Search results for: electrical performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14408

Search results for: electrical performance

13088 Pilot Study of Determining the Impact of Surface Subsidence at The Intersection of Cave Mining with the Surface Using an Electrical Impedance Tomography

Authors: Ariungerel Jargal

Abstract:

: Cave mining is a bulk underground mining method, which allows large low-grade deposits to be mined underground. This method involves undermining the orebody to make it collapse under its own weight into a series of chambers from which the ore extracted. It is a useful technique to extend the life of large deposits previously mined by open pits, and it is a method increasingly proposed for new mines around the world. We plan to conduct a feasibility study using Electrical impedance tomography (EIT) technology to show how much subsidence there is at the intersection with the cave mining surface. EIT is an imaging technique which uses electrical measurements at electrodes attached on the body surface to yield a cross-sectional image of conductivity changes within the object. EIT has been developed in several different applications areas as a simpler, cheaper alternative to many other imaging methods. A low frequency current is injected between pairs of electrodes while voltage measurements are collected at all other electrode pairs. In the difference EIT, images are reconstructed of the change in conductivity distribution (σ) between the acquisition of the two sets of measurements. Image reconstruction in EIT requires the solution of an ill-conditioned nonlinear inverse problem on noisy data, typically requiring make simpler assumptions or regularization. It is noted that the ratio of current to voltage represents a complex value according to Ohm’s law, and that it is theoretically possible to re-express EIT. The results of the experiment were presented on the simulation, and it was concluded that it is possible to conduct further real experiments. Drill a certain number of holes in the top wall of the cave to attach the electrodes, flow a current through them, and measure and acquire the potential through these electrodes. Appropriate values should be selected depending on the distance between the holes, the frequency and duration of the measurements, the surface characteristics and the size of the study area using an EIT device.

Keywords: impedance tomography, cave mining, soil, EIT device

Procedia PDF Downloads 126
13087 Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell

Authors: Majid Ali, Xinfang Jin, Victor Eniola, Henning Hoene

Abstract:

The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices.

Keywords: fuel cell, proton exchange membrane, renewable energy, power fluctuation, experimental

Procedia PDF Downloads 135
13086 Association between Physical Composition, Swimming Performance and Somatotype of Male Competitive Swimmers of Age Group 10-13 Years

Authors: Ranjit Singh

Abstract:

Body fat % lean body mass and body type play vital role in sports performance. A sports person who is having optional body composition can show its performance flawlessly whereas other who is not physical fit may be more prone to injury. Competitive swimming is an association of plethora of aspects like morphological, physiological, biochemical, biomechanical and psychological. The primary key of the present research is to examine the correlation among selected morphological dimensions such as height, weight, body fat%, lean body mass, somatotype and swimming performance. The present study also focused to investigate by potential deficiencies if any and to find out remedial measures to curb the training stresses. Thirty (age group 10-14 years) swimmers undergoing training under skilled and professional coaches were selected in the present study. The morphological variables and performance criterion like 50 meter swimming time and speed were calculated by using standard training methodology. Correlation coefficient among body composition, somatotype and performance variables were assessed by using standard statistical package SPSS. Mean height, weight, fat% and lean body mass of the present group is 150.97±8.68 cm, 44.0±9.34 kg., 15.97±4.42 % and 37.10±8.77 kg respectively. Somatotype of the young swimmers of this research is revealed ectomorphic mesomorph. The analysis of the results Illustrated that swimming performance is significantly correlated (p<0.05) with height, body weight, mesomorphoic component and lean body mass. Body fat is significantly and negatively correlated (p<0.05) with mesomorphic component, lean body mass and swimming speed. From this present study, it can be concluded that along with techniques and tactics other the physical attributes also play significant role in swimming performance which can help the swimmers to excel in higher level of competition and swimmers having improved morphological qualities can ultimately perform well.

