Search results for: cascaded neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5346

Search results for: cascaded neural network

4026 Application of an Artificial Neural Network to Determine the Risk of Malignant Tumors from the Images Resulting from the Asymmetry of Internal and External Thermograms of the Mammary Glands

Authors: Amdy Moustapha Drame, Ilya V. Germashev, E. A. Markushevskaya

Abstract:

Among the main problems of medicine is breast cancer, from which a significant number of women around the world are constantly dying. Therefore, the detection of malignant breast tumors is an urgent task. For many years, various technologies for detecting these tumors have been used, in particular, in thermal imaging in order to determine different levels of breast cancer development. These periodic screening methods are a diagnostic tool for women and may have become an alternative to older methods such as mammography. This article proposes a model for the identification of malignant neoplasms of the mammary glands by the asymmetry of internal and external thermal imaging fields.

Keywords: asymmetry, breast cancer, tumors, deep learning, thermogram, convolutional transformation, classification

Procedia PDF Downloads 67
4025 Evaluating the Perception of Roma in Europe through Social Network Analysis

Authors: Giulia I. Pintea

Abstract:

The Roma people are a nomadic ethnic group native to India, and they are one of the most prevalent minorities in Europe. In the past, Roma were enslaved and they were imprisoned in concentration camps during the Holocaust; today, Roma are subject to hate crimes and are denied access to healthcare, education, and proper housing. The aim of this project is to analyze how the public perception of the Roma people may be influenced by antiziganist and pro-Roma institutions in Europe. In order to carry out this project, we used social network analysis to build two large social networks: The antiziganist network, which is composed of institutions that oppress and racialize Roma, and the pro-Roma network, which is composed of institutions that advocate for and protect Roma rights. Measures of centrality, density, and modularity were obtained to determine which of the two social networks is exerting the greatest influence on the public’s perception of Roma in European societies. Furthermore, data on hate crimes on Roma were gathered from the Organization for Security and Cooperation in Europe (OSCE). We analyzed the trends in hate crimes on Roma for several European countries for 2009-2015 in order to see whether or not there have been changes in the public’s perception of Roma, thus helping us evaluate which of the two social networks has been more influential. Overall, the results suggest that there is a greater and faster exchange of information in the pro-Roma network. However, when taking the hate crimes into account, the impact of the pro-Roma institutions is ambiguous, due to differing patterns among European countries, suggesting that the impact of the pro-Roma network is inconsistent. Despite antiziganist institutions having a slower flow of information, the hate crime patterns also suggest that the antiziganist network has a higher impact on certain countries, which may be due to institutions outside the political sphere boosting the spread of antiziganist ideas and information to the European public.

Keywords: applied mathematics, oppression, Roma people, social network analysis

Procedia PDF Downloads 280
4024 The Nature and the Structure of Scientific and Innovative Collaboration Networks

Authors: Afshin Moazami, Andrea Schiffauerova

Abstract:

The objective of this work is to investigate the development and the role of collaboration networks in the creation of knowledge and innovations in the US and Canada, with a special focus on Quebec. In order to create scientific networks, the data on journal articles were extracted from SCOPUS, and the networks were built based on the co-authorship of the journal papers. For innovation networks, the USPTO database was used, and the networks were built on the patent co-inventorship. Various indicators characterizing the evolution of the network structure and the positions of the researchers and inventors in the networks were calculated. The comparison between the United States, Canada, and Quebec was then carried out. The preliminary results show that the nature of scientific collaboration networks differs from the one seen in innovation networks. Scientists work in bigger teams and are mostly interconnected within one giant network component, whereas the innovation network is much more clustered and fragmented, the inventors work more repetitively with the same partners, often in smaller isolated groups. In both Canada and the US, an increasing tendency towards collaboration was observed, and it was found that networks are getting bigger and more centralized with time. Moreover, a declining share of knowledge transfers per scientist was detected, suggesting an increasing specialization of science. The US collaboration networks tend to be more centralized than the Canadian ones. Quebec shares a lot of features with the Canadian network, but some differences were observed, for example, Quebec inventors rely more on the knowledge transmission through intermediaries.

