Search results for: insecticidal activity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6137

Search results for: insecticidal activity

4817 Design of Collaborative Web System: Based on Case Study of PBL Support Systems

Authors: Kawai Nobuaki

Abstract:

This paper describes the design and implementation of web system for continuable and viable collaboration. This study proposes the improvement of the system based on a result of a certain practice. As contemporary higher education information environments transform, this study highlights the significance of university identity and college identity that are formed continuously through independent activities of the students. Based on these discussions, the present study proposes a practical media environment design which facilitates the processes of organizational identity formation based on a continuous and cyclical model. Even if users change by this system, the communication system continues operation and cooperation. The activity becomes the archive and produces new activity. Based on the result, this study elaborates a plan with a re-design by a system from the viewpoint of second-order cybernetics. Systems theory is a theoretical foundation for our study.

Keywords: collaborative work, learning management system, second-order cybernetics, systems theory, user generated contents, viable system model

Procedia PDF Downloads 197
4816 Screening for Larvicidal Activity of Aqueous and Ethanolic Extracts of Fourteen Selected Plants and Formulation of a Larvicide against Aedes aegypti (Linn.) and Aedes albopictus (Skuse) Larvae

Authors: Michael Russelle S. Alvarez, Noel S. Quiming, Francisco M. Heralde

Abstract:

This study aims to: a) obtain ethanolic (95% EtOH) and aqueous extracts of Selaginella elmeri, Christella dentata, Elatostema sinnatum, Curculigo capitulata, Euphorbia hirta, Murraya koenigii, Alpinia speciosa, Cymbopogon citratus, Eucalyptus globulus, Jatropha curcas, Psidium guajava, Gliricidia sepium, Ixora coccinea and Capsicum frutescens and screen them for larvicidal activities against Aedes aegypti (Linn.) and Aedes albopictus (Skuse) larvae; b) to fractionate the most active extract and determine the most active fraction; c) to determine the larvicidal properties of the most active extract and fraction against by computing their percentage mortality, LC50, and LC90 after 24 and 48 hours of exposure; and d) to determine the nature of the components of the active extracts and fractions using phytochemical screening. Ethanolic (95% EtOH) and aqueous extracts of the selected plants will be screened for potential larvicidal activity against Ae. aegypti and Ae. albopictus using standard procedures and 1% malathion and a Piper nigrum based ovicide-larvicide by the Department of Science and Technology as positive controls. The results were analyzed using One-Way ANOVA with Tukey’s and Dunnett’s test. The most active extract will be subjected to partial fractionation using normal-phase column chromatography, and the fractions subsequently screened to determine the most active fraction. The most active extract and fraction were subjected to dose-response assay and probit analysis to determine the LC50 and LC90 after 24 and 48 hours of exposure. The active extracts and fractions will be screened for phytochemical content. The ethanolic extracts of C. citratus, E. hirta, I. coccinea, G. sepium, M. koenigii, E globulus, J. curcas and C. frutescens exhibited significant larvicidal activity, with C. frutescens being the most active. After fractionation, the ethyl acetate fraction was found to be the most active. Phytochemical screening of the extracts revealed the presence of alkaloids, tannins, indoles and steroids. A formulation using talcum powder–300 mg fraction per 1 g talcum powder–was made and again tested for larvicidal activity. At 2 g/L, the formulation proved effective in killing all of the test larvae after 24 hours.

Keywords: larvicidal activity screening, partial purification, dose-response assay, capsicum frutescens

Procedia PDF Downloads 315
4815 Study on the Heavy Oil Degradation Performance and Kinetics of Immobilized Bacteria on Modified Zeolite

Authors: Xiao L Dai, Wen X Wei, Shuo Wang, Jia B Li, Yan Wei

Abstract:

Heavy oil pollution generated from both natural and anthropogenic sources could cause significant damages to the ecological environment, due to the toxicity of some of its constituents. Nowadays, microbial remediation is becoming a promising technology to treat oil pollution owing to its low cost and prevention of secondary pollution; microorganisms are key players in the process. Compared to the free microorganisms, immobilized microorganisms possess several advantages, including high metabolic activity rates, strong resistance to toxic chemicals and natural competition with the indigenous microorganisms, and effective resistance to washing away (in open water system). Many immobilized microorganisms have been successfully used for bioremediation of heavy oil pollution. Considering the broad choices, low cost, simple process, large specific surface area and less impact on microbial activity, modified zeolite were selected as a bio-carrier for bacteria immobilization. Three strains of heavy oil-degrading bacteria Bacillus sp. DL-13, Brevibacillus sp. DL-1 and Acinetobacter sp. DL-34 were immobilized on the modified zeolite under mild conditions, and the bacterial load (bacteria /modified zeolite) was 1.12 mg/g, 1.11 mg/g, and 1.13 mg/g, respectively. SEM results showed that the bacteria mainly adsorbed on the surface or punctured in the void of modified zeolite. The heavy oil degradation efficiency of immobilized bacteria was 62.96%, higher than that of the free bacteria (59.83%). The heavy oil degradation process of immobilized bacteria accords with the first-order reaction equation, and the reaction rate constant is 0.1483 d⁻¹, which was significantly higher than the free bacteria (0.1123 d⁻¹), suggesting that the immobilized bacteria can rapidly start up the heavy oil degradation and has a high activity of heavy oil degradation. The results suggested that immobilized bacteria are promising technology for bioremediation of oil pollution.

Keywords: heavy oil pollution, microbial remediation, modified zeolite, immobilized bacteria

Procedia PDF Downloads 132
4814 Characterization of Calcium-Signalling Mediated by Human GPR55 Expressed in HEK293 Cells

Authors: Yousuf M. Al Suleimani, Robin Hiley

Abstract:

The endogenous phospholipid lysophosphatidylinositol (LPI) was recently identified as a novel ligand for the G protein-coupled receptor 55 (GPR55) and an inducer of intracellular Ca2+ [Ca2+]i release. This study attempts to characterize Ca2+ signals provoked by LPI in HEK293 cells engineered to stably express human GPR55 and to test cannabinoid ligand activity at GPR55. The study shows that treatment with LPI stimulates a sustained, oscillatory Ca2+ release. The response is characterized by an initial rapid rise, which is mediated by the Gαq-PLC-IP3 pathway, and this is followed by prolonged oscillations that require RhoA activation. Ca2+ oscillations are initiated by intracellular mechanisms and extracellular Ca2+ is only required to replenish Ca2+ lost from the cytoplasm. Analysis of cannabinoid ligand activity at GPR55 revealed no clear effect of the endocannabinoid anandamide, however, rimonabant and the CB1 receptor antagonist AM251 evoked GPR55-mediated [Ca2+]i. Thus, LPI is likely to be a key plasma membrane mediator of signaling events and changes in gene expression through GPR55 activation.