Keywords: body fat, mass, mesomorphic component, somatotype

Procedia PDF Downloads 234
13085 Better Knowledge and Understanding of the Behavior of Masonry Buildings in Earthquake

Authors: A. R. Mirzaee, M. Khajehpour

Abstract:

Due to Simple Design, reasonable cost and easy implementation most people are reluctant to build buildings with masonry construction. Masonry Structures performance at earthquake are so limited. Of most earthquakes occurred in Iran and other countries, we can easily see that most of the damages are for masonry constructions and this is the evidence that we lack proper understanding of the performance of masonry buildings in earthquake. In this paper, according to field studies, conducted in past earthquakes. To evaluate the strengths and weaknesses points of the masonry constructions and also provide a solution to prevent such damage should be presented, and also program Examples of the correct bearing wall and tie-column design with the valid regulations (MSJC-08 (ASD)) will be explained.

Keywords: Masonry constructions, performance at earthquake, MSJC-08 (ASD), bearing wall, tie-column

Procedia PDF Downloads 431
13084 Aerodynamic Study of Formula 1 Car in Upsight Down Configuration

Authors: Hrishit Mitra, Saptarshi Mandal

Abstract:

The study of aerodynamics for Formula 1 cars is very crucial in determining their performance. In the current F1 industry, when each engine manufacturer exhibits a torque and peak speed that differ by less than 5%, the emphasis on maximizing performance is dependent heavily on the utilization of aerodynamics. This work examines the aerodynamic characteristics of an F1 car by utilizing computational fluid dynamics in order to substantiate the hypothesis that an F1 car can go upside down in a tunnel without any external assistance, only due to the downforce it produces. In addition to this, this study also suggests the implementation of a 'flexi-wing' front in F1 cars to optimize downforce and reduce drag. Furthermore, this paper provides a concise overview of the historical development of aerodynamics in F1, with a specific emphasis on the progression of aerodynamics and the impact of downforce on the dynamics of vehicles. Next, an examination of wings has been provided, comparing the performance of the suggested wing at high speeds and low speeds. Three simulations have been conducted: one to test the complete aerodynamics and validate the hypothesis discussed above, and two specifically focused on the flexi wing, one at high speed and one at low speed. The collected results have been examined to analyze the performance of the front flexi wing. Performance analysis was conducted from the measurement of downforce and drag coefficient, as well as the pressure and velocity distributions.

Keywords: high speed flexi wing, low speed flexi wing, F1 car aerodynamics, F1 car drag reduction

Procedia PDF Downloads 12
13083 Computational Fluids Dynamics Investigation of the Effect of Geometric Parameters on the Ejector Performance

Authors: Michel Wakim, Rodrigo Rivera Tinoco

Abstract:

Supersonic ejector is an economical device that use high pressure vapor to compress a low pressure vapor without any rotating parts or external power sources. Entrainment ratio is a major characteristic of the ejector performance, so the ejector performance is highly dependent on its geometry. The aim of this paper is to design ejector geometry, based on pre-specified operating conditions, and to study the flow behavior inside the ejector by using computational fluid dynamics ‘CFD’ by using ‘ANSYS FLUENT 15.0’ software. In the first section; 1-D mathematical model is carried out to predict the ejector geometry. The second part describes the flow behavior inside the designed model. CFD is the most reliable tool to reveal the mixing process at different parts of the supersonic turbulent flow and to study the effect of the geometry on the effective ejector area. Finally, the results show the effect of the geometry on the entrainment ratio.

Keywords: computational fluids dynamics, ejector, entrainment ratio, geometry optimization, performance

Procedia PDF Downloads 274
13082 Egg Production Performance of Old Laying Hen Fed Dietary Turmeric Powder

Authors: D. P. Rahardja, M. Rahman Hakim, V. Sri Lestari

Abstract:

An experiment was conducted to elucidate the effects of turmeric powder supplementation on egg production performance of old laying hens (104 weeks of age). There were 40 hens of Hysex Brown strain used in the study. They were caged individually, and randomly divided into 4 treatment groups of diet containing 0 (control), 1, 2 and 4 % oven dried turmeric powder for 3 periods of 4 weeks; Egg production (% hen day) and feed intake of the 4 treatment groups at the commencement of the experiment were not significantly different. In addition to egg production performance (%HD and egg weight), feed and water intakes were measured daily. The results indicated that feed intakes of the hen were significantly lowered when 4% turmeric powder supplemented, while there were no significant changes in water intakes. Egg production (%HD) were significantly increased and maintained at a higher level by turmeric powder supplementation up to 4% compared with the control, while the weight of eggs were not significantly affected. The research markedly demonstrated that supplementation of turmeric powder up to 4% could improve and maintain egg production performance of the old laying hen.