Keywords: Canada, collaboration, innovation network, scientific network, Quebec, United States

Procedia PDF Downloads 207
4023 Energy Balance Routing to Enhance Network Performance in Wireless Sensor Network

Authors: G. Baraneedaran, Deepak Singh, Kollipara Tejesh

Abstract:

The wireless sensors network has been an active research area over the y-ear passed. Due to the limited energy and communication ability of sensor nodes, it seems especially important to design a routing protocol for WSNs so that sensing data can be transmitted to the receiver effectively, an energy-balanced routing method based on forward-aware factor (FAF-EBRM) is proposed in this paper. In FAF-EBRM, the next-hop node is selected according to the awareness of link weight and forward energy density. A spontaneous reconstruction mechanism for Local topology is designed additionally. In this experiment, FAF-EBRM is compared with LEACH and EECU, experimental results show that FAF-EBRM outperforms LEACH and EECU, which balances the energy consumption, prolongs the function lifetime and guarantees high Qos of WSN.

Keywords: energy balance, forward-aware factor (FAF), forward energy density, link weight, network performance

Procedia PDF Downloads 541
4022 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video

Authors: Nidhal K. Azawi, John M. Gauch

Abstract:

Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.

Keywords: colonoscopy classification, feature extraction, image alignment, machine learning

Procedia PDF Downloads 256
4021 A Taxonomy of Routing Protocols in Wireless Sensor Networks

Authors: A. Kardi, R. Zagrouba, M. Alqahtani

Abstract:

The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics.

Keywords: routing, sensor, survey, wireless sensor networks, WSNs

Procedia PDF Downloads 188
4020 Cyber Security Enhancement via Software Defined Pseudo-Random Private IP Address Hopping

Authors: Andre Slonopas, Zona Kostic, Warren Thompson

Abstract:

Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicate via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.

Keywords: moving target defense, cybersecurity, network security, hopping randomization, software defined network, network security theory

Procedia PDF Downloads 194
4019 Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-To-Peer Network

Authors: Muntadher Sallal, Gareth Owenson, Mo Adda, Safa Shubbar

Abstract:

Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions. Bitcoin is gaining wider adoption than any previous crypto-currency. However, the mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical topology can cause a delay overhead in information propagation, which makes the system vulnerable to double-spend attacks. Aiming at alleviating the propagation delay problem, this paper introduces proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol, that are based on how clusters are formulated and how nodes can define their membership, is to improve the information propagation delay in the Bitcoin network. In MNBC protocol, physical internet connectivity increases, as well as the number of hops between nodes, decreases through assigning nodes to be responsible for maintaining clusters based on physical internet proximity. We show, through simulations, that the proposed protocol defines better clustering structures that optimize the performance of the transaction propagation over the Bitcoin protocol. The evaluation of partition attacks in the MNBC protocol, as well as the Bitcoin network, was done in this paper. Evaluation results prove that even though the Bitcoin network is more resistant against the partitioning attack than the MNBC protocol, more resources are needed to be spent to split the network in the MNBC protocol, especially with a higher number of nodes.

Keywords: Bitcoin network, propagation delay, clustering, scalability

Procedia PDF Downloads 120
4018 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning

Authors: Hossein Havaeji, Tony Wong, Thien-My Dao

Abstract:

1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.

Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning

Procedia PDF Downloads 126
4017 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof

Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba

Abstract:

In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.

Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof

Procedia PDF Downloads 151
4016 Proposal of Data Collection from Probes

Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik

Abstract:

In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.

Keywords: communication, computer network, data collection, probe

Procedia PDF Downloads 364
4015 A Novel Solution Methodology for Transit Route Network Design Problem

Authors: Ghada Moussa, Mamoud Owais

Abstract:

Transit Route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.

Keywords: integer programming, transit route design, transportation, urban planning

Procedia PDF Downloads 281
4014 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks

Authors: N. Nalini, Lokesh B. Bhajantri

Abstract:

In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.

Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology

Procedia PDF Downloads 457
4013 Advancing Power Network Maintenance: The Development and Implementation of a Robotic Cable Splicing Machine

Authors: Ali Asmari, Alex Symington, Htaik Than, Austin Caradonna, John Senft

Abstract:

This paper presents the collaborative effort between ULC Technologies and Con Edison in developing a groundbreaking robotic cable splicing machine. The focus is on the machine's design, which integrates advanced robotics and automation to enhance safety and efficiency in power network maintenance. The paper details the operational steps of the machine, including cable grounding, cutting, and removal of different insulation layers, and discusses its novel technological approach. The significant benefits over traditional methods, such as improved worker safety and reduced outage times, are highlighted based on the field data collected during the validation phase of the project. The paper also explores the future potential and scalability of this technology, emphasizing its role in transforming the landscape of power network maintenance.

Keywords: cable splicing machine, power network maintenance, electric distribution, electric transmission, medium voltage cable

Procedia PDF Downloads 68
4012 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 147
4011 Simulation of Human Heart Activation Based on Diffusion Tensor Imaging

Authors: Ihab Elaff

Abstract:

Simulating the heart’s electrical stimulation is essential in modeling and evaluating the electrophysiology behavior of the heart. For achieving that, there are two structures in concern: the ventricles’ Myocardium, and the ventricles’ Conduction Network. Ventricles’ Myocardium has been modeled as anisotropic material from Diffusion Tensor Imaging (DTI) scan, and the Conduction Network has been extracted from DTI as a case-based structure based on the biological properties of the heart tissues and the working methodology of the Magnetic Resonance Imaging (MRI) scanner. Results of the produced activation were much similar to real measurements of the reference model that was presented in the literature.

Keywords: diffusion tensor, DTI, heart, conduction network, excitation propagation

Procedia PDF Downloads 271
4010 Artificial Neurons Based on Memristors for Spiking Neural Networks

Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi

Abstract:

Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to its high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO₂-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO₂-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.

Keywords: leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity

Procedia PDF Downloads 139
4009 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults

Authors: Ioannis Binas, Marios Moschakis

Abstract:

Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.

Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation

Procedia PDF Downloads 141
4008 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks

Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun

Abstract:

Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.

Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic

Procedia PDF Downloads 532
4007 Social Economical Aspect of the City of Kigali Road Network Functionality

Authors: David Nkurunziza, Rahman Tafahomi

Abstract:

The population growth rate of the city of Kigali is increasing annually. In 1960 the population was six thousand, in 1990 it became two hundred thousand and is supposed to be 4 to 5 million incoming twenty years. With the increase in the residents living in the city of Kigali, there is also a need for an increase in social and economic infrastructures connected by the road networks to serve the residents effectively. A road network is a route that connects people to their needs and has to facilitate people to reach the social and economic facilities easily. This research analyzed the social and economic aspects of three selected roads networks passing through all three districts of the city of Kigali, whose center is the city center roundabout, thorough evaluation of the proximity of the social and economic facilities to the road network. These road networks are the city center to nyabugogo to karuruma, city center to kanogo to Rwanda to kicukiro center to Nyanza taxi park, and city center to Yamaha to kinamba to gakinjiro to kagugu health center road network. This research used a methodology of identifying and quantifying the social and economic facilities within a limited distance of 300 meters along each side of the road networks. Social facilities evaluated are the health facilities, education facilities, institution facilities, and worship facilities, while the economic facilities accessed are the commercial zones, industries, banks, and hotels. These facilities were evaluated and graded based on their distance from the road and their value. The total scores of each road network per kilometer were calculated and finally, the road networks were ranked based on their percentage score per one kilometer—this research was based on field surveys and interviews to collect data with forms and questionnaires. The analysis of the data collected declared that the road network from the city center to Yamaha to kinamba to gakinjiro to the kagugu health center is the best performer, the second is the road network from the city center to nyabugogo to karuruma, while the third is the road network from the city center to kanogo to rwandex to kicukiro center to nyaza taxi park.

