Search results for: automated delivery cabinets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2799

Search results for: automated delivery cabinets

1479 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images

Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi

Abstract:

Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.

Keywords: biometric measurements, fetal head malformations, machine learning methods, US images

Procedia PDF Downloads 287
1478 A Study of Lean Principles Implementation in the Libyan Healthcare and Industry Sectors

Authors: Nasser M. Amaitik, Ngwan F. Elsagzli

Abstract:

The Lean technique is very important in the service and industrial fields. It is defined as an effective tool to eliminate the wastes. In lean the wastes are defined as anything which does not add value to the end product. There are wastes that can be avoided, but some are unavoidable to many reasons. The present study aims to apply the principles of lean in two different sectors, healthcare, and industry. Two case studies have been selected to apply the experimental work. The first case was Al-Jalaa Hospital while the second case study was the Technical Company of Aluminum Sections in Benghazi, Libya. In both case studies the Value Stream Map (VSM) of the current state has been constructed. The proposed plans have been implemented by merging or eliminating procedures or processes. The results obtained from both case studies showed improvement in capacity, idle time and utilized time.

Keywords: healthcare service delivery, idle time, lean principles, utilized time, value stream mapping, wastes

Procedia PDF Downloads 284
1477 An Enhanced SAR-Based Tsunami Detection System

Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah

Abstract:

Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.

Keywords: detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter

Procedia PDF Downloads 392
1476 Computing Customer Lifetime Value in E-Commerce Websites with Regard to Returned Orders and Payment Method

Authors: Morteza Giti

Abstract:

As online shopping is becoming increasingly popular, computing customer lifetime value for better knowing the customers is also gaining more importance. Two distinct factors that can affect the value of a customer in the context of online shopping is the number of returned orders and payment method. Returned orders are those which have been shipped but not collected by the customer and are returned to the store. Payment method refers to the way that customers choose to pay for the price of the order which are usually two: Pre-pay and Cash-on-delivery. In this paper, a novel model called RFMSP is presented to calculated the customer lifetime value, taking these two parameters into account. The RFMSP model is based on the common RFM model while adding two extra parameter. The S represents the order status and the P indicates the payment method. As a case study for this model, the purchase history of customers in an online shop is used to compute the customer lifetime value over a period of twenty months.

Keywords: RFMSP model, AHP, customer lifetime value, k-means clustering, e-commerce

Procedia PDF Downloads 315
1475 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures

Procedia PDF Downloads 374
1474 Optimizing the Effectiveness of Docetaxel with Solid Lipid Nanoparticles: Formulation, Characterization, in Vitro and in Vivo Assessment

Authors: Navid Mosallaei, Mahmoud Reza Jaafari, Mohammad Yahya Hanafi-Bojd, Shiva Golmohammadzadeh, Bizhan Malaekeh-Nikouei

Abstract:

Background: Docetaxel (DTX), a potent anticancer drug derived from the European yew tree, is effective against various human cancers by inhibiting microtubule depolymerization. Solid lipid nanoparticles (SLNs) have gained attention as drug carriers for enhancing drug effectiveness and safety. SLNs, submicron-sized lipid-based particles, can passively target tumors through the "enhanced permeability and retention" (EPR) effect, providing stability, drug protection, and controlled release while being biocompatible. Methods: The SLN formulation included biodegradable lipids (Compritol and Precirol), hydrogenated soy phosphatidylcholine (H-SPC) as a lipophilic co-surfactant, and Poloxamer 188 as a non-ionic polymeric stabilizer. Two SLN preparation techniques, probe sonication and microemulsion, were assessed. Characterization encompassed SLNs' morphology, particle size, zeta potential, matrix, and encapsulation efficacy. In-vitro cytotoxicity and cellular uptake studies were conducted using mouse colorectal (C-26) and human malignant melanoma (A-375) cell lines, comparing SLN-DTX with Taxotere®. In-vivo studies evaluated tumor inhibitory efficacy and survival in mice with colorectal (C-26) tumors, comparing SLNDTX withTaxotere®. Results: SLN-DTX demonstrated stability, with an average size of 180 nm and a low polydispersity index (PDI) of 0.2 and encapsulation efficacy of 98.0 ± 0.1%. Differential scanning calorimetry (DSC) suggested amorphous encapsulation of DTX within SLNs. In vitro studies revealed that SLN-DTX exhibited nearly equivalent cytotoxicity to Taxotere®, depending on concentration and exposure time. Cellular uptake studies demonstrated superior intracellular DTX accumulation with SLN-DTX. In a C-26 mouse model, SLN-DTX at 10 mg/kg outperformed Taxotere® at 10 and 20 mg/kg, with no significant differences in body weight changes and a remarkably high survival rate of 60%. Conclusion: This study concludes that SLN-DTX, prepared using the probe sonication, offers stability and enhanced therapeutic effects. It displayed almost same in vitro cytotoxicity to Taxotere® but showed superior cellular uptake. In a mouse model, SLN-DTX effectively inhibited tumor growth, with 10 mg/kg outperforming even 20 mg/kg of Taxotere®, without adverse body weight changes and with higher survival rates. This suggests that SLN-DTX has the potential to reduce adverse effects while maintaining or enhancing docetaxel's therapeutic profile, making it a promising drug delivery strategy suitable for industrialization.