Keywords: lysophosphatidylinositol, calcium, GPR55, cannabinoid

Procedia PDF Downloads 340
4813 The Impact of Efflux Pump Inhibitor on the Activity of Benzosiloxaboroles and Benzoxadiboroles against Gram-Negative Rods

Authors: Agnieszka E. Laudy, Karolina Stępien, Sergiusz Lulinski, Krzysztof Durka, Stefan Tyski

Abstract:

1,3-dihydro-1-hydroxy-2,1-benzoxaborole and its derivatives are a particularly interesting group of synthetic agents and were successfully employed in supramolecular chemistry medicine. The first important compounds, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole and 5-chloro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole were identified as potent antifungal agents. In contrast, (S)-3-(aminomethyl)-7-(3-hydroxypropoxy)-1-hydroxy-1,3-dihydro-2,1-benzoxaborole hydrochloride is in the second phase of clinical trials as a drug for the treatment of Gram-negative bacterial infections of the Enterobacteriaceae family and Pseudomonas aeruginosa. Equally important and difficult task is to search for compounds active against Gram-negative bacilli, which have multi-drug-resistance efflux pumps actively removing many of the antibiotics from bacterial cells. We have examined whether halogen-substituted benzoxaborole-based derivatives and their analogues possess antibacterial activity and are substrates for multi-drug-resistance efflux pumps. The antibacterial activity of 1,3-dihydro-3-hydroxy-1,1-dimethyl-1,2,3-benzosiloxaborole and 10 halogen-substituted its derivatives, as well as 1,2-phenylenediboronic acid and 3 synthesised fluoro-substituted its analogs, were evaluated. The activity against the reference strains of Gram-positive (n=5) and Gram-negative bacteria (n=10) was screened by the disc-diffusion test (0.4 mg of tested compounds was applied onto paper disc). The minimal inhibitory concentration values and the minimal bactericidal concentration values were estimated according to The Clinical and Laboratory Standards Institute and The European Committee on Antimicrobial Susceptibility Testing recommendations. During the minimal inhibitory concentration values determination with or without phenylalanine-arginine beta-naphthylamide (50 mg/L) efflux pump inhibitor, the concentrations of tested compounds ranged 0.39-400 mg/L in the broth medium supplemented with 1 mM magnesium sulfate. Generally, the studied benzosiloxaboroles and benzoxadiboroles showed a higher activity against Gram-positive cocci than against Gram-negative rods. Moreover, benzosiloxaboroles have the higher activity than benzoxadiboroles compounds. In this study, we demonstrated that substitution (mono-, di- or tetra-) of 1,3-dihydro-3-hydroxy-1,1-dimethyl-1,2,3-benzosiloxaborole with halogen groups resulted in an increase in antimicrobial activity as compared to the parent substance. Interestingly, the 6,7-dichloro-substituted parent substance was found to be the most potent against Gram-positive cocci: Staphylococcus sp. (minimal inhibitory concentration 6.25 mg/L) and Enterococcus sp. (minimal inhibitory concentration 25 mg/L). On the other hand, mono- and dichloro-substituted compounds were the most actively removed by efflux pumps present in Gram-negative bacteria mainly from Enterobacteriaceae family. In the presence of efflux pump inhibitor the minimal inhibitory concentration values of chloro-substituted benzosiloxaboroles decreased from 400 mg/L to 3.12 mg/L. Of note, the highest increase in bacterial susceptibility to tested compounds in the presence of phenylalanine-arginine beta-naphthylamide was observed for 6-chloro-, 6,7-dichloro- and 6,7-difluoro-substituted benzosiloxaboroles. In the case of Escherichia coli, Enterobacter cloacae and P. aeruginosa strains at least a 32-fold decrease in the minimal inhibitory concentration values of these agents were observed. These data demonstrate structure-activity relationships of the tested derivatives and highlight the need for further search for benzoxaboroles and related compounds with significant antimicrobial properties. Moreover, the influence of phenylalanine-arginine beta-naphthylamide on the susceptibility of Gram-negative rods to studied benzosiloxaboroles indicate that some tested agents are substrates for efflux pumps in Gram-negative rods.

Keywords: antibacterial activity, benzosiloxaboroles, efflux pumps, phenylalanine-arginine beta-naphthylamide

Procedia PDF Downloads 252
4812 Insecticidal Effect of a Botanical Plant Extracts (Ultra Act®) on Bactrocera oleae (Diptera:Tephritidae) Preimaginal Development and Pupa Survival

Authors: Imen Blibech, Mohieddine Ksantini, Manohar Shete

Abstract:

Bactrocera oleae is one of the most economically damaging insects of olive in Tunisia and other producing countries of olive trees. As a reliable alternative to synthetic chemical insecticides, botanical insecticides are considered natural control methods safe for the environment and human health. The certified botanical insecticide ULTRA-ACT® effectively on large scale of insects is approved per Indian and International organic standards certified organic pesticides. Olives with signs of olive fly infestation were collected from productive olive trees in three Sahel localities of Tunisia. Infested fruits were separated daily for larval stage control purposes, into new rearing boxes under microclimatic conditions at 75% R.H, 25 ± 3°C and 8 L-16D. Treatment with ULTRA-ACT® extract solutions was made by dipping methods; each fruit was pipetted in 5 mL of extract for 10 seconds then air- dried. Five doses of ULTRA-ACT® were used for a bioassay, plus a water-only control. A total of 200 infested olive fruits were treated in separate dishes with a proportion of 10 olives per dish. A total of 20 dishes were used for each concentration treatment as well as 20 dished utilized as control. The bioassay was conducted with 3 replicates. The development of the larval and pupal stages was recorded since the egg hatching until emergence of adults. It was determined that ULTRA-ACT® extracts on succeeding concentrations; 0.25, 0.5, 1 and 2% show significant effect on the biology of the pest. Increased concentration decreased significantly adult emergence from pupae and affect the egg hatchability percentage. Therefore, larval mortality increased insignificantly with the increase of the product concentration. The 2nd instar larvae were more susceptible to the product and after 72 hours the maximum mortality (75%) was observed with ULTRA-ACT® 2%. The present work aimed to give a possible and efficient alternative solution for B. oleae biological control with a promising botanical insecticide.