Keywords: social economical aspect, road network functionality, urban road network, economic and social facilities

Procedia PDF Downloads 166
4006 Dynamical Relation of Poisson Spike Trains in Hodkin-Huxley Neural Ion Current Model and Formation of Non-Canonical Bases, Islands, and Analog Bases in DNA, mRNA, and RNA at or near the Transcription

Authors: Michael Fundator

Abstract:

Groundbreaking application of biomathematical and biochemical research in neural networks processes to formation of non-canonical bases, islands, and analog bases in DNA and mRNA at or near the transcription that contradicts the long anticipated statistical assumptions for the distribution of bases and analog bases compounds is implemented through statistical and stochastic methods apparatus with addition of quantum principles, where the usual transience of Poisson spike train becomes very instrumental tool for finding even almost periodical type of solutions to Fokker-Plank stochastic differential equation. Present article develops new multidimensional methods of finding solutions to stochastic differential equations based on more rigorous approach to mathematical apparatus through Kolmogorov-Chentsov continuity theorem that allows the stochastic processes with jumps under certain conditions to have γ-Holder continuous modification that is used as basis for finding analogous parallels in dynamics of neutral networks and formation of analog bases and transcription in DNA.

Keywords: Fokker-Plank stochastic differential equation, Kolmogorov-Chentsov continuity theorem, neural networks, translation and transcription

Procedia PDF Downloads 410
4005 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling

Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé

Abstract:

Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.

Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation

Procedia PDF Downloads 82
4004 Monitoring Memories by Using Brain Imaging

Authors: Deniz Erçelen, Özlem Selcuk Bozkurt

Abstract:

The course of daily human life calls for the need for memories and remembering the time and place for certain events. Recalling memories takes up a substantial amount of time for an individual. Unfortunately, scientists lack the proper technology to fully understand and observe different brain regions that interact to form or retrieve memories. The hippocampus, a complex brain structure located in the temporal lobe, plays a crucial role in memory. The hippocampus forms memories as well as allows the brain to retrieve them by ensuring that neurons fire together. This process is called “neural synchronization.” Sadly, the hippocampus is known to deteriorate often with age. Proteins and hormones, which repair and protect cells in the brain, typically decline as the age of an individual increase. With the deterioration of the hippocampus, an individual becomes more prone to memory loss. Many memory loss starts off as mild but may evolve into serious medical conditions such as dementia and Alzheimer’s disease. In their quest to fully comprehend how memories work, scientists have created many different kinds of technology that are used to examine the brain and neural pathways. For instance, Magnetic Resonance Imaging - or MRI- is used to collect detailed images of an individual's brain anatomy. In order to monitor and analyze brain functions, a different version of this machine called Functional Magnetic Resonance Imaging - or fMRI- is used. The fMRI is a neuroimaging procedure that is conducted when the target brain regions are active. It measures brain activity by detecting changes in blood flow associated with neural activity. Neurons need more oxygen when they are active. The fMRI measures the change in magnetization between blood which is oxygen-rich and oxygen-poor. This way, there is a detectable difference across brain regions, and scientists can monitor them. Electroencephalography - or EEG - is also a significant way to monitor the human brain. The EEG is more versatile and cost-efficient than an fMRI. An EEG measures electrical activity which has been generated by the numerous cortical layers of the brain. EEG allows scientists to be able to record brain processes that occur after external stimuli. EEGs have a very high temporal resolution. This quality makes it possible to measure synchronized neural activity and almost precisely track the contents of short-term memory. Science has come a long way in monitoring memories using these kinds of devices, which have resulted in the inspections of neurons and neural pathways becoming more intense and detailed.

Keywords: brain, EEG, fMRI, hippocampus, memories, neural pathways, neurons

Procedia PDF Downloads 91
4003 Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios

Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi

Abstract:

Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints. This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.

Keywords: DSDV, OLSR, quality of service, routing protocols, VANET

Procedia PDF Downloads 475
4002 Capitalizing on Differential Network Ties: Unpacking Individual Creativity from Social Capital Perspective

Authors: Yuanyuan Wang, Chun Hui

Abstract:

Drawing on social capital theory, this article discusses how individuals may utilize network ties to come up with creativity. Social capital theory elaborates how network ties enhances individual creativity from three dimensions: structural access, and relational and cognitive mechanisms. We categorize network ties into strong and weak in terms of tie strength. With less structural constraints, weak ties allow diverse and heterogeneous knowledge to prosper, further facilitating individuals to build up connections among diverse even distant ideas. On the other hand, strong ties with the relational mechanism of cooperation and trust may benefit the accumulation of psychological capital, ultimately to motivate and sustain creativity. We suggest that differential ties play different roles for individual creativity: Weak ties deliver informational benefit directly rifling individual creativity from informational resource aspect; strong ties offer solidarity benefits to reinforce psychological capital, which further inspires individual creativity engagement from a psychological viewpoint. Social capital embedded in network ties influence individuals’ informational acquisition, motivation, as well as cognitive ability to be creative. Besides, we also consider the moderating effects constraining the relatedness between network ties and creativity, such as knowledge articulability. We hypothesize that when the extent of knowledge articulability is low, that is, with low knowledge codifiability, and high dependency and ambiguity, weak ties previous serving as knowledge reservoir will not become ineffective on individual creativity. Two-wave survey will be employed in Mainland China to empirically test mentioned propositions.