Keywords: docetaxel, Taxotere®, solid lipid nanoparticles, enhanced permeability and retention effect, drug delivery, cancer chemotherapy, cytotoxicity, cellular uptake, tumor inhibition

Procedia PDF Downloads 81
1473 Evaluating Electronic Service Quality in Banking Iran

Authors: Vahid Bairami Rad

Abstract:

With the rapid growth of the Internet and the globalization of the market, most enterprises are trying to attract and win customers in the highly competitive electronic market. Better e-service quality will enhance the relationship with customers and their satisfaction. So the measurement of eservice quality is very important but it is a complex process due to the complex nature of services. Literature predicts that there is a lack of universal definition of e-service quality. The e-service quality measures in banking have great importance in achieving high customer base. This paper proposes a conceptual model for measuring e-service quality in Iranian Banking Iran. Nine dimensions reliability, ease of use, personalization, security and trust, website aesthetic, responsiveness, contact and speed of delivery had been identified. The results of this paper may help to develop a proper scale to measure the e-service quality in Iranian Banking Industry, which may assist to maintain and improve the performance and effectiveness of e-service quality to retain customers.

Keywords: electronic banking, Dimensions, customer service quality, electronic, communication

Procedia PDF Downloads 497
1472 The Link between Strategic Sense-Making and Performance in Dubai Public Sector

Authors: Mohammad Rahman, Guy Burton, Megan Mathias

Abstract:

Strategic management as an organizational practice was adopted by the public sector in the New Public Management (NPM) era that began in most parts of the world in the 1980s. Strategy as a new public management concept was subscribed by governments in both developed and developing world, as they were persuaded that clearly defined vision, mission and goals, as well as programs and projects - aligned with the goals - could potentially help achieve government vision at the national level and organizational goals at the service-delivery level. The advocates for strategic management in the public sector saw an inherent link between strategy and performance, claiming that the implementation of organizational strategy has an effect on the overall performance of an organization. Arguably, many government entities that have failed in enhancing team and individual performance had poorly-designed strategy or weak strategy implementation. Another key argument about low-level performance is linked with lack of strategic sense-making and orientation by middle managers in particular. Scholars maintain that employees at all levels need to understand strategic management plan in order to facilitate its implementation. Therefore, involving employees (particularly the middle managers) from the beginning potentially helps an organization avoid the drop in performance, and on the contrary would increase their commitment. The United Arab Emirates (UAE) is well known for adopting public sector reform strategies and tools since the 1990s. This observation is contextually pertinent in the case of the Government of Dubai, which has provided a Strategy Execution Guide to all of its entities to achieve high level strategic success in service delivery. The Dubai public sector also adopts road maps for e-Government, Smart Dubai, Expo 2020, investment, environment, education, health and other sectors. Evidently, some of these strategies are bringing tangible (e.g. Smart Dubai transformation) results in a transformational manner. However, the amount of academic research and literature on the strategy process vis-à-vis staff performance in the Government of Dubai is limited. In this backdrop, this study examines how individual performance of public sector employees in Dubai is linked with their sense-making, engagement and orientation with strategy development and implementation processes. Based on a theoretical framework, this study will undertake a sample-based questionnaire survey amongst middle managers in Dubai public sector to (a) measure the level of engagement of middle managers in strategy development and implementation processes as perceived by them; (b) observe the organizational landscape in which role expectations are placed on middle managers; and (c) examine the impact of employee engagement in strategy development process and the conditions for role expectations on individual performance. The paper is expected to provide new insights on the interface between strategic sense-making and performance in order to contribute a better understanding of the current culture/practices of staff engagement in strategic management in the public sector of Dubai.

