Search results for: empirical data
25116 Impact of Traditional Male Circumcision Mishaps Towards Newly Initiated Men's Advancement in Education in South Africa
Authors: Thanduxolo Nomngcoyiya, Simon M. Kang’ethe
Abstract:
The aim of this article is to explore whether a relationship exists between traditional male circumcision mishaps and level of education in the Eastern Cape, South Africa, exemplified by an empirical case study. The study used qualitative paradigm; was exploratory in nature and used case study design that was descriptive and exploratory; and entailed interviewing twenty-eight (28) research participants comprising of eleven (11) newly initiated men and their families on one-on-one in-depth interviews, twelve (12) traditional nurses and community members in focus group discussions; and five (5) society key informants on key informant method. An interview guide served as a data collection instrument for focus group discussions, key informant method and in-depth interviews with unstructured open-ended questions. Findings indicated an array of traditional male circumcision (TMC) gaps, some of which were indicative of a relationship between the mishaps and level of education: the phenomenon of schooling became secondary in newly initiated men’s lives; TMC mishaps became a drawback towards the newly initiated men’s education progression; the newly initiated men are sacrificed at the altar of culture, and TMC mishaps ushered in socioeconomic setback to the newly initiated men. The study suggested that: TMC be developmental; TMC as a cultural endeavor be educational and human rights friendly; and the need to identify and integrate all other players with diverse specialties.Keywords: culture, education for all, EFA, millennium development goals, traditional male circumcision
Procedia PDF Downloads 19825115 Citizens’ Expectations, Motivations, and Evaluation of Participatory Use of Social Media Tools for Civic Engagement in Oman
Authors: Ali S. Al-Aufi, Ibrahim S. Al-Harthi, Yousuf S. AlHinai, Ali H.S. Al-Badi, Zahran S. Al-Salti
Abstract:
Social media tools have currently been leading a major change in the flow and use of information for different life aspects within people and between people and their governments. They represent powerful channels for direct exchanges of information, ideas, and suggestions for purposes of civic participation. The current study aims at investigating Omani citizens’ perceptions, expectations, and motivations of their uses of social media tools to interact with the government for civic participation. A quantitative methodology was used to collect data through self-administered questionnaires from a random sample of university students and staff drawn from Sultan Qaboos University, considering them as well-informed and typically active users of social media. The literature was comprehensively reviewed to retrieve relevant empirical studies that particularly investigated the use of social media for civic engagement which provided a basis for the construct of the questionnaire; taken into consideration the delineated dimensions of perceptions, expectations, and motivations. The findings of the study offer practical and useful recommendations for governmental units in Oman and similar contexts in the region to inform better and efficient use of social media tools to interact with citizens in issues related to civic engagement; particularly to make best use of these tools for improving services and developing existing and newer initiatives, and hence, encouraging and strengthening citizens’ involvement for civic engagement.Keywords: social media, social networking sites, web 2.0, civic engagement, civic participation, oman
Procedia PDF Downloads 49325114 A Survey on Data-Centric and Data-Aware Techniques for Large Scale Infrastructures
Authors: Silvina Caíno-Lores, Jesús Carretero
Abstract:
Large scale computing infrastructures have been widely developed with the core objective of providing a suitable platform for high-performance and high-throughput computing. These systems are designed to support resource-intensive and complex applications, which can be found in many scientific and industrial areas. Currently, large scale data-intensive applications are hindered by the high latencies that result from the access to vastly distributed data. Recent works have suggested that improving data locality is key to move towards exascale infrastructures efficiently, as solutions to this problem aim to reduce the bandwidth consumed in data transfers, and the overheads that arise from them. There are several techniques that attempt to move computations closer to the data. In this survey we analyse the different mechanisms that have been proposed to provide data locality for large scale high-performance and high-throughput systems. This survey intends to assist scientific computing community in understanding the various technical aspects and strategies that have been reported in recent literature regarding data locality. As a result, we present an overview of locality-oriented techniques, which are grouped in four main categories: application development, task scheduling, in-memory computing and storage platforms. Finally, the authors include a discussion on future research lines and synergies among the former techniques.Keywords: data locality, data-centric computing, large scale infrastructures, cloud computing