Keywords: curcumin, feed and water intake, old laying hen, egg production

Procedia PDF Downloads 482
13081 EDM for Prediction of Academic Trends and Patterns

Authors: Trupti Diwan

Abstract:

Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.

Keywords: classification, educational data mining, student failure, grammar-based genetic programming

Procedia PDF Downloads 422
13080 Photoresponse of Epitaxial GaN Films Grown by Plasma-Assisted Molecular Beam Epitaxy

Authors: Nisha Prakash, Kritika Anand, Arun Barvat, Prabir Pal, Sonachand Adhikari, Suraj P. Khanna

Abstract:

Group-III nitride semiconductors (GaN, AlN, InN and their ternary and quaternary compounds) have attracted a great deal of attention for the development of high-performance Ultraviolet (UV) photodetectors. Any midgap defect states in the epitaxial grown film have a direct influence on the photodetectors responsivity. The proportion of the midgap defect states can be controlled by the growth parameters. To study this we have grown high quality epitaxial GaN films on MOCVD- grown GaN template using plasma-assisted molecular beam epitaxy (PAMBE) with different growth parameters. Optical and electrical properties of the films were characterized by room temperature photoluminescence and photoconductivity measurements, respectively. The observed persistent photoconductivity behaviour is proportional to the yellow luminescence (YL) and the absolute responsivity has been found to decrease with decreasing YL. The results will be discussed in more detail later.

Keywords: gallium nitride, plasma-assisted molecular beam epitaxy, photoluminescence, photoconductivity, persistent photoconductivity, yellow luminescence

Procedia PDF Downloads 317
13079 Doped TiO2 Thin Films Microstructural and Electrical Properties

Authors: Mantas Sriubas, Kristina Bockute, Darius Virbukas, Giedrius Laukaitis

Abstract:

In this work, the doped TiO2 (dopants – Ca, Mg) was investigated. The comparison between the physical vapour deposition methods as electron beam vapour deposition and magnetron sputtering was performed and the structural and electrical properties of the formed thin films were investigated. Thin films were deposited on different type of substrates: SiO2, Alloy 600 (Fe-Ni-Cr) and Al2O3 substrates. The structural properties were investigated using Ambios XP-200 profilometer, scanning electron microscope (SEM) Hitachi S-3400N, X-ray energy-dispersive spectroscope (EDS) Quad 5040 (Bruker AXS Microanalysis GmbH), X-ray diffractometer (XRD) D8 Discover (Bruker AXS GmbH) with glancing angles focusing geometry in a 20 – 70° range using the Cu Kα1 λ = 0.1540562 nm radiation). The impedance spectroscopy measurements were performed using Probostat® (NorECs AS) measurement cell in the frequency range from 10-1-106 Hz under reducing and oxidizing conditions in temperature range of 200 °C to 1200 °C. The investigation of the e-beam deposited Ca and Mg doped-TiO2 thin films shows that the thin films are dense without any visible pores and cavities and the thin films grow in zone T according Barna-Adamik SZM. Substrate temperature was kept 600 °C during the deposition and Ts/Tm ≈ 0.32 (substrate temperature (Ts) and coating material melting temperature (Tm)). The surface diffusion is high however, the grain boundary migration is strongly limited at this temperature. This means that structure is inhomogeneous and the columnar structure is mostly visible in the upper part of the films. According to XRD, the increasing of the Ca dopants’ concentration increases the crystallinity of the formed thin films and the crystallites size increase linearly and Ca dopants act as prohibitors. Thin films are comprised of anatase TiO2 phase with an exception of 2 % Ca doped TiO2, where a small peak of Ca arise. In the case of Mg doped-TiO2 the intensities of the XRD peaks decreases with increasing Mg molar concentration. It means that there are less diffraction planes of the particular orientation in thin films with higher impurities concentration. Thus, the crystallinity decreases with increasing Mg concentration and Mg dopants act as inhibitors. The impedance measurements show that the dopants changed the conductivity of the formed thin films. The conductivity varies from 10-3 S/cm to 10-4 S/cm at 800 °C under wet reducing conditions. The microstructure of the magnetron sputtered thin TiO2 films is different comparing to the thin films deposited using e-beam deposition therefore influencing other structural and electrical properties.