Keywords: Bactrocera oleae, olive insect pest, Ultra Act®, larval mortality, pupal emergency, biological control

Procedia PDF Downloads 117
4811 Anti-Hyperglycemic Effects and Chemical Analysis of Allium sativum Bulbs Growing in Sudan

Authors: Ikram Mohamed Eltayeb Elsiddig, Yacouba Amina Djamila, Amna El Hassan Hamad

Abstract:

Hyperglycemia and diabetes have been treated with several medicinal plants for a long time, meanwhile reduce associated side effects than the synthetic ones. Therefore, the search for more effective and safer anti-diabetic agents derived from plants has become an interest area of active research. A. sativum, belonging to the Liliaceae family is well known for its medicinal uses in African traditional medicine, it used for treating of many human diseases mainly diabetes, high cholesterol, and high blood pressure. The present study was carried out to investigate the anti-hyperglycemic effect of the extracts of A. sativum bulb growing in Sudan on glucose-loaded Wistar albino rats. A. sativum bulbs were collected from local vegetable market at Khourtoum/ Sudan in a fresh form, identified and authenticated by taxonomist, then dried, and extracted with solvents of increasing polarity: petroleum ether, chloroform, ethyl acetate and methanol by using Soxhlet apparatus. The effect of the extracts on glucose uptake was evaluated by using the isolated rats hemidiaphgrams after loading the fasting rats with glucose, and the anti-hyperglycemic effect was investigated on glucose-loaded Wistar albino rats. Their effects were compared to control rats administered with the vehicle and to a standard group administered with Metformin standard drug. The most active extract was analyzed chemically using GC-MS analysis compared to NIST library. The results showed significant anti-diabetic effect of extracts of A. sativum bulb growing in Sudan. Addition to the hypoglycemic activity of A. sativum extracts was found to be decreased with increase in the polarity of the extraction solvent; this may explain the less polarity of substance responsible for the activity and their concentration decreased with polarity increase. The petroleum ether extract possess anti-hyperglycemic activity more significant than the other extracts and the Metformin standard drug with p-value 0.000** of 400mg/kg at 1 hour, 2 hour and four hour; and p-value 0.019*, 0.015* and 0.010* of 200mg/kg at 1 hour, 2 hour and four hour respectively. The GC-MS analysis of petroleum ether extract, with highest anti -diabetes activity showed the presence of Methyl linolate (42.75%), Hexadecanoic acid, methyl ester (10.54%), Methyl α-linolenate (8.36%), Dotriacontane (6.83), Tetrapentacontane (6.33), Methyl 18-methylnonadecanoate (4.8), Phenol,2,2’-methylenebis[6-(1,1-dimethylethyl)-4-methyl] (3.25), Methyl 20-methyl-heneicosanoate (2.70), Pentatriacontane (2.13) and many other minor compounds. The most of these compounds are well known for their anti-diabetic activity. The study concluded that A. sativum bulbs extracts were found to enhanced the reuptake of glucose in the isolated rat hemidiaphragm and have antihyperglycemic effect when evaluated on glucose-loaded albino rats with petroleum ether extract activity more significant than the Metformin standard drug.

Keywords: Allium, anti-hyperglycemic, bulbs, sativum

Procedia PDF Downloads 147
4810 Biological Evaluation and Molecular Modeling Study of Thiosemicarbazide Derivatives as Bacterial Type IIA Topoisomerases Inhibitors

Authors: Paweł Stączek, Tomasz Plech, Aleksandra Strzelczyk, Katarzyna Dzitko, Monika Wujec, Edyta Kuśmierz, Piotr Paneth, Agata Paneth

Abstract:

In this contribution, we will describe the inhibitory potency of nine thiosemicarbazide derivatives against bacterial type IIA topoisomerases, their antibacterial profile, and molecular modeling evaluation. We have found that one of the tested compounds, 4-benzoyl-1-(2-methyl-furan-3-ylcarbonyl) thiosemicarbazide, remarkably inhibits the activity of S. aureus DNA gyrase with the IC50 below 5 μM. Besides, this compound displays antibacterial activity on Staphylococcus spp. and E. faecalis at non-cytotoxic concentrations in mammalian cells, with minimal inhibitory concentrations (MICs) values at 25 μg/mL. Based on the enzymatic and molecular modeling studies we propose two factors, i.e. geometry of molecule and hydrophobic/hydrophilic balance as important molecular properties for developing thiosemicarbazide derivatives as potent Staphylococcus aureus DNA gyrase inhibitors.

Keywords: bioactivity, drug design, topoisomerase, molecular modeling

Procedia PDF Downloads 547
4809 Benzene Sulfonamide Derivatives: Synthesis, Absorption, Distribution, Metabolism, and Excretion (ADME) Studies, Anti-proliferative Activity, and Docking Simulation with Theoretical Investigation

Authors: Asmaa M. Fahim

Abstract:

In this elucidation, we synthesized different heterocyclic compounds attached to Benzene sulfonamide moiety via (E)-N-(4-(3-(4-bromophenyl)acryloyl)phenyl)-4-methyl benzene sulfonamide which is obtained from Nucleophilic substitution reaction between 4-methylbenzene sulfonyl chloride and 1-(4-aminophenyl)ethan-1-one in pyridine to get N-(4-acetyl phenyl)-4-methyl benzenesulfonamide which reacted 4-bromobenzal dehyde undergoes aldol condensation in NaOH to afford the corresponding chalchone 4. Moreover, the reactivity of chalchone 4 showed several active methylene derivatives utilized the pressurized microwave irradiation as a green energy resource. Chalcone 4 was allowed to react with ethyl cyanoacetate and acetylacetone, respectively, at 70 °C with pressure under microwave reaction condition to afford the 5-cyano-6-oxo-1,2,5,6-tetrahydropyridin-2-yl)-4-methylbenzenesulfonamide 6 and N-(4'-acetyl-4''-bromo-5'-oxo-2',3',4',5'-tetrahydro-[1,1':3',1''-terphenyl]-4-yl)-4-methylbenzenesulfonamide 8 derivatives. Moreover, the reactivity of this sulphonamide chalchone with NH2NH2 in EtOH and acetic acid, which gave 2,5-dihydro-1H-imidazol-4-yl)-4-methyl benzenesulfonamide, 1H-pyrazol-3-yl)-4-methyl and reactivity with NH2OH.HCl gave isoxazol-3-yl)-4-methylbenzenesulfonamide derivatives. The synthesized compounds were screened for their ADME properties and directed to antitumor activity on HepG2 hepatocellular carcinoma and MCF-7 breast cancer and exhibited excellent behavior against standard drugs; these results were confirmed through molecular simulations with different proteins. Additionally, the Density Functional Theory analysis of optimized structures investigated their physical descriptors, FMO, ESP and MEP, which correlated with biological evaluation.