Procedia PDF Downloads 25725113 A Review: The Impact of Core Quality the Empirical Review of Critical Factors on the Causes of Delay in Road Constructions Projects in the GCC Countries
Authors: Sulaiman Al-Hinai, Setyawan Widyarto
Abstract:
The aim of this study is to identify the critically dominating factors on the delays of road constructions in the GCC countries and their effects on project delivery in Arab countries. Towards the achieved of the objectives the study used the empirical literature from the all relevant online sources and database as many as possible. The findings of this study have summarized and short listed of the success factors in the two categories such as internal and external factors have caused to be influenced to delay of road constructions in the Arab regions. However, in the category of internal factors, there are 63 factors short listed from seven group of factors which has revealed to effects on the delay of road constructions especially, the consultant related factors, the contractor related factors, designed related factors, client related factors, labor related factors, material related issues, equipment related issues respectively. Moreover, for external related factors are also considered to summarized especially natural disaster (flood, hurricanes and cyclone etc.), conflict, war, global financial crisis, compensation delay to affected property owner, price fluctuated, unexpected ground conditions (soil and high-water level), changing of government regulations and laws, delays in obtaining permission from municipality, loss of time by traffic control and restrictions at job site, problem with inhabitant of community, delays in providing service from utilities (water and electricity’s) and accident during constructions accordingly. The present study also concluded the effects of above factors which has delay road constructions through increasing of cost and overrun it, taken overtime, creating of disputes, going for lawsuits, finally happening of abandon of projects. Thus, the present study has given the following recommendations to overcome of above problems by increasing of detailed site investigations, ensure careful monitoring and regular meetings, effective site management, collaborative working and effective coordination’s, proper and comprehensive planning and scheduling and ensure full and intensive commitment from all parties accordingly.Keywords: Arab GCC countries, critical success factors, road constructions delay, project management
Procedia PDF Downloads 12625112 Wind Speed Data Analysis in Colombia in 2013 and 2015
Authors: Harold P. Villota, Alejandro Osorio B.
Abstract:
The energy meteorology is an area for study energy complementarity and the use of renewable sources in interconnected systems. Due to diversify the energy matrix in Colombia with wind sources, is necessary to know the data bases about this one. However, the time series given by 260 automatic weather stations have empty, and no apply data, so the purpose is to fill the time series selecting two years to characterize, impute and use like base to complete the data between 2005 and 2020.Keywords: complementarity, wind speed, renewable, colombia, characteri, characterization, imputation
Procedia PDF Downloads 16225111 The Story of a Spoiled Identity: Blogging on Disability and Feminity
Authors: Anna Ślebioda
Abstract:
The paper discusses intersections between disability and femininity. Their imbrication may impede negotiation of identity. The analysis of a blog of a women with disability aims to prove this hypothesis. It involves 724 entries written in the span of six years. The conceptual framework for the considerations constitute the concepts of stigma and spoiled identity, and overlapping elements of femininity and disability. The empirical part comprises content analysis. It allows to locate the narrative on femininity and disability within the dimensions of imbricated categories described in the theoretical part. The results demonstrate aspects to consider in further research on identity in women with disabilities.Keywords: disability, femininity, spoiled identity, stigma
Procedia PDF Downloads 66225110 Study of the Energy Levels in the Structure of the Laser Diode GaInP
Authors: Abdelali Laid, Abid Hamza, Zeroukhi Houari, Sayah Naimi
Abstract:
This work relates to the study of the energy levels and the optimization of the Parameter intrinsic (a number of wells and their widths, width of barrier of potential, index of refraction etc.) and extrinsic (temperature, pressure) in the Structure laser diode containing the structure GaInP. The methods of calculation used; - method of the empirical pseudo potential to determine the electronic structures of bands, - graphic method for optimization. The found results are in concord with those of the experiment and the theory.Keywords: semi-conductor, GaInP/AlGaInP, pseudopotential, energy, alliages