Keywords: electrical properties, electron beam deposition, magnetron sputtering, microstructure, titanium dioxide

Procedia PDF Downloads 296
13078 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity

Authors: Smail Tigani, Mohamed Ouzzif

Abstract:

This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.

Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation

Procedia PDF Downloads 498
13077 Enhancing the Performance of Vapor Compression Refrigeration Systems Using HFC134a by Nanoparticles Suspensions

Authors: Hafsi Khebab, Zirari Mounir, Mohamed Nadjib Bouaziz

Abstract:

High Global Warming Potential refrigerants (HydroFluroCarbons) are one of the worst greenhouse gases used in a wide variety of applications, including refrigeration and air-conditioning. Nanotechnology is a promising field in sustainable energy to reduce energy and ecological resource consumption for HVACR (heat, ventilation, air conditioning, and refrigeration) systems. Most researchers reported an improvement in heat transfer coefficient, Coefficient of performance. In this report, a brief summary has been done on the performance enhancement of the Vapor Compression Refrigeration system using HFC134a with nano refrigerants.

Keywords: nanorefrigerant, HFCs, greenhouse gases, GWP, HVACR systems, energy saving

Procedia PDF Downloads 82
13076 Ta-doped Nb2O5: Synthesis and Photocatalytic Activity

Authors: Mahendrasingh J. Pawar, M. D. Gaoner

Abstract:

Ta-doped Nb2O5 (Ta content 0.5-2% mole fraction) nanoparticles in the range of 20-40 nm were synthesized by combustion technique. The crystalline phase, morphology and size of the nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. The specific surface area of the nanoparticles was measured by nitrogen adsorption (BET analysis). The undoped Nb2O5 nanoparticles were found to have the particles size in the range of 50−80 nm. The photocatalytic performance of the samples was characterized by degrading 20 mg/L toluene under UV−Vis irradiation. The results show that the Ta-doped Nb2O5 nanoparticles exhibit a significant increase in photocatalytic performance over the undoped Nb2O5 nanoparticles, and the Nb2O5 nanoparticles doped with 1.5% Ta and calcined at 450°C show the best photocatalytic performance.

Keywords: Nb2O5, Ta-doped Nb2O5, photodegradation of Toluene, combustion method

Procedia PDF Downloads 564
13075 Proposals for the Thermal Regulation of Buildings in Algeria: A New Energy Label for Social Housing

Authors: Marco Morini, Nicolandrea Calabrese, Dario Chello

Abstract:

Despite the international commitment of Algeria towards the development of energy efficiency and renewable energy in the country, the internal energy demand has been continuously growing during the last decade due to the substantial increase of population and of living conditions, which in turn has led to an unprecedented expansion of the residential building sector. The thermal building regulation is the technical document that establishes the calculation framework for the thermal performance of buildings in Algeria, setting up minimum obligatory targets for the thermal performance of new buildings. An update of this regulation is due in the coming years, and this paper discusses some proposals in this regard, with the aim to improve the energy efficiency of the building sector, particularly with regard to social housing. In particular, it proposes a methodology for drafting an energy performance label of new Algerian residential buildings, moving from the results of the thermal compliance verification and sizing of technical systems as defined in the RTB. Such an energy performance label – whose calculation method is briefly described in the paper – aims to raise citizens' awareness of the benefits of energy efficiency. It can represent the first step in a process of integrating technical installations into the calculation of the energy performance of buildings in Algeria.

