads 44324707 Blockchain-Based Approach on Security Enhancement of Distributed System in Healthcare Sector
Authors: Loong Qing Zhe, Foo Jing Heng
Abstract:
A variety of data files are now available on the internet due to the advancement of technology across the globe today. As more and more data are being uploaded on the internet, people are becoming more concerned that their private data, particularly medical health records, are being compromised and sold to others for money. Hence, the accessibility and confidentiality of patients' medical records have to be protected through electronic means. Blockchain technology is introduced to offer patients security against adversaries or unauthorised parties. In the blockchain network, only authorised personnel or organisations that have been validated as nodes may share information and data. For any change within the network, including adding a new block or modifying existing information about the block, a majority of two-thirds of the vote is required to confirm its legitimacy. Additionally, a consortium permission blockchain will connect all the entities within the same community. Consequently, all medical data in the network can be safely shared with all authorised entities. Also, synchronization can be performed within the cloud since the data is real-time. This paper discusses an efficient method for storing and sharing electronic health records (EHRs). It also examines the framework of roles within the blockchain and proposes a new approach to maintain EHRs with keyword indexes to search for patients' medical records while ensuring data privacy.Keywords: healthcare sectors, distributed system, blockchain, electronic health records (EHR)
Procedia PDF Downloads 19224706 Meticulous Doxorubicin Release from pH-Responsive Nanoparticles Entrapped within an Injectable Thermoresponsive Depot
Authors: Huayang Yu, Nicola Ingram, David C. Green, Paul D. Thornton
Abstract:
The dual stimuli-controlled release of doxorubicin from gel-embedded nanoparticles is reported. Non-cytotoxic polymer nanoparticles are formed from poly(ethylene glycol)-b-poly(benzyl glutamate) that, uniquely, contain a central ester link. This connection renders the nanoparticles pH-responsive, enabling extensive doxorubicin release in acidic solutions (pH 6.5), but not in solutions of physiological pH (pH 7.4). Doxorubicin loaded nanoparticles were found to be stable for at least 31 days and lethal against the three breast cancer cell lines tested. Furthermore, doxorubicin-loaded nanoparticles could be incorporated within a thermoresponsive poly(2-hydroxypropyl methacrylate) gel depot, which forms immediately upon injection of poly(2-hydroxypropyl methacrylate) into aqueous solution. The combination of the poly(2-hydroxypropyl methacrylate) gel and poly(ethylene glycol)-b-poly(benzyl glutamate) nanoparticles yields an injectable doxorubicin delivery system that facilities near-complete drug release when maintained at elevated temperatures (37 °C) in acidic solution (pH 6.5). In contrast, negligible payload release occurs when the material is stored at room temperature in a non-acidic solution (pH 7.4). The system has great potential as a vehicle for the prolonged, site-specific release of chemotherapeutics.Keywords: biodegradable, nanoparticle, polymer, thermoresponsive
Procedia PDF Downloads 13624705 Demographic Factors Influencing Employees’ Salary Expectations and Labor Turnover
Authors: M. Osipova
Abstract:
Thanks to informational technologies development every sphere of economics is becoming more and more data-centralized as people are generating huge datasets containing information on any aspect of their life. Applying research of such data to human resources management allows getting scarce statistics on labor market state including salary expectations and potential employees’ typical career behavior, and this information can become a reliable basis for management decisions. The following article presents results of career behavior research based on freely accessible resume data. Information used for study is much wider than one usually uses in human resources surveys. That is why there is enough data for statistically significant results even for subgroups analysis.Keywords: human resources management, salary expectations, statistics, turnover
Procedia PDF Downloads 35524704 Exploring Electroactive Polymers for Dynamic Data Physicalization
Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel
Abstract:
Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization
Procedia PDF Downloads 10124703 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics
Procedia PDF Downloads 11124702 Research and Implementation of Cross-domain Data Sharing System in Net-centric Environment
Authors: Xiaoqing Wang, Jianjian Zong, Li Li, Yanxing Zheng, Jinrong Tong, Mao Zhan