Procedia PDF Downloads 49025109 Industrial Process Mining Based on Data Pattern Modeling and Nonlinear Analysis
Authors: Hyun-Woo Cho
Abstract:
Unexpected events may occur with serious impacts on industrial process. This work utilizes a data representation technique to model and to analyze process data pattern for the purpose of diagnosis. In this work, the use of triangular representation of process data is evaluated using simulation process. Furthermore, the effect of using different pre-treatment techniques based on such as linear or nonlinear reduced spaces was compared. This work extracted the fault pattern in the reduced space, not in the original data space. The results have shown that the non-linear technique based diagnosis method produced more reliable results and outperforms linear method.Keywords: process monitoring, data analysis, pattern modeling, fault, nonlinear techniques
Procedia PDF Downloads 38625108 Investigating Salience Theory’s Implications for Real-Life Decision Making: An Experimental Test for Whether the Allais Paradox Exists under Subjective Uncertainty
Authors: Christoph Ostermair
Abstract:
We deal with the effect of correlation between prospects on human decision making under uncertainty as proposed by the comparatively new and promising model of “salience theory of choice under risk”. In this regard, we show that the theory entails the prediction that the inconsistency of choices, known as the Allais paradox, should not be an issue in the context of “real-life decision making”, which typically corresponds to situations of subjective uncertainty. The Allais paradox, probably the best-known anomaly regarding expected utility theory, would then essentially have no practical relevance. If, however, empiricism contradicts this prediction, salience theory might suffer a serious setback. Explanations of the model for variable human choice behavior are mostly the result of a particular mechanism that does not come to play under perfect correlation. Hence, if it turns out that correlation between prospects – as typically found in real-world applications – does not influence human decision making in the expected way, this might to a large extent cost the theory its explanatory power. The empirical literature regarding the Allais paradox under subjective uncertainty is so far rather moderate. Beyond that, the results are hard to maintain as an argument, as the presentation formats commonly employed, supposably have generated so-called event-splitting effects, thereby distorting subjects’ choice behavior. In our own incentivized experimental study, we control for such effects by means of two different choice settings. We find significant event-splitting effects in both settings, thereby supporting the suspicion that the so far existing empirical results related to Allais paradoxes under subjective uncertainty may not be able to answer the question at hand. Nevertheless, we find that the basic tendency behind the Allais paradox, which is a particular switch of the preference relation due to a modified common consequence, shared by two prospects, is still existent both under an event-splitting and a coalesced presentation format. Yet, the modal choice pattern is in line with the prediction of salience theory. As a consequence, the effect of correlation, as proposed by the model, might - if anything - only weaken the systematic choice pattern behind the Allais paradox.Keywords: Allais paradox, common consequence effect, models of decision making under risk and uncertainty, salience theory
Procedia PDF Downloads 19625107 Innovation Management in State-Owned-Enterprises in the Digital Transformation: An Empirical Case Study of Swiss Post
Authors: Jiayun Shen, Lorenz Wyss, Thierry Golliard, Matthias Finger
Abstract:
Innovation is widely recognized as the key for private enterprises to win the market competition. The state-owned-enterprises need to be innovative to compete in the market after the privatization as well. However, it is a lack of research to study how state-owned-enterprises manage innovation to create new products and services. Swiss Post, a Swiss state-owned-enterprises, has established a department to transform the corporate culture and foster innovation to achieve digital transformation. This paper describes the innovation management process at the Swiss Post and analyzes the impacts of the instruments, the organizational structure, and explores the barriers of innovation. This study used qualitative methods based on a review of the literature on innovation management and semi-structured interviews. Being established for over five years, the Swiss Post’s innovation management department has established a software-assisted modularized platform with systematic instruments to help the internal employees with the different innovation processes. It guides the innovators from idea creation to piloting