Keywords: employee performance, government of Dubai, middle managers, strategic sense-making

Procedia PDF Downloads 197
1471 Podcasting as an Instructional Method: Case Study of a School Psychology Class

Authors: Jeff A. Tysinger, Dawn P. Tysinger

Abstract:

There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.

Keywords: motivation, online learning, pedagogy, podcast

Procedia PDF Downloads 131
1470 Nigerian Football System: Examining Meso-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport

Authors: I. Derek Kaka’an, P. Smolianov, D. Koh Choon Lian, S. Dion, C. Schoen, J. Norberg

Abstract:

This study was designed to examine mass participation and elite football performance in Nigeria with reference to advance international football management practices. Over 200 sources of literature on sport delivery systems were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro- (socio-economic, cultural, legislative, and organizational), meso- (infrastructures, personnel, and services enabling sport programs) and micro-level (operations, processes, and methodologies for development of individual athletes). The model has received scholarly validation and showed to be a framework for program analysis that is not culturally bound. The Smolianov and Zakus model has been employed for further understanding of sport systems such as US soccer, US Rugby, swimming, tennis, and volleyball as well as Russian and Dutch swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sport governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 120 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, content analysis of Nigeria Football Federation’s website and organizational documentation was conducted. This paper focuses on the meso-level of Nigerian football delivery, particularly infrastructures, personnel, and services enabling sport programs. This includes training centers, competition systems, and intellectual services. Results identified remarkable achievements coupled with great potential to further develop football in different types of public and private organizations in Nigeria. These include: assimilating football competitions with other cultural and educational activities, providing favorable conditions for employees of all possible organizations to partake and help in managing football programs and events, providing football coaching integrated with counseling for prevention of antisocial conduct, and improving cooperation between football programs and organizations for peace-making and advancement of international relations, tourism, and socio-economic development. Accurate reporting of the sports programs from the media should be encouraged through staff training for better awareness of various events. The systematic integration of these meso-level practices into the balanced development of mass and high-performance football will contribute to international sport success as well as national health, education, and social harmony.

Keywords: football, high performance, mass participation, Nigeria, sport development

Procedia PDF Downloads 250
1469 A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories

Authors: Umesh Kumar Singh, Chanchala Joshi

Abstract:

With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks.

Keywords: CVSS score, risk level, security measurement, vulnerability category

Procedia PDF Downloads 319
1468 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 24
1467 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT

Authors: R. R. Ramsheeja, R. Sreeraj

Abstract:

For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.

Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification

Procedia PDF Downloads 508
1466 Revolutionizing Gaming Setup Design: Utilizing Generative and Iterative Methods to Prop and Environment Design, Transforming the Landscape of Game Development Through Automation and Innovation

Authors: Rashmi Malik, Videep Mishra

Abstract:

The practice of generative design has become a transformative approach for an efficient way of generating multiple iterations for any design project. The conventional way of modeling the game elements is very time-consuming and requires skilled artists to design. A 3D modeling tool like 3D S Max, Blender, etc., is used traditionally to create the game library, which will take its stipulated time to model. The study is focused on using the generative design tool to increase the efficiency in game development at the stage of prop and environment generation. This will involve procedural level and customized regulated or randomized assets generation. The paper will present the system design approach using generative tools like Grasshopper (visual scripting) and other scripting tools to automate the process of game library modeling. The script will enable the generation of multiple products from the single script, thus creating a system that lets designers /artists customize props and environments. The main goal is to measure the efficacy of the automated system generated to create a wide variety of game elements, further reducing the need for manual content creation and integrating it into the workflow of AAA and Indie Games.