Keywords: synthesis, green chemistry, antitumor activity, DFT study

Procedia PDF Downloads 66
4808 Identification of the Alkaloids of the Belladone (Atropa belladonna L.) and Evaluation of Their Inhibitory Effects Against Some Microbial Strains

Authors: Ait Slimane-Ait Kaki Sabrina, Foudi Lamia

Abstract:

The present work consists of the study of the bio-ecology and the therapeutic effects of the belladone (Atropa belladonna L.). It is a medicinal plant of the Solanacées family, herbaceous, robust 0.5 up to 1.50 m high. The phytochemical analysis of leaves revealed alkaloids, tannins, catechin, coumarins, mucilages, saponins, starch, and reducing compounds. The experimental study concerns the extraction and characterization of belladonna alkaloids. Analysis of the purified extract by staining tests confirmed the presence of tropane alkaloids. The dosage chromatography revealed the presence of components that have been identified atropine, scopolamine and hyoscyamine. Evaluation of antimicrobial and antifungal alkaloids from the methanol extract and aqueous extract of belladonna on pathogenic germs showed a positive bactericidal against strains of Escherichia coli and Staphylococcus aureus. Our preliminary results allow us an overall assessment of the medicinal value of Atropa belladonna.

Keywords: belladone, alkaloid, antibacterial activity, antifungal activity

Procedia PDF Downloads 480
4807 Effect of Prone Trunk Extension on Scapular and Thoracic Kinematics, and Activity during Scapular Posterior Tilting Exercise in Subjects with Round Shoulder Posture

Authors: A-Reum Shin, Heon-Seock Cynn, Ji-Hyun Lee, Da-Eun Kim

Abstract:

Round shoulder posture (RSP) is a position of scapular protraction and elevation, which may appear as scapular winging, and humeral internal rotation. Flexed posture (FP) may also affect RSP because FP is characterized by hyperkyphosis, forward head posture, and height reduction. The aim of this study was to investigate the effect of scapular posterior tilting exercise with prone trunk extension on round shoulder posture, activities of lower trapezius and serratus anterior, flexed posture, and thoracic erector spinae activity in subjects with round shoulder posture. Fifteen subjects with round shoulder posture were recruited in this study. Activities of lower trapezius, serratus anterior and thoracic erector spinae were measured during both scapular posterior tilting exercise and scapular posterior tilting exercise with prone trunk extension using electromyography, and round shoulder posture and flexed posture were measured immediately after each exercises using caliper. When the prone trunk extension was applied, the round shoulder posture and flexed posture significantly decreased, activities of lower trapezius and thoracic erector spinae significantly increased (p < 0.05) compared with the scapular posterior tilting exercise alone. There was no significant difference in serratus anterior activity between two exercises. Thus, prone trunk extension could be effective method to improve round shoulder posture during scapular posterior tilting exercise in subjects with round shoulder posture.

Keywords: flexed posture, prone trunk extension, round shoulder posture, scapular posterior tilting

Procedia PDF Downloads 196
4806 Evaluation of Antagonistic and Aggregation Property of Probiotic Lactic Acid Bacteria Isolated from Bovine Milk

Authors: Alazar Nebyou, Sujata Pandit

Abstract:

Lactic acid bacteria (LAB) are essential ingredients in probiotic foods, intestinal microflora, and dairy products that are capable of coping up with harsh gastrointestinal tract conditions and are available in a variety of environments. The objective of this study is to evaluate the probiotic property of LAB isolated from bovine milk. Milk samples were collected from local dairy farms. Samples were obtained using sterile test tubes and transported to a laboratory in the icebox for further biochemical characterization. Preliminary physiological and biochemical identification of LAB isolates was conducted by growing on MRS agar after ten-fold serial dilution. Seven of the best isolates were selected for the evaluation of the probiotic property. The LAB isolates were checked for resistance to antibiotics and their antimicrobial activity by disc diffusion assay and agar well diffusion assay respectively. Bile salt hydrolase activity of isolates was studied by growing isolates in a BSH medium with bile salt. Cell surface property of isolates was assayed by studying their autoaggregation and coaggregation percentage with S. aerues. All isolates were found BSH positive. In addition, BCM2 and BGM1 were susceptible to all antibiotic disks except BBM1 which was resistant to all antibiotic disks. BCM1 and BGM1 had the highest autoaggregation and coaggregation potential respectively. Since all LAB isolates showed gastrointestinal tolerance and good cell surface property they could be considered as good potential probiotic candidates for treatment and probiotic starter culture preparation.

Keywords: probiotic, aggregation, lactic acid bacteria, antimicrobial activity

Procedia PDF Downloads 198
4805 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product

Authors: Devendra Sillu, Shekhar Agnihotri

Abstract:

The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.

Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery

Procedia PDF Downloads 117
4804 Enhanced Visible-Light Photocatalytic Activity of TiO2 Doped in Degradation of Acid Dye

Authors: B. Benalioua, I. Benyamina, M. Mansour, A. Bentouami, B. Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by XRD, BET and UV- vis DRS. The photocatalytic efficiency of the Zn -Fe TiO2 treated at 500°C was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Zn-Fe-TiO2 (500°C) revealed the presence of the anatase phase and the absence of the Rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV-visible diffuse reflection material showed that the Fe-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Zn -Fe- TiO2 under visible light. Indeed, the efficiency of photocatalytic Fe-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, doping

Procedia PDF Downloads 395
4803 Screening and Isolation of Lead Molecules from South Indian Plant Extracts against NDM-1 Producing Escherichia coli

Authors: B. Chandar, M. K. Ramasamy, P. Madasamy

Abstract:

The discovery and development of newer antibiotics are limited with the increase in resistance of such multi-drug resistant bacteria creating the need for alternative new therapeutic agents. The recently discovered New Delhi Metallo-betalactamase-1 (NDM-1), which confers antibiotic resistance to most of the currently available β-lactams, except colistin and tigecycline, is a global concern. Several antibacterial drugs approved are natural products or their semisynthetic derivatives, but plant extracts remain to be explored to find molecules that are effective against NDM-1 bacteria. Therefore, it is necessary to explore the possibility of finding new and effective antibacterial compounds against NDM-1 bacteria. In the present study, we have screened a diverse set South Indian plant species, and report most plant species as a potential source for antimicrobial compounds against NDM-1 bacteria. Ethanol extracts from the leaves of taxonomically diverse South Indian medicinal plants were screened for antibacterial activity against NDM-1 E. coli using streak plate method. Among the plant screened against NDM-1 E. coli, the ethanol extracts from many plant extracts showed minimum bactericidal concentration between 5 and 15 mg /ml and MIC between 2.54 and 5.12 mg/ml. These extracts also showed a potent synergistic effect when combined with antibiotics colistin and tetracycline. Combretum albidum that was effective was taken for further analysis. At 5mg/L concentration, these extracts inhibited the NDM-1 enzyme in vitro, and residual activity for Combretum albidum was 33.09%. Treatment of NDM-1 E. coli with the extracts disrupted the cell wall integrity and caused 89.7% cell death. The plant extract of Combretum albidum that was effective was subjected to fractionation and the fraction was further subjected to HPLC, LC-MS for identification of antibacterial compound.