in markets and supports with a separate financing source, with knowledge inputs and coaching, as well as with connections to external partners through the open innovation and venturing team. The platform also adapts to different business units within the corporate with a customized tailor for the various operational business units. The separate financing instruments enabled the creation and further development of new ideas; the coaching services contribute greatly to the transformation of teams’ innovation culture by providing new knowledge, thinking methods, and use cases for inspiration. It also facilitates organizational learning to help the whole corporate with the digital transformation. However, it is also confronted with a big challenge in twofold. Internally, the disruptive projects often hardly overcome the obstacles of long-established operational processes in the traditional business units; externally, the expectations of the public and restrictions from the federal government have become high hurdles for the company to stay and compete in the innovation track.Keywords: empirical case study, innovation management, state-owned-enterprise, Swiss Post
Procedia PDF Downloads 12125106 Recommender System Based on Mining Graph Databases for Data-Intensive Applications
Authors: Mostafa Gamal, Hoda K. Mohamed, Islam El-Maddah, Ali Hamdi
Abstract:
In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs.Keywords: graph databases, NLP, recommendation systems, similarity metrics
Procedia PDF Downloads 10325105 Digital Revolution a Veritable Infrastructure for Technological Development
Authors: Osakwe Jude Odiakaosa
Abstract:
Today’s digital society is characterized by e-education or e-learning, e-commerce, and so on. All these have been propelled by digital revolution. Digital technology such as computer technology, Global Positioning System (GPS) and Geographic Information System (GIS) has been having a tremendous impact on the field of technology. This development has positively affected the scope, methods, speed of data acquisition, data management and the rate of delivery of the results (map and other map products) of data processing. This paper tries to address the impact of revolution brought by digital technology.Keywords: digital revolution, internet, technology, data management
Procedia PDF Downloads 44725104 A Comparative Case Study of Institutional Work in Public Sector Organizations: Creating Knowledge Management Practice
Authors: Dyah Adi Sriwahyuni
Abstract:
Institutional work has become a prominent and contemporary institutional theory perspective in organization studies. A wealth of studies in organizations have explored actor activities in creating, maintaining, and disrupting institutions at the field level. However, the exploration of the work of actors in creating new management practices at the organizational level has been somewhat limited. The current institutional work literature mostly describes the work of actors at the field level and ignores organizational actors who work to realize management practices. Organizational actors here are defined as actors in organizations who work to institutionalize a particular management practice within the organizations. The extant literature has also generalized the types of management practices, which meant overlooking the unique characteristics of each management fashion as well as a management practice. To fill these gaps, this study aims to provide empirical evidence so as to contribute theoretically to institutional work through a comparative case study on organizational actors’ creation of knowledge management (KM) practice in two public sector organizations in Indonesia. KM is a contemporary management practice employed to manage individual and organizational knowledge in order to improve organizational performance. This practice presents a suitable practical setting with which to provide a rich understanding of the organizational actors’ institutional work and their connection with technology. Drawing on and extending the work of Perkmann and Spicer (2008), this study explores the forms of institutional work performed by organizational actors, including their motivation, skills, challenges, and opportunities. The primary data collection is semi-structured interviews with knowledgeable actors and document analysis for validity and triangulation. Following Eisenhardt's cross-case patterns, the researcher analyzed the collected data focusing on within-group similarities and intergroup differences. The researcher coded interview data using NVivo and used documents to corroborate the findings. The study’s findings add to the wealth of institutional theory literature in organization studies, particularly institutional work related to management practices. This study builds a theory about the work of organizational actors in creating knowledge management practices. Using the perspective of institutional work, research can show the roles of the various actors involved, their practices, and their relationship to technology (materiality), not only focusing on actors with a power which has been the theorizing of institutional entrepreneurship. The development of knowledge management practices in the Indonesian public sector is also a significant additional contribution, given that the current KM literature is dominated by conceptualizing the KM framework and the impact of KM on organizations. The public sector, which is the research setting, also provides important lessons on how actors in a highly institutionalized context are creating an institution, in this case, a knowledge management practice.Keywords: institutional work, knowledge management, case study, public sector organizations