Keywords: building, energy certification, energy efficiency, social housing, international cooperation, Mediterranean region

Procedia PDF Downloads 144
13074 Building a Performance Outline for Health Care Workers at Teaching Hospitals, Nigeria: The Role of Different Leadership Styles

Authors: Osuagwu Justine Ugochukwu

Abstract:

Investigating the effects of transformational and transactional leadership styles on the performance of healthcare employees at the University Teaching Hospital (UNTH) in Enugu, Nigeria, was the goal of the research. The respondents were asked to fill out a structured questionnaire. The respondents were chosen using a straightforward random sampling technique and consisted of 370 health workers at the hospital. The result of the analysis revealed that transactional and transformational leadership style has a positive while ambidextrous leadership has a negative effect on healthcare workers' performance in UNTH, Enugu. Therefore, the management of public hospitals that have the capacity to change their top management approach to leadership styles will gain substantial support from their employees’ thereby increasing organizational commitment and performance among health workers. This will have remarkable social implications, one of which is a change in the work culture and attitude of medical personnel from the seemingly anti-community of patients to friendly engagement and treatment of patients leading to a harmonious coexistence among these individuals in society. Investigating ambidextrous leadership and the use of nonparametric analysis is unique and has brought brand-new knowledge to leadership literature.

Keywords: workers performance, transformational leadership, transactional leadership, governance quality, ambidextrous leadership

Procedia PDF Downloads 91
13073 Deregulation of Thorium for Room Temperature Superconductivity

Authors: Dong Zhao

Abstract:

Abstract—Extensive research on obtaining applicable room temperature superconductors meets the major barrier, and the record Tc of 135 K achieved via cuprate has been idling for decades. Even though, the accomplishment of higher Tc than the cuprate was made through pressurizing certain compounds composed of light elements, such as for the LaH10 and for the metallic hydrogen. Room temperature superconductivity under ambient pressure is still the preferred approach and is believed to be the ultimate solution for many applications. While racing to find the breakthrough method to achieve this room temperature Tc milestone in superconducting research, a report stated a discovery of a possible high-temperature superconductor, i.e., the thorium sulfide ThS. Apparently, ThS’s Tc can be at room temperature or even higher. This is because ThS revealed an unusual property of the ‘coexistence of high electrical conductivity and diamagnetism’. Noticed that this property of coexistence of high electrical conductivity and diamagnetism is in line with superconductors, meaning ThS is also at its superconducting state. Surprisingly, ThS owns the property of superconductivity at least at room temperature and under atmosphere pressure. Further study of the ThS’s electrical and magnetic properties in comparison with thorium di-iodide ThI2 concluded its molecular configuration as [Th4+(e-)2]S. This means the ThS’s cation is composed of a [Th4+(e-)2]2+ cation core. It is noticed that this cation core is built by an oxidation state +4 of thorium atom plus an electron pair on this thorium atom that resulted in an oxidation state +2 of this [Th4+(e-)2]2+ cation core. This special construction of [Th4+(e-)2]2+ cation core may lead to the ThS’s room temperature superconductivity because of this characteristic electron lone pair residing on the thorium atom. Since the study of thorium chemistry was carried out in the period of before 1970s. the exploration about ThS’s possible room temperature superconductivity would require resynthesizing ThS. This re-preparation of ThS will provide the sample and enable professionals to verify the ThS’s room temperature superconductivity. Regrettably, the current regulation prevents almost everyone from getting access to thorium metal or thorium compounds due to the radioactive nature of thorium-232 (Th-232), even though the radioactive level of Th-232 is extremely low with its half-life of 14.05 billion years. Consequently, further confirmation of ThS’s high-temperature superconductivity through experiments will be impossible unless the use of corresponding thorium metal and related thorium compounds can be deregulated. This deregulation would allow researchers to obtain the necessary starting materials for the study of ThS. Hopefully, the confirmation of ThS’s room temperature superconductivity can not only establish a method to obtain applicable superconductors but also to pave the way for fully understanding the mechanism of superconductivity.