Abstract:
With the rapid development of network and communication technology, a great deal of data has been generated in different domains of a network. These data show a trend of increasing scale and more complex structure. Therefore, an effective and flexible cross-domain data-sharing system is needed. The Cross-domain Data Sharing System(CDSS) in a net-centric environment is composed of three sub-systems. The data distribution sub-system provides data exchange service through publish-subscribe technology that supports asynchronism and multi-to-multi communication, which adapts to the needs of the dynamic and large-scale distributed computing environment. The access control sub-system adopts Attribute-Based Access Control(ABAC) technology to uniformly model various data attributes such as subject, object, permission and environment, which effectively monitors the activities of users accessing resources and ensures that legitimate users get effective access control rights within a legal time. The cross-domain access security negotiation subsystem automatically determines the access rights between different security domains in the process of interactive disclosure of digital certificates and access control policies through trust policy management and negotiation algorithms, which provides an effective means for cross-domain trust relationship establishment and access control in a distributed environment. The CDSS’s asynchronous,multi-to-multi and loosely-coupled communication features can adapt well to data exchange and sharing in dynamic, distributed and large-scale network environments. Next, we will give CDSS new features to support the mobile computing environment.Keywords: data sharing, cross-domain, data exchange, publish-subscribe
Procedia PDF Downloads 12424701 Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System
Authors: Zhou Mo, Dennis Chow
Abstract:
In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing protocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turn out to reduce the energy consumption of nodes and increase the efficiency of data delivery.Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols
Procedia PDF Downloads 52524700 Influence of Visual Merchandising Elements on Instant Purchase
Authors: Pooja Sharma, Renu Jain, Alka David
Abstract:
The primary goal of this research is to comprehend the many features of visual merchandising (VM) and impulsive or instant purchasing behavior. It aims to explain the link between visual merchandising and customer purchasing behavior. The reviews were compiled from research articles, professional journal articles, and the opinions of many authors. It also discusses the impact of different internal and external VM elements on instant purchasing. The visual merchandising elements are divided into two sections: interior element (inside the display, spaces, and layout, fixtures, mannequins, attention-grabbing device) and outside element (outside display, space, and layout, fixture, mannequins, attention-grabbing device) (Window Display, Exterior signs, Marquees, Entrance, color, and texture). By focusing on selected clothing stores from the four markets of Bhopal city, we discovered that the exterior elements (window display, color, and texture) and interior elements (mannequins like dummies and fixtures such as lighting) have a significant positive impact on instant buying among the elements of Visual merchandising.Keywords: instant purchase, visual merchandising, instant buying behavior, consumer behavior, window display, fixtures, mannequins, marquees
Procedia PDF Downloads 11624699 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network
Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas
Abstract:
The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.Keywords: distributed generation (DG), interconnected mode, islanding mode, maximum power point tracking (mppt), power quality (PQ), unified power quality conditioner (UPQC), photovoltaic array (PV)
Procedia PDF Downloads 50824698 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production
Authors: Deepak Singh, Rail Kuliev
Abstract:
This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring
Procedia PDF Downloads 8724697 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 14124696 Demographic Characteristics as a Determinant of the use of Health Care Services: Case of Nsukka, Southwest Nigeria
Authors: Beatrice Adeoye
Abstract:
Studies have associated social and demographic characteristics as strong determinants of utilization of health care services; however, not much has been done to explore the dynamics of these variables in Nigeria. This empirical study explores the link between demographic factors and the future use of health care services in Nsukka, southeast Nigeria. A total of 543 respondents were selected using multi-stage sampling technique. The findings of the study showed that majority (56.9%) of the respondents were female while 43.1% were male. More of the respondents were married (50.3%) while 41.80/0 of the respondents were between ages 26-35. Testing the demographic characteristics regarding where people will prefer to go first for treatment with multiple regression, It is only Sex as a demographic variable that indicates positive association for future occurrence to where people will prefer to go first for treatment with 0.08 significance. Age and education indicates no association considering their level of significance. This result shows that sex is one of the determinant factors of where and when people will go for treatment. This is pointing out the realities regarding African society where in the family setting, it is the father that dictates the cause of action. Also to buttress these findings, cross tabulating age with who determines where and when to go for treatment, findings show that majority (58.9%) within age 26-35 said their spouses decide on where and when to go for treatment. Findings showed that patriarchy still plays an important role in the utilization of health care delivery among the people studied.Keywords: Demographic characters, Determinant, Health Care, treatment, self-medication, symptom,
Procedia PDF Downloads 38724695 The Potential for Tourism Development in the Greater Chinhoyi Area in Zimbabwe: A Systems Approach in an Appetizer Destination
Authors: Phillip F. Kanokanga, Patrick W. Mamimine, Molline Mwando, Charity Mapingure
Abstract:
Tourism development tends to follow anchor attractions, including cities and their surroundings, while marginalizing small towns and their environs. This is even though the small towns and their hinterlands can also offer competitive tourism products. The Zimbabwe Tourism Authority (ZTA) gathers visitor statistics of major tourist destinations only thereby sidelining the density of tourist traffic that either passes through or visits the small towns in the country. Unless this problem is addressed, the tourism potential of small towns and their hinterlands will not be fully tapped for economic development. Using qualitative research methodology, this study investigated the opportunities for tourism development in the Greater Chinhoyi Area. The study revealed that the Greater Chinhoyi area had potential for heritage tourism, village tourism, urban tourism, educational tourism, dark tourism, recreational tourism, agrotourism, and nature tourism. There is a need to link the various tourism resources in the Greater Chinhoyi area to anchor attractions in dominant resorts, then develop and present the tourism products in transit towns as ‘appetisers’ or ‘appetisser attractions’ before one gets to the main destination.Keywords: anchor attractions, appetisers, heritage tourism, agrotourism, small towns, tourism corridor, systems approach, hidden treasures
Procedia PDF Downloads 7724694 New Security Approach of Confidential Resources in Hybrid Clouds
Authors: Haythem Yahyaoui, Samir Moalla, Mounir Bouden, Skander ghorbel
Abstract:
Nowadays, Cloud environments are becoming a need for companies, this new technology gives the opportunities to access to the data anywhere and anytime, also an optimized and secured access to the resources and gives more security for the data which stored in the platform, however, some companies do not trust Cloud providers, in their point of view, providers can access and modify some confidential data such as bank accounts, many works have been done in this context, they conclude that encryption methods realized by providers ensure the confidentiality, although, they forgot that Cloud providers can decrypt the confidential resources. The best solution here is to apply some modifications on the data before sending them to the Cloud in the objective to make them unreadable. This work aims on enhancing the quality of service of providers and improving the trust of the customers.Keywords: cloud, confidentiality, cryptography, security issues, trust issues
Procedia PDF Downloads 37824693 Estimation of Chronic Kidney Disease Using Artificial Neural Network
Authors: Ilker Ali Ozkan
Abstract:
In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis
Procedia PDF Downloads 44824692 Exploration of the Possible Link Between Emotional Problems and Cholesterol Levels Among Children Diagnosed with Attention-Deficit Hyperactivity Disorder
Authors: Rosa S. Wong, Keith T.S. Tung, H.W. Tsang, Frederick K. Ho, Patrick Ip
Abstract:
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention and hyperactive-impulsive behavior. Evidence shows that ADHD and mood problems such as depression and anxiety often co-occur and yet not everyone with ADHD reported elevated emotional problems. Given that cholesterol is essential for healthy brain development including the regions governing emotion regulation, reports found lower cholesterol levels in patients with major depressive disorder and those with suicide attempt behavior compared to healthy subjects. This study explored whether ADHD adolescents experienced more emotional problems and whether emotional problems correlated with cholesterol levels in these adolescents. This study used a portion of data from the longitudinal cohort study which was designed to investigate the long-term impact of family socioeconomic status on child development. In 2018/19, parents of 300 adolescents (average age: 12.57+/-0.49 years) were asked to rate their children’s emotional problems and report whether their children had doctor-diagnosed psychiatric diseases. We further collected blood samples from 263 children to study their lipid profile (total cholesterol, high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol). Regression analyses were performed to test the relationships between variables of interest. Among 300 children, 27 (9%) had ADHD diagnosis. Analysis based on overall sample found no association between ADHD and emotional problems, but when investigating the relationship by gender, there was a significant interaction effect of ADHD and gender on emotional problems (p=0.037), with ADHD males displaying more emotional problems than ADHD females. Further analyses based on 263 children (21 with ADHD diagnosis) found significant interaction effect of ADHD and gender on total cholesterol (p=0.038) and low LDL-cholesterol levels (p=0.013) after adjusting for the child’s physical disease history. Specifically, ADHD males had significantly lower total cholesterol and low lipoprotein-cholesterol levels than ADHD females. In ADHD males, more emotional problems were associated with lower LDL-cholesterol levels (B = -4.26, 95%CI (-7.46, -1.07), p=0.013). We found preliminary support for the association between more emotional problems and lower cholesterol levels in ADHD children, especially among males. Although larger prospective studies are needed to substantiate these claims, the evidence highlights the importance of healthy lifestyle to keep cholesterol levels in normal range which can have positive effects on physical and mental health.Keywords: attention-deficit hyperactivity disorder, cholesterol, emotional problems, adolescents
Procedia PDF Downloads 14924691 Detection of Latent Fingerprints Recovered from Arson Simulation by a Novel Fluorescent Method
Authors: Somayeh Khanjani, Samaneh Nabavi, Shirin Jalili, Afshin Khara
Abstract:
Fingerprints are area source of ubiquitous evidence and consequential for establishing identity. The detection and subsequent development of fingerprints are thus inevitable in criminal investigations. This becomes a difficult task in the case of certain extreme conditions like fire. A fire scene may be accidental or arson. The evidence subjected to fire is generally overlooked as there is a misconception that they are damaged. There are several scientific approaches to determine whether the fire was deliberate or not. In such as scenario, fingerprints may be most critical to link the perpetrator to the crime. The reason for this may be the destructive nature of fire. Fingerprints subjected to fire are exposed to high temperatures, soot deposition, electromagnetic radiation, and subsequent water force. It is believed that these phenomena damage the fingerprint. A novel fluorescent and a pre existing small particle reagent were investigated for the same. Zinc carbonates based fluorescent small particle reagent was capable of developing latent fingerprints exposed to a maximum temperature of 800 ̊C. Fluorescent SPR may prove very useful in such cases. Fluorescent SPR reagent based on zinc carbonate is a potential method for developing fingerprints from arson sites. The method is cost effective and non hazardous. This formulation is suitable for developing fingerprints exposed to fire/ arson.Keywords: fingerprint, small particle reagent (SPR), arson, novel fluorescent
Procedia PDF Downloads 47224690 Impact of Map Generalization in Spatial Analysis
Authors: Lin Li, P. G. R. N. I. Pussella
Abstract:
When representing spatial data and their attributes on different types of maps, the scale plays a key role in the process of map generalization. The process is consisted with two main operators such as selection and omission. Once some data were selected, they would undergo of several geometrical changing processes such as elimination, simplification, smoothing, exaggeration, displacement, aggregation and size reduction. As a result of these operations at different levels of data, the geometry of the spatial features such as length, sinuosity, orientation, perimeter and area would be altered. This would be worst in the case of preparation of small scale maps, since the cartographer has not enough space to represent all the features on the map. What the GIS users do is when they wanted to analyze a set of spatial data; they retrieve a data set and does the analysis part without considering very important characteristics such as the scale, the purpose of the map and the degree of generalization. Further, the GIS users use and compare different maps with different degrees of generalization. Sometimes, GIS users are going beyond the scale of the source map using zoom in facility and violate the basic cartographic rule 'it is not suitable to create a larger scale map using a smaller scale map'. In the study, the effect of map generalization for GIS analysis would be discussed as the main objective. It was used three digital maps with different scales such as 1:10000, 1:50000 and 1:250000 which were prepared by the Survey Department of Sri Lanka, the National Mapping Agency of Sri Lanka. It was used common features which were on above three maps and an overlay analysis was done by repeating the data with different combinations. Road data, River data and Land use data sets were used for the study. A simple model, to find the best place for a wild life park, was used to identify the effects. The results show remarkable effects on different degrees of generalization processes. It can see that different locations with different geometries were received as the outputs from this analysis. The study suggests that there should be reasonable methods to overcome this effect. It can be recommended that, as a solution, it would be very reasonable to take all the data sets into a common scale and do the analysis part.Keywords: generalization, GIS, scales, spatial analysis
Procedia PDF Downloads 33024689 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data
Authors: LuoJiaoyang, Yu Hongyang
Abstract:
In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.Keywords: multimodal, three modalities, RGB-D, identity verification
Procedia PDF Downloads 7124688 Pro-Ecological Antioxidants for Polymeric Composites
Authors: Masek A., Zaborski M.
Abstract:
In our studies, we propose the use of natural, pro-ecological substances such as polyphenols to protect polymers against ageing. In our studies, we plan to focus on the following compounds: polyphenols, gallic acid esters, flavonoides, carotenoids, curcumin and its derivatives, vitamin A, tocochromanoles, betalain. Phyto-compounds will be selected on the basis of available literature and our preliminary studies. So, we will select compounds with various contents of hydroxyl groups and colored substances capable of participating in color oxidation processes. The natural antioxidants which were added to ethylene-octene elastomer (polyolefin elastomer-Engage) and ethylene-nonbornene (TOPAS). Composites were then subjected to numerous ageing: weathering (climat of Floryda), UV (0,7 W/m2), thermo-oxidation ageing (1000C/10days) and thermal-shock (-600C/+1000C) as a function of the aging time. The efficiency of used anti-ageing agents was checked on the base of the changes after the degradation in deformation energy (tensile strength and elongation at the break), cross-link density, color (parameters L,a,b) and values of carbonyl index (based on the spectrum of infra red spectroscopy), OIT (induction oxygen time as performed in using differential scanning calorimeter -DSC) of the vulcanizates. Therefore polyphenols are considered to be the best stabilisers for polymeric composites against to oxidation processes.Keywords: polymers, flavonoids, stabilization, ageing, oxidation
Procedia PDF Downloads 30924687 The Influence of Polymorphisms of NER System Genes on the Risk of Colorectal Cancer in the Polish Population
Authors: Ireneusz Majsterek, Karolina Przybylowska, Lukasz Dziki, Adam Dziki, Jacek Kabzinski
Abstract:
Colorectal cancer (CRC) is one of the deadliest cancers. Every year we see an increase in the number of cases, and in spite of intensive research etiology of the disease remains unknown. For many years, researchers are seeking to associate genetic factors with an increased risk of CRC, so far it has proved to be a compelling link between the MMR system of DNA repair and hereditary nonpolyposis colorectal cancers (HNPCC). Currently, research is focused on finding the relationship between the remaining DNA repair systems and an increased risk of developing colorectal cancer. The aim of the study was to determine the relationship between gene polymorphisms Ser835Ser of XPF gene and Gly23Ala of XPA gene–elements of NER DNA repair system, and modulation of the risk of colorectal cancer in the Polish population. Determination of the molecular basis of carcinogenesis process and predicting increased risk will allow qualifying patients to increased risk group and including them in preventive program. We used blood collected from 110 patients diagnosed with colorectal cancer. The control group consisted of equal number of healthy people. Genotyping was performed by TaqMan method. The obtained results indicate that the genotype 23Gly/Ala of XPA gene is associated with an increased risk of colorectal cancer, while 23Ala/Ala as well as TCT allele of Ser835Ser of XPF gene may reduce the risk of CRC.Keywords: NER, colorectal cancer, XPA, XPF, polymorphisms