Procedia PDF Downloads 11725103 BigCrypt: A Probable Approach of Big Data Encryption to Protect Personal and Business Privacy
Authors: Abdullah Al Mamun, Talal Alkharobi
Abstract:
As data size is growing up, people are became more familiar to store big amount of secret information into cloud storage. Companies are always required to need transfer massive business files from one end to another. We are going to lose privacy if we transmit it as it is and continuing same scenario repeatedly without securing the communication mechanism means proper encryption. Although asymmetric key encryption solves the main problem of symmetric key encryption but it can only encrypt limited size of data which is inapplicable for large data encryption. In this paper we propose a probable approach of pretty good privacy for encrypt big data using both symmetric and asymmetric keys. Our goal is to achieve encrypt huge collection information and transmit it through a secure communication channel for committing the business and personal privacy. To justify our method an experimental dataset from three different platform is provided. We would like to show that our approach is working for massive size of various data efficiently and reliably.Keywords: big data, cloud computing, cryptography, hadoop, public key
Procedia PDF Downloads 32025102 A Model for Reverse-Mentoring in Education
Authors: Sabine A. Zauchner-Studnicka
Abstract:
As the term indicates, reverse-mentoring flips the classical roles of mentoring: In school, students take over the role of mentors for adults, i.e. teachers or parents. Originally reverse-mentoring stems from US enterprises, which implemented this innovative method in order to benefit from the resources of skilled younger employees for the enhancement of IT competences of senior colleagues. However, reverse-mentoring in schools worldwide is rare. Based on empirical studies and theoretical approaches, in this article an implementation model for reverse-mentoring is developed in order to bring the significant potential reverse-mentoring has for education into practice.Keywords: reverse-mentoring, innovation in education, implementation model, school education
Procedia PDF Downloads 24725101 A Lexicographic Approach to Obstacles Identified in the Ontological Representation of the Tree of Life
Authors: Sandra Young
Abstract:
The biodiversity literature is vast and heterogeneous. In today’s data age, numbers of data integration and standardisation initiatives aim to facilitate simultaneous access to all the literature across biodiversity domains for research and forecasting purposes. Ontologies are being used increasingly to organise this information, but the rationalisation intrinsic to ontologies can hit obstacles when faced with the intrinsic fluidity and inconsistency found in the domains comprising biodiversity. Essentially the problem is a conceptual one: biological taxonomies are formed on the basis of specific, physical specimens yet nomenclatural rules are used to provide labels to describe these physical objects. These labels are ambiguous representations of the physical specimen. An example of this is with the genus Melpomene, the scientific nomenclatural representation of a genus of ferns, but also for a genus of spiders. The physical specimens for each of these are vastly different, but they have been assigned the same nomenclatural reference. While there is much research into the conceptual stability of the taxonomic concept versus the nomenclature used, to the best of our knowledge as yet no research has looked empirically at the literature to see the conceptual plurality or singularity of the use of these species’ names, the linguistic representation of a physical entity. Language itself uses words as symbols to represent real world concepts, whether physical entities or otherwise, and as such lexicography has a well-founded history in the conceptual mapping of words in context for dictionary making. This makes it an ideal candidate to explore this problem. The lexicographic approach uses corpus-based analysis to look at word use in context, with a specific focus on collocated word frequencies (the frequencies of words used in specific grammatical and collocational contexts). It allows for inconsistencies and contradictions in the source data and in fact includes these in the word characterisation so that 100% of the available evidence is counted. Corpus