Keywords: antibacterial activity, combretum albidum, Escherichia coli, NDM-1

Procedia PDF Downloads 444
4802 4-Allylpyrocatechol Loaded Polymeric Micelles for Solubility Enhancing and Effects on Streptococcus mutans Biofilms

Authors: Siriporn Okonogi, Pimpak Phumat, Sakornrat Khongkhunthian

Abstract:

Piper betle has been extensively reported for various pharmacological effects including antimicrobial activity. 4-Allylpyrocatechol (AC) is a principle active compound found in P. betle. However, AC has a problem of solubility in water. The aims of the present study were to prepare AC loaded polymeric micelles for enhancing its water solubility and to evaluate its anti-biofilm activity against oral phathogenic bacteria. AC was loaded in polymeric micelles (PM) of Pluronic F127 by using thin film hydration method to obtain AC loaded PM (PMAC). The results revealed that AC in the form of PMAC possessed high water solubility. PMAC particles were characterized using a transmission electron microscope and photon correlation spectroscopy. Determination of entrapment efficiency (EE) and loading capacity (LC) of PMAC was done by using high-performance liquid chromatography. The highest EE (86.33 ± 14.27 %) and LC (19.25 ± 3.18 %) of PMAC were found when the weight ratio of polymer to AC was 4 to 1. At this ratio, the particles showed spherical in shape with the size of 38.83 ± 1.36 nm and polydispersity index of 0.28 ± 0.10. Zeta potential of the particles is negative with the value of 16.43 ± 0.55 mV. Crystal violet assay and confocal microscopy were applied to evaluate the effects of PMAC on Streptococcus mutans biofilms using chlorhexidine (CHX) as a positive control. PMAC contained 1.5 mg/mL AC could potentially inhibit (102.01 ± 9.18%) and significantly eradicate (85.05 ± 2.03 %) these biofilms (p < 0.05). Comparison with CHX, PMAC showed slightly similar biofilm inhibition but significantly stronger biofilm eradication (p < 0.05) than CHX. It is concluded that PMAC can enhance water solubility and anti-biofilm activity of AC.

Keywords: pluronic, polymeric micelles, solubility, 4-allylpyrocathecol, Streptococcus mutans, anti-biofilm

Procedia PDF Downloads 123
4801 Synthesis, Characterization and Catecholase Study of Novel Bidentate Schiff Base Derived from Dehydroacetic Acid

Authors: Salima Tabti, Chaima Maouche, Tinhinene Louaileche, Amel Djedouani, Ismail Warad

Abstract:

Novel Schiff base ligand HL has been synthesized by condensation of aromatic amine and DHA. It was characterized by UV-Vis, FT-IR, SM, NMR (1H, 13C) and also by single-crystal X-ray diffraction. The crystal structure shows that compound crystallized in a triclinic system in P-1 space group and with a two unit per cell (Z = 2).The asymmetric unit, contains one independent molecules, the conformation is determined by an intermolecular N-H…O hydrogen bond with an S(6) ring motif. The molecule have an (E) conformation about the C=N bond. The dihedral angles between the phenyl and pyran ring planes is 89.37 (1), the two plans are approximately perpendicular. The catecholase activity of is situ copper complexes of this ligand has been investigated against catechol. The progress of the oxidation reactions was closely monitored over time following the strong peak of catechol using UV-Vis. Oxidation rates were determined from the initial slope of absorbance. time plots, then analyzed by Michaelis-Menten equations. Catechol oxidation reactions were realized using different concentrations of copper acetate and ligand (L/Cu: 1/1, 1/2, 2/1). The results show that all complexes were able to catalyze the oxidation of catechol. Acetate complexes have the highest activity. Catalysis is a branch of chemical kinetics that, more generally, studies the influence of all physical or chemical factors determining reaction rates. It solves a lot of problems in the chemistry reaction process, especially for a green, economic and less polluting chemistry. For this reason, the search for new catalysts for known organic reactions, occupies a very advanced place in the themes proposed by the chemists.

Keywords: dehydroacetic acid, catechol, copper, catecholase activity, x-ray

Procedia PDF Downloads 87
4800 Antibacterial Activity of Flavonoids from Corn Silk (Zea mays L.) in Propionibacterium acne, Staphylococcus Aureus and Staphylococcus Epidermidis

Authors: Fitri Ayu, Nadia, Tanti, Putri, Fatkhan, Pasid Harlisa, Suparmi

Abstract:

Acne is a skin abnormal conditions experienced by many teens, this is caused by various factors such as the climate is hot, humid and excessive sun exposure can aggravate acne because it will lead to excess oil production. Flavonoids form complex compounds against extracellular proteins that disrupt the integrity of bacterial cell membrane in a way denature bacterial cell proteins and bacterial cell membrane damage. This study aimed to test the antibacterial activity of corn silk extract with a concentration of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 100 % in vitro by measuring the inhibition of the growth of bacteria Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis then compared with the standard antibiotic clindamycin. Extracts tested by Disk Diffusion Method, in which the blank disc soaked with their respective corn silk extract concentration for 15-30 minutes and then the medium of bacteria that have been planted with Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis in the given disk that already contains extracts with various concentration. Incubated for 24 hours and then measured the growth inhibition zone Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermidis. Corn silk contains flavonoids, is shown by the test of flavonoids in corn silk extract by using a tube heating and without heating. Flavonoid in corn silk potentially as anti acne by inhibiting the growth of bacteria that cause acne. Corn silk extract concentration which has the highest antibacterial activity is then performed in a cream formulation and evaluation test of physical and chemical properties of the resulting cream preparation.