Keywords: co-existence of high electrical conductivity and diamagnetism, electron pairing and electron lone pair, room temperature superconductivity, the special molecular configuration of thorium sulfide ThS

Procedia PDF Downloads 50
13072 Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter

Authors: H. Mansor, S. B. Mohd-Noor, T. S. Gunawan, S. Khan, N. I. Othman, N. Tazali, R. B. Islam

Abstract:

This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (pole-placement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle.

Keywords: adaptive control, deadbeat, pole-placement, bench-top helicopter, self-tuning control

Procedia PDF Downloads 501
13071 Competitive Advantage Effecting Firm Performance: Case Study of Small and Medium Enterprises in Thailand

Authors: Somdech Rungsrisawas

Abstract:

The objectives of this study are to examine the relationship between the competitive advantage of small and medium enterprises (SMEs) and their overall performance. A mixed method has been applied to identify the effect of determinants toward competitive advantage. The sample is composed of SMEs in product and service businesses. The study has been tested at an organizational level with samples of SME entrepreneurs, business successors, and board of directors or management team. Quantitative analysis has been conducted through multiple regression analysis with 400 samples. The findings illustrate that each aspect of competitive advantage needs a different set of driving factors to explain either the direct or the indirect effect on firm performance. Interestingly, technological capability is a perfect mediator and interorganizational cooperation toward competitive advantage. In addition, differentiation is difficult to be perceived by customers, as well as difficult to manage; however, it is considered important to develop an SMEs product or service for firm sustainably.

Keywords: competitive advantage, firm performance, technological capability, Small and Medium Enterprise (SMEs)

Procedia PDF Downloads 297
13070 Study of Electrocoagulation on the Elimination of Chromium in Waste Water From an Electroplating Bath Using Aluminium Electrodes

Authors: Salim Ahmed

Abstract:

Electrocoagulation has proven its effectiveness in industrial effluent treatment by eliminating pollutants, particularly metallic ones. The electrochemical processes that occur at aluminium electrodes give excellent performance. In this work, electrocoagulation tests were carried out on an industrial effluent from an electroplating bath located in Casablanca (Morocco). The aim was to remove chromium and reuse the purified water for other purposes within the company. To this end, we have optimised the operating parameters that affect the efficiency of electrocoagulation, such as electrical voltage, electrode material, stirring speed and distance between electrodes. We also evaluated these parameters. The effect on pH, conductivity, turbidity and chromium concentration. The tests were carried out in a perfectly stirred reactor on an industrial solution rich in chromium. The effluent concentration was 1000 mg/L of Cr6+. Chromium removal efficiency was determined for the following operating conditions: aluminium electrodes, regulated voltage of 6 volts and 12 volts, optimum stirring speed of 600 rpm and distance between electrodes of 2 cm. The sludge produced by electrocoagulation was characterised by X-ray diffractometry, infrared spectroscopy (IR) and scanning electron microscopy (SEM).

Keywords: wastewater, chromium, electrocoagulation, aluminium, aluminium hydroxide

Procedia PDF Downloads 91
13069 Assessment of the Road Safety Performance in National Scale

Authors: Abeer K. Jameel, Harry Evdorides

Abstract:

The Assessment of the road safety performance is a challengeable issue. This is not only because of the ineffective and unreliability of road and traffic crash data system but also because of its systematic character. Recent strategic plans and interventions implemented in some of the developed countries where a significant decline in the rate of traffic and road crashes considers that the road safety is a system. This system consists of four main elements which are: road user, road infrastructure, vehicles and speed in addition to other supporting elements such as the institutional framework and post-crash care system. To assess the performance of a system, it is required to assess all its elements. To present an understandable results of the assessment, it is required to present a unique term representing the performance of the overall system. This paper aims to develop an overall performance indicator which may be used to assess the road safety system. The variables of this indicators are the main elements of the road safety system. The data regarding these variables will be collected from the World Health Organization report. Multi-criteria analysis method is used to aggregate the four sub-indicators for the four variables. Two weighting methods will be assumed, equal weights and different weights. For the different weights method, the factor analysis method is used. The weights then will be converting to scores. The total score will be the overall indicator for the road safety performance in a national scale. This indicator will be used to compare and rank countries according to their road safety performance indicator. The country with the higher score is the country which provides most sustainable and effective interventions for successful road safety system. These indicator will be tested by comparing them with the aggregate real crash rate for each country.