Keywords: network ties, social capital, psychological capital, knowledge articulability, individual creativity

Procedia PDF Downloads 412
4001 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 156
4000 Exploring the Connectedness of Ad Hoc Mesh Networks in Rural Areas

Authors: Ibrahim Obeidat

Abstract:

Reaching a fully-connected network of mobile nodes in rural areas got a great attention between network researchers. This attention rose due to the complexity and high costs while setting up the needed infrastructures for these networks, in addition to the low transmission range these nodes has. Terranet technology, as an example, employs ad-hoc mesh network where each node has a transmission range not exceed one kilometer, this means that every two nodes are able to communicate with each other if they are just one kilometer far from each other, otherwise a third-party will play the role of the “relay”. In Terranet, and as an idea to reduce network setup cost, every node in the network will be considered as a router that is responsible of forwarding data between other nodes which result in a decentralized collaborative environment. Most researches on Terranet presents the idea of how to encourage mobile nodes to become more cooperative by letting their devices in “ON” state as long as possible while accepting to play the role of relay (router). This research presents the issue of finding the percentage of nodes in ad-hoc mesh network within rural areas that should play the role of relay at every time slot, relating to what is the actual area coverage of nodes in order to have the network reach the fully-connectivity. Far from our knowledge, till now there is no current researches discussed this issue. The research is done by making an implementation that depends on building adjacency matrix as an indicator to the connectivity between network members. This matrix is continually updated until each value in it refers to the number of hubs that should be followed to reach from one node to another. After repeating the algorithm on different area sizes, different coverage percentages for each size, and different relay percentages for several times, results extracted shows that for area coverage less than 5% we need to have 40% of the nodes to be relays, where 10% percentage is enough for areas with node coverage greater than 5%.

Keywords: ad-hoc mesh networks, network connectivity, mobile ad-hoc networks, Terranet, adjacency matrix, simulator, wireless sensor networks, peer to peer networks, vehicular Ad hoc networks, relay

Procedia PDF Downloads 287
3999 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: acoustic features, autonomous robots, feature extraction, terrain classification

Procedia PDF Downloads 374
3998 Borrowing Performance: A Network Connectivity Analysis of Second-Tier Cities in Turkey

Authors: Eğinç Simay Ertürk, Ferhan Gezi̇ci̇

Abstract:

The decline of large cities and the rise of second-tier cities have been observed as a global trend with significant implications for economic development and urban planning. In this context, the concepts of agglomeration shadow and borrowed size have gained importance as network externalities that affect the growth and development of surrounding areas. Istanbul, Izmir, and Ankara are Turkey's most significant metropolitan cities and play a significant role in the country's economy. The surrounding cities rely on these metropolitan cities for economic growth and development. However, the concentration of resources and investment in a single location can lead to agglomeration shadows in the surrounding areas. On the other hand, network connectivity between metropolitan and second-tier cities can result in borrowed function and performance, enabling smaller cities to access resources, investment, and knowledge they would not otherwise have access. The study hypothesizes that the network connectivity between second-tier and metropolitan cities in Turkey enables second-tier cities to increase their urban performance by borrowing size through these networks. Regression analysis will be used to identify specific network connectivity parameters most strongly associated with urban performance. Network connectivity will be measured with parameters such as transportation nodes and telecommunications infrastructure, and urban performance will be measured with an index, including parameters such as employment, education, and industry entrepreneurship, with data at the province levels. The contribution of the study lies in its research on how networking can benefit second-tier cities in Turkey.

Keywords: network connectivity, borrowed size, agglomeration shadow, secondary cities

Procedia PDF Downloads 86
3997 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 114