Keywords: antibacterial, flavonoid, corn silk, acne

Procedia PDF Downloads 491
4799 Mycorrhizal Autochthonous Consortium Induced Defense-Related Mechanisms of Olive Trees against Verticillium dahliae

Authors: Hanane Boutaj, Abdelilah Meddich, Said Wahbi, Zainab El Alaoui-Talibi, Allal Douira, Abdelkarim Filali-Maltouf, Cherkaoui El Modafar

Abstract:

The present work aims to investigate the effect of arbuscular mycorrhizal fungi (AMF) in improving the olive tree resistance to Verticillium wilt caused by Verticillium dahliae. Inoculated plants with a mycorrhizal autochthonous consortium 'Rhizolive consortium' and pure strain 'Glomus irregulare' were infected after three months with V. dahliae. The improving of olive tree resistance was determined through disease severity, incidence, and defoliation. On the other hand, the defense mechanisms of olive plants were evaluated through lignin content, phenylalanine ammonia lyase (PAL) activity, and polyphenol content. The results revealed that both AMF significantly (p < 0.05) reduced disease development and the rate of defoliation in infected olive plants. Moreover, the contents of lignin were boosted after mycorrhizal inoculation in both the roots and the stems of olive plants, which remained significantly (p < 0.001) higher after the 90th days of V. dahliae inoculation. PAL activity was increased after V. dahliae inoculation in the stems of 'Rhizolive consortium' treatment that were 17 times higher than those in the roots of olive plants. The polyphenol content in the stems was about twice higher than those in the roots. The reduction of disease severity was accompanied by increased levels of lignin content, PAL activity, and polyphenol content, particularly in the stems of olive plants, indicating the strengthening of the olive plant immune system against V. dahliae.

Keywords: olive tree, Mycorrhizal autochthonous consortium, Glomus irregulare, Verticillium dahliae, defense mechanisms

Procedia PDF Downloads 102
4798 Synergistic Effect of Doxorubicin-Loaded Silver Nanoparticles – Polymeric Conjugates on Breast Cancer Cells

Authors: Nancy M. El-Baz, Laila Ziko, Rania Siam, Wael Mamdouh

Abstract:

Cancer is one of the most devastating diseases, and has over than 10 million new cases annually worldwide. Despite the effectiveness of chemotherapeutic agents, their systemic toxicity and non-selective anticancer actions represent the main obstacles facing cancer curability. Due to the effective enhanced permeability and retention (EPR) effect of nanomaterials, nanoparticles (NPs) have been used as drug nanocarriers providing targeted cancer drug delivery systems. In addition, several inorganic nanoparticles such as silver (AgNPs) nanoparticles demonstrated a potent anticancer activity against different cancers. The present study aimed at formulating core-shell inorganic NPs-based combinatorial therapy based on combining the anticancer activity of AgNPs along with doxorubicin (DOX) and evaluating their cytotoxicity on MCF-7 breast cancer cells. These inorganic NPs-based combinatorial therapies were designed to (i) Target and kill cancer cells with high selectivity, (ii) Have an improved efficacy/toxicity balance, and (iii) Have an enhanced therapeutic index when compared to the original non-modified DOX with much lower dosage The in-vitro cytotoxicity studies demonstrated that the NPs-based combinatorial therapy achieved the same efficacy of non-modified DOX on breast cancer cell line, but with 96% reduced dose. Such reduction in DOX dose revealed that the combination between DOX and NPs possess a synergic anticancer activity against breast cancer. We believe that this is the first report on a synergic anticancer effect at very low dose of DOX against MCF-7 cells. Future studies on NPs-based combinatorial therapy may aid in formulating novel and significantly more effective cancer therapeutics.

Keywords: nanoparticles-based combinatorial therapy, silver nanoparticles, doxorubicin, breast cancer

Procedia PDF Downloads 419
4797 Analyzing Antimicrobial Power of Cotula cinerea Essential Oil: Case of Western Algeria

Authors: A. Abdenbi, B. Dennai, B. Touati, M. Bouaaza, A. Saad

Abstract:

The essential oils of many plants have become popular in recent years and their bioactive principles have recently won several industry sectors, however their use as antibacterial and anti fungal agents has been reported. This study focuses on the physico chemical and phyto chemical with a study of the antimicrobial activity of essential oils of aromatic and medicinal plant of southwest Algeria, this essential oil was obtained by hydro-distillation of aerial parts of Cotula cinerea, belonging to the Asteraceae family, it is very extensive in the spring season in a region called Kenadza road, located 12km from Bechar. Variable anti fungal activity of the essential oil of Cotula cinerea (yield 2%) were revealed about four fungal strains, the minimum inhibitory concentrations of essential oils were determined by the method of dilution in agar. Significant fungal sensitivity of Penicillium sp with an inhibition of 32.3 mm area.

Keywords: Cotula cinerea, essential oil, physico- chemical analysis and phyto- chemical, anti fungal power

Procedia PDF Downloads 395
4796 Antibacterial and Anti-Biofilm Activity of Papain Hydrolysed Camel Milk Whey and Its Fractions

Authors: M. Abdel-Hamid, P. Saporito, R. V. Mateiu, A. Osman, E. Romeih, H. Jenssen

Abstract:

Camel milk whey (CMW) was hydrolyzed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial and anti-biofilm activity of the CMW, Camel milk whey hydrolysate (CMWH) and the obtained SEC-fractions was assessed against Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA). SEC-F2 (fraction 2) exhibited antibacterial effectiveness against MRSA and P. aeruginosa with the minimum inhibitory concentration of 0.31 and 0.156 mg/ml, respectively. Furthermore, SEC-F2 significantly decreased biofilm biomass by 71% and 83 % for MRSA and P. aeruginosa in a crystal violet microplate assay. Scanning electron microscopy showed that the SEC-F2 caused changes in the treated bacterial cells. Additionally, LC/MS analysis was used to characterize the peptides of SEC-F2. Two major peptides were detected in SEC-F2 having masses of 414.05 Da and 456.06 Da. In conclusion, this study has demonstrated that hydrolysis of CMW with papain generates small and extremely potent antibacterial and anti-biofilm peptides against both MRSA and P. aeruginosa.

Keywords: camel milk, whey proteins, antibacterial peptide, anti-biofilm

Procedia PDF Downloads 206
4795 Functional Role of Tyr12 in the Catalytic Activity of Zeta-Like Glutathione S-Transferase from Acidovorax sp. KKS102

Authors: D. Shehu, Z. Alias

Abstract:

Glutathione S-transferases (GSTs) are family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. The gene for KKSG9 was cloned, purified and biochemically characterized. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide (CuOOH). The enzyme also displayed dehalogenation function against dichloroacetate (a common substrate for zeta class GSTs) in addition to permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.