Keywords: factor analysis, Multi-criteria analysis, road safety assessment, safe system indicator

Procedia PDF Downloads 270
13068 The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate

Authors: Bonsoo Koo, Seong Shin Hong, Byung Kwon Lee

Abstract:

Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad.

Keywords: floor impact sound, thermoplastic poly urethane, ethylene vinyl acetate, heavyweight impact sound

Procedia PDF Downloads 404
13067 Assessment of Online Web-Based Learning for Enhancing Student Grades in Chemistry

Authors: Ian Marc Gealon Cabugsa, Eleanor Pastrano Corcino, Gina Lapaza Montalan

Abstract:

This study focused on the effect of Online Web-Learning (OWL) in the performance of the freshmen Civil Engineering Students of Ateneo de Davao University in their Chem 12 subject. The grades of the students that were required to use OWL were compared to students without OWL. The result of the study suggests promising result for the use of OWL in increasing the performance rate of students taking up Chem 12. Furthermore, there was a positive correlation between the final grade and OWL grade of the students that had OWL. While the majority of the students find OWL to be helpful in supporting their chemistry knowledge needs, most of them still prefer to learn using the traditional face-to-face instruction.

Keywords: chemistry education, enhanced performance, engineering chemistry, online web-based learning

Procedia PDF Downloads 374
13066 PVMODREL© Development Based on Reliability Evaluation of a PV Module Using Accelerated Degradation Testing

Authors: Abderafi Charki, David Bigaud

Abstract:

The aim of this oral speach is to present the PVMODREL© (PhotoVoltaic MODule RELiability) new software developed in the University of Angers. This new tool permits us to evaluate the lifetime and reliability of a PV module whatever its geographical location and environmental conditions. The electrical power output of a PV module decreases with time mainly as a result of the effects of corrosion, encapsulation discoloration, and solder bond failure. The failure of a PV module is defined as the point where the electrical power degradation reaches a given threshold value. Accelerated life tests (ALTs) are commonly used to assess the reliability of a PV module. However, ALTs provide limited data on the failure of a module and these tests are expensive to carry out. One possible solution is to conduct accelerated degradation tests. The Wiener process in conjunction with the accelerated failure time model makes it possible to carry out numerous simulations and thus to determine the failure time distribution based on the aforementioned threshold value. By this means, the failure time distribution and the lifetime (mean and uncertainty) can be evaluated. An example using the damp heat test is shown to demonstrate the usefulness PVMODREL.

Keywords: lifetime, reliability, PV Module, accelerated life testing, accelerated degradation testing

Procedia PDF Downloads 574
13065 Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive

Authors: Marcel Lehr, Andreas Binder

Abstract:

This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior.

Keywords: doubly-salient-permanent-magnet-machine, flux-reversal-permanent-magnet-machine, flux-switching-permanent-magnet-machine, industrial drive

Procedia PDF Downloads 371
13064 Improvement of Overall Equipment Effectiveness of Load Haul Dump Machines in Underground Coal Mines

Authors: J. BalaRaju, M. Govinda Raj, C. S. N. Murthy

Abstract:

Every organization in the competitive world tends to improve its economy by increasing their production and productivity rates. Unequivocally, the production in Indian underground mines over the years is not satisfactory, due to a variety of reasons. There are manifold of avenues for the betterment of production, and one such approach is through enhanced utilization of mechanized equipment such as Load Haul Dumper (LHD). This is used as loading and hauling purpose in underground mines. In view of the aforementioned facts, this paper delves into identification of the key influencing factors such as LHDs maintenance effectiveness, vehicle condition, operator skill and utilization of the machines on performance of LHDs. An attempt has been made for improvement of performance of the equipment through evaluation of Overall Equipment Effectiveness (OEE). Two different approaches for evaluation of OEE have been adopted and compared under various operating conditions. The use of OEE calculation in terms of percentage availability, performance and quality and the hitherto existing situation of the underground mine production is evaluated. Necessary recommendations are suggested to mining industry on the basis of OEE.