Procedia PDF Downloads 56824686 Non-Linear Causality Inference Using BAMLSS and Bi-CAM in Finance
Authors: Flora Babongo, Valerie Chavez
Abstract:
Inferring causality from observational data is one of the fundamental subjects, especially in quantitative finance. So far most of the papers analyze additive noise models with either linearity, nonlinearity or Gaussian noise. We fill in the gap by providing a nonlinear and non-gaussian causal multiplicative noise model that aims to distinguish the cause from the effect using a two steps method based on Bayesian additive models for location, scale and shape (BAMLSS) and on causal additive models (CAM). We have tested our method on simulated and real data and we reached an accuracy of 0.86 on average. As real data, we considered the causality between financial indices such as S&P 500, Nasdaq, CAC 40 and Nikkei, and companies' log-returns. Our results can be useful in inferring causality when the data is heteroskedastic or non-injective.Keywords: causal inference, DAGs, BAMLSS, financial index
Procedia PDF Downloads 15224685 Managing Incomplete PSA Observations in Prostate Cancer Data: Key Strategies and Best Practices for Handling Loss to Follow-Up and Missing Data
Authors: Madiha Liaqat, Rehan Ahmed Khan, Shahid Kamal
Abstract:
Multiple imputation with delta adjustment is a versatile and transparent technique for addressing univariate missing data in the presence of various missing mechanisms. This approach allows for the exploration of sensitivity to the missing-at-random (MAR) assumption. In this review, we outline the delta-adjustment procedure and illustrate its application for assessing the sensitivity to deviations from the MAR assumption. By examining diverse missingness scenarios and conducting sensitivity analyses, we gain valuable insights into the implications of missing data on our analyses, enhancing the reliability of our study's conclusions. In our study, we focused on assessing logPSA, a continuous biomarker in incomplete prostate cancer data, to examine the robustness of conclusions against plausible departures from the MAR assumption. We introduced several approaches for conducting sensitivity analyses, illustrating their application within the pattern mixture model (PMM) under the delta adjustment framework. This proposed approach effectively handles missing data, particularly loss to follow-up.Keywords: loss to follow-up, incomplete response, multiple imputation, sensitivity analysis, prostate cancer
Procedia PDF Downloads 9024684 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 8624683 General Architecture for Automation of Machine Learning Practices
Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain
Abstract:
Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler
Procedia PDF Downloads 5824682 ‘Groupitizing’ – A Key Factor in Math Learning Disabilities
Authors: Michal Wolk, Bat-Sheva Hadad, Orly Rubinsten
Abstract:
Objective: The visuospatial perception system process that allows us to decompose and recompose small quantities into a whole is often called “groupitizing.” Previous studies have been found that adults use groupitizing processes in quantity estimation tasks and link this ability of subgroups recognition to arithmetic proficiency. This pilot study examined if adults with math difficulties benefit from visuospatial grouping cues when asked to estimate the quantity of a given set. It also compared the tipping point in which a significant improvement occurs in adults with typical development compared to adults with math difficulties. Method: In this pilot research, we recruited adults with low arithmetic abilities and matched controls. Participants were asked to estimate the quantity of a given set. Different grouping cues were displayed (space, color, or none) with different visual configurations (different quantities-different shapes, same quantities- different shapes, same quantities- same shapes). Results: Both groups showed significant performance improvement when grouping cues appeared. However, adults with low arithmetic abilities benefited from the grouping cues already in very small quantities as four. Conclusion: impaired perceptual groupitizing abilities may be a characteristic of low arithmetic abilities.Keywords: groupitizing, math learning disability, quantity estimation, visual perception system