Keywords: Acidovorax sp. KKS102, bioremediation, glutathione s-transferase, site-directed mutagenesis, zeta

Procedia PDF Downloads 139
4794 In vitro Antioxidant Properties and Phytochemistry of Some Philippine Creeping Medicinal Plants

Authors: Richard I. Licayan, Aisle Janne B. Dagpin, Romeo M. Del Rosario, Nenita D. Palmes

Abstract:

Hiptage benghalensis, Antigonon leptopus, Macroptillium atropurpureum, and Dioscorea bulbifera L. are herbal weeds that have been used by traditional healers in rural communities in the Philippines as medicine. In this study, the basic pharmacological components of the crude secondary metabolites extracted from the four herbal weeds and their in vitro antioxidant properties was investigated to provide baseline data for the possible development of these metabolites in pharmaceutical products. Qualitative screening of the secondary metabolites showed that alkaloids, tannins, saponins, steroids, and flavonoids were present in their leaf extracts. All of the plant extracts showed varied antioxidant activity. The greatest DPPH radical scavenging activity was observed in H. begnhalensis (84.64%), followed by A. leptopus (68.21%), M. atropurpureum (26.62%), and D. bulbifera L. (19.04%). The FRAP assay revealed that H. benghalensis had the highest antioxidant activity (8.32 mg/g) while ABTS assay showed that M. atropurpureum had the strongest scavenging ability of free radicals (0.0842 mg Trolox/g). The total flavonoid content (TFC) analysis showed that D. bulbifera L. had the highest TFC (420.35 mg quercetin per gram-dried material). The total phenolic content (TPC) of the four herbal weeds showed large variations, between 26.56±0.160 and 55.91±0.087 mg GAE/g dried material. The plant leaf extracts arranged in increasing values of TPC are H. benghalensis (26.565) < A. leptopus (37.29) < D. bulbifera L. (46.81) < M. atropurpureum (55.91). The obtained results may support their use in herbal medicine and as baseline data for the development of new drugs and standardized phytomedicines.

Keywords: antioxidant properties, total flavonoids, total phenolics, creeping herbal weeds

Procedia PDF Downloads 719
4793 Antioxidant Potency of Ethanolic Extracts from Selected Aromatic Plants by in vitro Spectrophotometric Analysis

Authors: Tatjana Kadifkova Panovska, Svetlana Kulevanova, Blagica Jovanova

Abstract:

Biological systems possess the ability to neutralize the excess of reactive oxygen species (ROS) and to protect cells from destructive alterations. However, many pathological conditions (cardiovascular diseases, autoimmune disorders, cancer) are associated with inflammatory processes that generate an excessive amount of reactive oxygen species (ROS) that shift the balance between endogenous antioxidant systems and free oxygen radicals in favor of the latter, leading to oxidative stress. Therefore, an additional source of natural compounds with antioxidant properties that will reduce the amount of ROS in cells is much needed despite their broad utilization; many plant species remain largely unexplored. Therefore, the purpose of the present study is to investigate the antioxidant activity of twenty-five selected medicinal and aromatic plant species. The antioxidant activity of the ethanol extracts was evaluated with in vitro assays: 2,2’-diphenyl-1-pycryl-hydrazyl (DPPH), ferric reducing antioxidant power (FRAP), non-site-specific- (NSSOH) and site-specific hydroxyl radical-2-deoxy-D-ribose degradation (SSOH) assays. The Folin-Ciocalteu method and AlCl3 method were performed to determine total phenolic content (TPC) and total flavonoid content (TFC). All examined plant extracts manifested antioxidant activity to a different extent. Cinnamomum verum J.Presl bark and Ocimum basilicum L. Herba demonstrated strong radical scavenging activity and reducing power with the DPPH and FRAP assay, respectively. Additionally, significant hydroxyl scavenging potential and metal chelating properties were observed using the NSSOH and SSOH assays. Furthermore, significant variations were determined in the total polyphenolic content (TPC) and total flavonoid content (TFC), with Cinnamomum verum and Ocimum basilicum showing the highest amount of total polyphenols. The considerably strong radical scavenging activity, hydroxyl scavenging potential and reducing power for the species mentioned above suggest of a presence of highly bioactive phytochemical compounds, predominantly polyphenols. Since flavonoids are the most abundant group of polyphenols that possess a large number of available reactive OH groups in their structure, it is considered that they are the main contributors to the radical scavenging properties of the examined plant extracts. This observation is supported by the positive correlation between the radical scavenging activity and the total polyphenolic and flavonoid content obtained in the current research. The observations from the current research nominate Cinnamomum verum bark and Ocimum basilicum herba as potential sources of bioactive compounds that could be utilized as antioxidative additives in the food and pharmaceutical industries. Moreover, the present study will help the researchers as basic data for future research in exploiting the hidden potential of these important plants that have not been explored so far.

Keywords: ethanol extracts, radical scavenging activity, reducing power, total polyphenols.

Procedia PDF Downloads 184
4792 Polysulfide as Active ‘Stealth’ Polymers with Additional Anti-Inflammatory Activity

Authors: Farah El Mohtadi, Richard d'Arcy, Nicola Tirelli

Abstract:

Since 40 years, poly (ethylene glycol) (PEG) has been the gold standard in biomaterials and drug delivery, because of its combination of chemical and biological inertness. However, the possibility of its breakdown under oxidative conditions and the demonstrated development of anti-PEG antibodies highlight the necessity to develop carriers based on materials with increased stability in a challenging biological environment. Here, we describe the synthesis of polysulfide via anionic ring-opening polymerization. In vitro, the synthesized polymer was characterized by low toxicity and a level of complement activation (in human plasma) and macrophage uptake slightly lower than PEG and poly (2‐methyl-2‐oxazoline) (PMOX), of a similar size. Importantly, and differently from PEG, on activated macrophages, the synthesized polymer showed a strong and dose-dependent ROS scavenging activity, which resulted in the corresponding reduction of cytokine production. Therefore, the results from these studies show that polysulfide is highly biocompatible and are potential candidates to be used as an alternative to PEG for various applications in nanomedicine.