Keywords: utilization, maintenance, availability, performance and quality

Procedia PDF Downloads 222
13063 Structural, Magnetic, Dielectric, and Electrical Properties of ZnFe2O4 Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, Milan Masař, Martin Holek

Abstract:

ZnFe2O4 spinel ferrite nanoparticles were synthesized by sol-gel auto-combustion method. The synthesized spinel ferrite nanoparticles were annealed at different higher temperature to achieve different size nanoparticles. The as synthesized and annealed samples were characterized by powder X-ray Diffraction Spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, UV-Vis absorption Spectroscopy and Scanning Electron Microscopy. The magnetic properties were studied by vibrating sample magnetometer. The variation in magnetic parameters was noticed with variation in grain size. The dielectric constant and dielectric loss with variation of frequency shows normal behaviour of spinel ferrite. The variation in conductivity with variation in grain size is noticed. Modulus and Impedance Spectroscopy shows the role of grain and grain boundary on the electrical resistance and capacitance of different grain sized spinel ferrite nanoparticles. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: spinel ferrite, nanoparticles, magnetic properties, dielectric properties

Procedia PDF Downloads 428
13062 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b, and 802.11g

Authors: Amandeep Singh Dhaliwal

Abstract:

Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.

Keywords: DCF, IEEE, PCF, WLAN

Procedia PDF Downloads 425
13061 Method and Apparatus for Optimized Job Scheduling in the High-Performance Computing Cloud Environment

Authors: Subodh Kumar, Amit Varde

Abstract:

Typical on-premises high-performance computing (HPC) environments consist of a fixed number and a fixed set of computing hardware. During the design of the HPC environment, the hardware components, including but not limited to CPU, Memory, GPU, and networking, are carefully chosen from select vendors for optimal performance. High capital cost for building the environment is a prime factor influencing the design environment. A class of software called “Job Schedulers” are critical to maximizing these resources and running multiple workloads to extract the maximum value for the high capital cost. In principle, schedulers work by preventing workloads and users from monopolizing the finite hardware resources by queuing jobs in a workload. A cloud-based HPC environment does not have the limitations of fixed (type of and quantity of) hardware resources. In theory, users and workloads could spin up any number and type of hardware resource. This paper discusses the limitations of using traditional scheduling algorithms for cloud-based HPC workloads. It proposes a new set of features, called “HPC optimizers,” for maximizing the benefits of the elasticity and scalability of the cloud with the goal of cost-performance optimization of the workload.

Keywords: high performance computing, HPC, cloud computing, optimization, schedulers

Procedia PDF Downloads 93
13060 The Impact of System Cascading Collapse and Transmission Line Outages to the Transfer Capability Assessment

Authors: Nur Ashida Salim, Muhammad Murtadha Othman, Ismail Musirin, Mohd Salleh Serwan

Abstract:

Uncertainty of system operating conditions is one of the causative reasons which may render to the instability of a transmission system. This will encumber the performance of transmission system to efficiently transmit the electrical power between areas. For that reason, accurate assessment of Transmission Reliability Margin (TRM) is essential in order to ensure effective power transfer between areas during the occurrence of system uncertainties. The power transfer is also called as the Available Transfer Capability (ATC) in which it is the information required by the utilities and marketers to instigate selling and buying the electric energy. This paper proposes a computationally effective approach to estimate TRM and ATC by considering the uncertainties of system cascading collapse and transmission line outages which is identified as the main reasons in power system instability. In accordance to the results that have been obtained, the proposed method is essential for the transmission providers which could help the power marketers and planning sectors in the operation and reserving transmission services based on the ATC calculated.

Keywords: system cascading collapse, transmission line outages, transmission reliability margin, available transfer capability

Procedia PDF Downloads 426
13059 Performance Evaluation of an Inventive Co2 Gas Separation Inorganic Ceramic Membrane System

Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Oyoh Kechinyere, Edward Gobina

Abstract:

Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The challenges to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper therefore evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.

Keywords: carbon dioxide, gas separation, inorganic ceramic membrane, permselectivity

Procedia PDF Downloads 344