analysis is indeed suggested as one of the ways to identify concepts for ontology building, because of its ability to look empirically at data and show patterns in language usage, which can indicate conceptual ideas which go beyond words themselves. In this sense it could potentially be used to identify if the hierarchical structures present within the empirical body of literature match those which have been identified in ontologies created to represent them. The first stages of this research have revealed a hierarchical structure that becomes apparent in the biodiversity literature when annotating scientific species’ names, common names and more general names as classes, which will be the focus of this paper. The next step in the research is focusing on a larger corpus in which specific words can be analysed and then compared with existing ontological structures looking at the same material, to evaluate the methods by means of an alternative perspective. This research aims to provide evidence as to the validity of the current methods in knowledge representation for biological entities, and also shed light on the way that scientific nomenclature is used within the literature.Keywords: ontology, biodiversity, lexicography, knowledge representation, corpus linguistics
Procedia PDF Downloads 13725100 Implementation of Big Data Concepts Led by the Business Pressures
Authors: Snezana Savoska, Blagoj Ristevski, Violeta Manevska, Zlatko Savoski, Ilija Jolevski
Abstract:
Big data is widely accepted by the pharmaceutical companies as a result of business demands create through legal pressure. Pharmaceutical companies have many legal demands as well as standards’ demands and have to adapt their procedures to the legislation. To manage with these demands, they have to standardize the usage of the current information technology and use the latest software tools. This paper highlights some important aspects of experience with big data projects implementation in a pharmaceutical Macedonian company. These projects made improvements of their business processes by the help of new software tools selected to comply with legal and business demands. They use IT as a strategic tool to obtain competitive advantage on the market and to reengineer the processes towards new Internet economy and quality demands. The company is required to manage vast amounts of structured as well as unstructured data. For these reasons, they implement projects for emerging and appropriate software tools which have to deal with big data concepts accepted in the company.Keywords: big data, unstructured data, SAP ERP, documentum
Procedia PDF Downloads 26925099 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis
Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales
Abstract:
This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis
Procedia PDF Downloads 19225098 Institutional Quality and Tax Compliance: A Cross-Country Regression Evidence
Authors: Debi Konukcu Onal, Tarkan Cavusoglu
Abstract:
In modern societies, the costs of public goods and services are shared through taxes paid by citizens. However, taxation has always been a frictional issue, as tax obligations are perceived to be a financial burden for taxpayers rather than being merit that fulfills the redistribution, regulation and stabilization functions of the welfare state. The tax compliance literature evolves into discussing why people still pay taxes in systems with low costs of legal enforcement. Related empirical and theoretical works show that a wide range of socially oriented behavioral factors can stimulate voluntary compliance and subversive effects as well. These behavioral motivations are argued to be driven by self-enforcing rules of informal institutions, either independently or through interactions with legal orders set by formal institutions. The main focus of this study is to investigate empirically whether institutional particularities have a significant role in explaining the cross-country differences in the tax noncompliance levels. A part of the controversy about the driving forces behind tax noncompliance may be attributed to the lack of empirical evidence. Thus, this study aims to fill this gap through regression estimates, which help to trace the link between institutional quality and noncompliance on a cross-country basis. Tax evasion estimates of Buehn and Schneider is used as the proxy measure for the tax noncompliance levels. Institutional quality is quantified by three different indicators (percentile ranks of Worldwide Governance Indicators, ratings of the International Country Risk Guide, and the country ratings of the Freedom in the World). Robust Least Squares and Threshold Regression estimates based on the sample of the Organization for Economic Co-operation and Development (OECD) countries imply that tax compliance increases with institutional quality. Moreover, a threshold-based asymmetry is detected in the effect of institutional quality on tax noncompliance. That is, the negative effects of tax burdens on compliance are found to be more pronounced in countries with institutional quality below a certain threshold. These findings are robust to all alternative indicators of institutional quality, supporting the significant interaction of societal values with the individual taxpayer decisions.Keywords: institutional quality, OECD economies, tax compliance, tax evasion