Keywords: PEG, low toxicity, ROS scavenging, biocompatible

Procedia PDF Downloads 110
4791 Toluene Methylation with Methanol Using Synthesized HZSM-5 Catalysts Modified by Silylation and Dealumination

Authors: Weerachit Pulsawas, Thirasak Rirksomboon

Abstract:

Due to its abundance from catalytic reforming and thermal cracking of naphtha, toluene could become more value-added compound if it is converted into xylenes, particularly p-xylene, via toluene methylation. Attractively, toluene methylation with methanol is an alternative route to produce xylenes in the absence of other hydrocarbon by-products for which appropriate catalyst would be utilized. In this study, HZSM-5 catalysts with Si/Al molar ratio of 100 were synthesized via hydrothermal treatment and modified by either chemical liquid deposition using tetraethyl-orthosilicate or dealumination with steam. The modified catalysts were characterized by several techniques and tested for their catalytic activity in a continuous down-flow fixed bed reactor. Various operating conditions including WHSV’s of 5 to 20 h-1, reaction temperatures of 400 to 500 °C, and toluene-to-methanol molar ratios (T/M) of 1 to 4 were investigated for attaining possible highest p-xylene selectivity. As a result, the catalytic activity of parent HZSM-5 with temperature of 400 °C, T/M of 4 and WHSV of 24 h-1 showed 65.36% in p-xylene selectivity and 11.90% in toluene conversion as demonstrated for 4 h on stream.

Keywords: toluene methylaion, HZSM-5, silylation, dealumination

Procedia PDF Downloads 184
4790 Isolation and Biological Activity of Betulinic and Oleanolic Acids from the Aerial Plant Parts of Maesobotrya Barteri (Baill)

Authors: Christiana Ene Ogwuche, Joseph Amupitan, George Ndukwe, Rachael Ayo

Abstract:

Maesobotrya barteri (Baill), belonging to the family Euphorbiaceae, is a medicinal plant growing widely in tropical Africa. The Aerial plant parts of Maesobotrya barteri (Baill) were collected fresh from Orokam, Ogbadibo local Government of Benue State, Nigeria in July 2013. Taxonomical identification was done by Mallam Musa Abdullahi at the Herbarium unit of Biological Sciences Department, ABU, Zaria, Nigeria. Pulverized aerial parts of Maesobotrya barteri (960g) was exhaustively extracted successively using petroleum ether, chloroform, ethyl acetate and methanol and concentrated in the rotary evaporator at 40°C. The Petroleum ether extract had the second highest activity against test microbes from preliminary crude microbial screenings. The Petroleum ether extract was subjected to phytochemical studies, antimicrobial analysis and column chromatography (CC). The column chromatography yielded fraction PE, which was further purified using preparative thin layer chromatography to give PE1. The structure of the isolated compound was established using 1-D NMR and 2-D NMR spectroscopic analysis and by direct comparison with data reported in literature was confirmed to be a mixture, an isomer of Betulinic acid and Oleanolic acid, both with the molecular weight (C₃₀H₄₈O₃). The bioactivity of this compound was carried out using some clinical pathogens and the activity compared with standard drugs, and this was found to be comparable with the standard drug.

Keywords: Maesobotrya barteri, medicinal plant, bioactivity, petroleum spirit extract, butellinic acid, oleanilic acid

Procedia PDF Downloads 180
4789 Triggering Apoptosis to Uproot Breast Cancer: HPLC-MS/MS Profiling, in-vitro and in-silico Fascinating Results of Polyphenolics in Pomegranate Rind Extract

Authors: Alaa M. Badr Eldin, Mayar M. Shahen, Mohammed S. Sedeek, Marwa I. Ezzat, Sawsan M. ElSonbaty, Muhammed A. Saad, Manal S. Afifi, Omar M. Sabry

Abstract:

Using HPLC-MS/MS technique, 133 polyphenolic compounds were identified in the methanol extract of pomegranate rind (Punica granatum L.). In-vitro cytotoxic activity against breast cancer cell line MCF-7 was investigated, with an IC50 of 54 ug/ml. In-silico molecular docking using ellagic acid, gallagic acid, and Punicalagin as model compounds identified in pomegranate rind extract confirmed the intriguing anti-estrogenic action of the key polyphenolic components in pomegranate rind extract. Surprisingly, taxol showed low activity compared to pomegranate compounds as ERα antagonist and ERβ agonist. Pomegranate rind extract enhanced apoptosis of breast cancer cells through upregulation of the caspase-3 expression and downregulation of NF-κB transcription factor.

Keywords: HPLC-MS/MS, pomegranate rind, cytotoxicity, MCF-7, ER, caspase-3, NF-kB

Procedia PDF Downloads 105
4788 The Relationship between Physical Fitness and Academic Performance among University Students

Authors: Bahar Ayberk

Abstract:

The study was conducted to determine the relationship between physical fitness and academic performance among university students. A far-famed saying ‘Sound mind in a sound body’ referring to the potential quality of increased physical fitness in the intellectual development of individuals seems to be endorsed. There is a growing body of literature the impact of physical fitness on academic achievement, especially in elementary and middle-school aged children. Even though there are numerous positive effects related to being physically active and physical fitness, their effect on academic achievement is not very much clear for university students. The subjects for this study included 25 students (20 female and 5 male) enrolled in Yeditepe University, Physiotherapy and Rehabilitation Department of Health Science Faculty. All participants filled in a questionnaire about their socio-demographic status, general health status, and physical activity status. Health-related physical fitness testing, included several core components: 1) body composition evaluation (body mass index, waist-to-hip ratio), 2) cardiovascular endurance evaluation (queen’s college step test), 3) muscle strength and endurance evaluation (sit-up test, push-up test), 4) flexibility evaluation (sit and reach test). Academic performance evaluation was based on student’s Cumulative Grade Point Average (CGPA). The prevalence of the subjects participating physical activity was found to be 40% (n = 10). CGPA scores were significantly higher among students having regular physical activity when we compared the students having regular physical activities or not (respectively 2,71 ± 0.46, 3.02 ± 0.28 scores, p = 0.076). The result of the study also revealed that there is positive correlation relationship between sit-up, push up and academic performance points (CGPA) (r = 0.43, p ≤ 0.05 ) and negative correlation relationship between cardiovascular endurance parameter (Queen's College Step Test) and academic performance points (CGPA) (r = -0.47, p ≤ 0.05). In conclusion, the findings confirmed that physical fitness level was generally associated with academic performance in the study group. Cardiovascular endurance and muscle strength and endurance were associated with student’s CGPA, whereas body composition and flexibility were unrelated to CGPA.

Keywords: academic performance, health-related physical fitness, physical activity, physical fitness testing

Procedia PDF Downloads 150