Procedia PDF Downloads 20524681 Collaboration of Game Based Learning with Models Roaming the Stairs Using the Tajribi Method on the Eye PAI Lessons at the Ummul Mukminin Islamic Boarding School, Makassar South Sulawesi
Authors: Ratna Wulandari, Shahidin
Abstract:
This article aims to see how the Game Based Learning learning model with the Roaming The Stairs game makes a tajribi method can make PAI lessons active and interactive learning. This research uses a qualitative approach with a case study type of research. Data collection methods were carried out using interviews, observation, and documentation. Data analysis was carried out through the stages of data reduction, data display, and verification and drawing conclusions. The data validity test was carried out using the triangulation method. and drawing conclusions. The results of the research show that (1) children in grades 9A, 9B, and 9C like learning PAI using the Roaming The Stairs game (2) children in grades 9A, 9B, and 9C are active and can work in groups to solve problems in the Roaming The Stairs game (3) the class atmosphere becomes fun with learning method, namely learning while playing.Keywords: game based learning, Roaming The Stairs, Tajribi PAI
Procedia PDF Downloads 2324680 Exploring 21st Century Ecolinguistics: Navigating Hybrid Identities in a Changing World
Authors: Dace Aleksandraviča
Abstract:
The paper presents a theoretical exploration of the emerging field of 21st-century ecolinguistics, which examines the multi-faceted relationship between language, ecology, and identity in our rapidly changing global landscape. In an era characterized by unprecedented linguistic and cultural hybridity, understanding the interplay between language and environment is paramount. This paper delves into the concept of hybrid identities, examining how individuals negotiate their linguistic and cultural affiliations within diverse ecological contexts based on relevant prior contributions in the field. Drawing upon interdisciplinary perspectives from linguistics, environmental studies, and cultural studies, the research investigates the ways in which language shapes and is shaped by environmental realities. The abstract underscores the importance of ecolinguistic approaches in fostering environmental stewardship and promoting sustainable practices. By acknowledging the intrinsic link between language, culture, and ecology, it becomes possible to cultivate a deeper appreciation for linguistic diversity and empower individuals to navigate their hybrid identities in a rapidly changing world. In line with that, the paper hopes to contribute to the growing body of literature on ecolinguistics and offer insights into how language can serve as a tool for both environmental conservation and cultural revitalization.Keywords: ecolinguistics, hybrid identities, language, globalization
Procedia PDF Downloads 4724679 The Other Dreamers: A Study of the Relationship between Returned Migration and Entrepreneurship
Authors: Pascual García, Francisco Ochoa, Jessica Ordoñez
Abstract:
The links between migration and development have been widely written and analyzed from different perspectives. However, the nexus between entrepreneurship and migration is of recent interest. The different studies related to this have focused on the ventures of ethnic enclaves, or on transnational businesses, which link the community of origin and destination. Beyond this perspective, this work analyzes the return migration, (a few studies until now, but forming part of a theoretical body of migration). As a result of the European crisis started between 2007-2008. Many Ecuadorians who lived in Europe, decided to return to their place of origin. The rise of the price of the oil and commodities presented a better panorama in Ecuador than in Europe. Faced with the magnitude of returnees, the opportunities for entrepreneurship in Ecuador increased (Accumulation of human capital, social capital, learned skills and capital). Thus there is an interest in the possibility of returned migrants in the country to start a business in their place of origin. The following study is the result of this. A survey of 110 returned migrants was carried out in the south of Ecuador and, using a Probit econometric model, we determined that the variables specified as geographic area, sex, education level are not significant, so they are not determinant when undertaking. However, time abroad and skills learned, if they were significant at the time of the decision to start a business.Keywords: entrepreneurship, development, migration, returned migration
Procedia PDF Downloads 210