Procedia PDF Downloads 13225097 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 51625096 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 53425095 Hierarchical Checkpoint Protocol in Data Grids
Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed
Abstract:
Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.Keywords: data grids, fault tolerance, clustering, chandy-lamport
Procedia PDF Downloads 34125094 Exposure to Radio Frequency Waves of Mobile Phone and Temperature Changes of Brain Tissue
Authors: Farhad Forouharmajd, Hossein Ebrahimi, Siamak Pourabdian
Abstract:
Introduction: Prevalent use of cell phones (mobile phones) has led to increasing worries about the effect of radiofrequency waves on the physiology of human body. This study was done to determine different reactions of the temperatures in different depths of brain tissue in confronting with radiofrequency waves of cell phones. Methodology: This study was an empirical research. A cow's brain tissue was placed in a compartment and the effects of radiofrequency waves of the cell phone was analyzed during confrontation and after confrontation, in three different depths of 2, 12, and 22 mm of the tissue, in 4 mm and 4 cm distances of the tissue to a cell phone, for 15 min. Lutron thermometer was used to measure the tissue temperatures. Data analysis was done by Lutron software. Findings: The rate of increasing the temperature at the depth of 22 mm was higher than 2 mm and 12mm depths, during confrontation of the brain tissue at the distance of 4 mm with the cell phone, such that the tissue temperatures at 2, 12, and 22 mm depths increased by 0.29 ˚C, 0.31 ˚C, and 0.37 ˚C, respectively, relative to the base temperature (tissue temperature before confrontation). Moreover, the temperature of brain tissue at the distance of 4 cm by increasing the tissue depth was more than other depths. Increasing the tissue temperature also existed by increasing the brain tissue depth after the confrontation with the cell phone. The temperature of the 22 mm depth increased with higher speed at the time confrontation. Conclusion: Not only radiofrequency waves of cell phones increased the tissue temperature in all the depths of the brain tissue, but also the temperature due to radiofrequency waves of the cell phone was more at the depths higher than 22 mm of the tissue. In fact, the thermal effect of radiofrequency waves was higher in higher depths.Keywords: mobile phone, radio frequency waves, brain tissue, temperature
Procedia PDF Downloads 20025093 An Observation of the Information Technology Research and Development Based on Article Data Mining: A Survey Study on Science Direct
Authors: Muhammet Dursun Kaya, Hasan Asil
Abstract:
One of the most important factors of research and development is the deep insight into the evolutions of scientific development. The state-of-the-art tools and instruments can considerably assist the researchers, and many of the world organizations have become aware of the advantages of data mining for the acquisition of the knowledge required for the unstructured data. This paper was an attempt to review the articles on the information technology published in the past five years with the aid of data mining. A clustering approach was used to study these articles, and the research results revealed that three topics, namely health, innovation, and information systems, have captured the special attention of the researchers.Keywords: information technology, data mining, scientific development, clustering
Procedia PDF Downloads 27725092 Security in Resource Constraints: Network Energy Efficient Encryption
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC
Procedia PDF Downloads 14325091 Data Mining Techniques for Anti-Money Laundering
Authors: M. Sai Veerendra
Abstract:
Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project on developing a new data mining solution for AML Units in an international investment bank in Ireland, we survey recent data mining approaches for AML. In this paper, we present not only these approaches but also give an overview on the important factors in building data mining solutions for AML activities.Keywords: data mining, clustering, money laundering, anti-money laundering solutions
Procedia PDF Downloads 53525090 Predicting Wearable Technology Readiness in a South African Government Department: Exploring the Influence of Wearable Technology Acceptance and Positive Attitude
Authors: Henda J Thomas, Cornelia PJ Harmse, Cecile Schultz
Abstract:
Wearables are one of the technologies that will flourish within the fourth industrial revolution and digital transformation arenas, allowing employers to integrate collected data into organisational information systems. The study aimed to investigate whether wearable technology readiness can predict employees’ acceptance to wear wearables in the workplace. The factors of technology readiness predisposition that predict acceptance and positive attitudes towards wearable use in the workplace were examined. A quantitative research approach was used. The population consisted of 8 081 South African Department of Employment and Labour employees (DEL). Census sampling was used, and questionnaires to collect data were sent electronically to all 8 081 employees, 351 questionnaires were received back. The measuring instrument called the Technology Readiness and Acceptance Model (TRAM) was used in this study. Four hypotheses were formulated to investigate the relationship between readiness and acceptance of wearables in the workplace. The results found consistent predictions of technology acceptance (TA) by eagerness, optimism, and discomfort in the technology readiness (TR) scales. The TR scales of optimism and eagerness were consistent positive predictors of the TA scales, while discomfort proved to be a negative predictor for two of the three TA scales. Insecurity was found not to be a predictor of TA. It was recommended that the digital transformation policy of the DEL should be revised. Wearables in the workplace should be embraced from the viewpoint of convenience, automation, and seamless integration with the DEL information systems. The empirical contribution of this study can be seen in the fact that positive attitude emerged as a factor that extends the TRAM. In this study, positive attitude is identified as a new dimension to the TRAM not found in the original TA model and subsequent studies of the TRAM. Furthermore, this study found that Perceived Usefulness (PU) and Behavioural Intention to Use and (BIU) could not be separated but formed one factor. The methodological contribution of this study can lead to the development of a Wearable Readiness and Acceptance Model (WRAM). To the best of our knowledge, no author has yet introduced the WRAM into the body of knowledge.Keywords: technology acceptance model, technology readiness index, technology readiness and acceptance model, wearable devices, wearable technology, fourth industrial revolution
Procedia PDF Downloads 8725089 A Correlation Analysis of an Effective Music Education with Students’ Mathematical Performance
Authors: Yoon Suh Song
Abstract:
Though music education can broaden one’s capacity for mathematical performance, many countries lag behind in music education. Little empirical evidence is found to identify the connection between math and music. Therefore, this research was set out to explore what music-related variables are associated with mathematical performance. The result of our analysis is as follows: A Pearson's Correlation analysis revealed that PISA math score is strongly correlated with students' Intelligence Quotient (IQ). This lays the foundation for further research as to what factors in students’ IQ lead to a better performance in math.Keywords: music education, mathematical performance, education, IQ
Procedia PDF Downloads 21025088 The Sustainability of Public Debt in Taiwan
Authors: Chiung-Ju Huang
Abstract:
This study examines whether the Taiwan’s public debt is sustainable utilizing an unrestricted two-regime threshold autoregressive (TAR) model with an autoregressive unit root. The empirical results show that Taiwan’s public debt appears as a nonlinear series and is stationary in regime 1 but not in regime 2. This result implies that while Taiwan’s public debt was mostly sustainable over the 1996 to 2013 period examined in the study, it may no longer be sustainable in the most recent two years as the public debt ratio has increased cumulatively to 3.618%.Keywords: nonlinearity, public debt, sustainability, threshold autoregressive model
Procedia PDF Downloads 44825087 Development of New Technology Evaluation Model by Using Patent Information and Customers' Review Data
Authors: Kisik Song, Kyuwoong Kim, Sungjoo Lee
Abstract:
Many global firms and corporations derive new technology and opportunity by identifying vacant technology from patent analysis. However, previous studies failed to focus on technologies that promised continuous growth in industrial fields. Most studies that derive new technology opportunities do not test practical effectiveness. Since previous studies depended on expert judgment, it became costly and time-consuming to evaluate new technologies based on patent analysis. Therefore, research suggests a quantitative and systematic approach to technology evaluation indicators by using patent data to and from customer communities. The first step involves collecting two types of data. The data is used to construct evaluation indicators and apply these indicators to the evaluation of new technologies. This type of data mining allows a new method of technology evaluation and better predictor of how new technologies are adopted.Keywords: data mining, evaluating new technology, technology opportunity, patent analysis
Procedia PDF Downloads 374