Keywords: iterative game design, generative design, gaming asset automation, generative game design

Procedia PDF Downloads 66
1465 The Impact of AI on Higher Education

Authors: Georges Bou Ghantous

Abstract:

This literature review examines the transformative impact of Artificial Intelligence (AI) on higher education, highlighting both the potential benefits and challenges associated with its adoption. The review reveals that AI significantly enhances personalized learning by tailoring educational experiences to individual student needs, thereby boosting engagement and learning outcomes. Automated grading systems streamline assessment processes, allowing educators to focus on improving instructional quality and student interaction. AI's data-driven insights provide valuable analytics, helping educators identify trends in at-risk students and refine teaching strategies. Moreover, AI promotes enhanced instructional innovation through the adoption of advanced teaching methods and technologies, enriching the educational environment. Administrative efficiency is also improved as AI automates routine tasks, freeing up time for educators to engage in research and curriculum development. However, the review also addresses the challenges that accompany AI integration, such as data privacy concerns, algorithmic bias, dependency on technology, reduced human interaction, and ethical dilemmas. This balanced exploration underscores the need for careful consideration of both the advantages and potential hurdles in the implementation of AI in higher education.

Keywords: administrative efficiency, data-driven insights, data privacy, ethical dilemmas, higher education, personalized learning

Procedia PDF Downloads 25
1464 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 162
1463 Mining the Proteome of Fusobacterium nucleatum for Potential Therapeutics Discovery

Authors: Abdul Musaweer Habib, Habibul Hasan Mazumder, Saiful Islam, Sohel Sikder, Omar Faruk Sikder

Abstract:

The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1499 proteins of Fusobacterium nucleatum, which has no homolog in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the KEGG Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the 3-D structure of these three proteins. Finally, determination of ligand binding sites of the key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against Fusobacterium nucleatum.

Keywords: colorectal cancer, drug target, Fusobacterium nucleatum, homology modeling, ligands

Procedia PDF Downloads 387
1462 An Enhanced Connectivity Aware Routing Protocol for Vehicular Ad Hoc Networks

Authors: Ahmadu Maidorawa, Kamalrulnizam Abu Bakar

Abstract:

This paper proposed an Enhanced Connectivity Aware Routing (ECAR) protocol for Vehicular Ad hoc Network (VANET). The protocol uses a control broadcast to reduce the number of overhead packets needed in a route discovery process. It is also equipped with an alternative backup route that is used whenever a primary path to destination failed, which highly reduces the frequent launching and re-launching of the route discovery process that waste useful bandwidth and unnecessarily prolonging the average packet delay. NS2 simulation results show that the performance of ECAR protocol outperformed the original connectivity aware routing (CAR) protocol by reducing the average packet delay by 28%, control overheads by 27% and increased the packet delivery ratio by 22%.

Keywords: alternative path, primary path, protocol, routing, VANET, vehicular ad hoc networks

Procedia PDF Downloads 401
1461 The Increasing Importance of the Role of AI in Higher Education

Authors: Joshefina Bengoechea Fernandez, Alex Bell

Abstract:

In its 2021 guidance for policy makers, the UNESCO has proposed 4 areas where AI can be applied in educational settings: These are: 1) Education management and delivery; 2) Learning and assessment; 3) Empowering teachers and facilitating teaching, and 4) Providing lifelong learning possibilities (UNESCO, 2021). Like with wblockchain technologies, AI will automate the management of educational institutions. These include, but are not limited to admissions, timetables, attendance, and homework monitoring. Furthermore, AI will be used to select relevant learning content across learning platforms for each student, based on his or her personalized needs. A problem educators face is the “one-size-fits-all” approach that does not work with a diverse student population. The purpose of this paper is to illustrate if the implementation of Technology is the solution to the Problems faced in Higher Education. The paper builds upon a constructivist approach, combining a literature review and research on key publications and academic reports.

Keywords: artificial intelligence, learning platforms, students personalised needs, life- long learning, privacy, ethics

Procedia PDF Downloads 102
1460 A Taxonomy of Routing Protocols in Wireless Sensor Networks

Authors: A. Kardi, R. Zagrouba, M. Alqahtani

Abstract:

The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics.

Keywords: routing, sensor, survey, wireless sensor networks, WSNs

Procedia PDF Downloads 181
1459 Service Quality Improvement in Ghana's Healthcare Supply Chain

Authors: Ammatu Alhassan

Abstract:

Quality healthcare delivery is a crucial indicator in assessing the overall developmental status of a country. There are many limitations in the Ghanaian healthcare supply chain due to the lack of studies about the correlation between quality health service and the healthcare supply chain. Patients who visit various healthcare providers face unpleasant experiences such as delays in the availability of their medications. In this study, an assessment of the quality of services provided to Ghanaian outpatients who visit public healthcare providers was investigated to establish its effect on the healthcare supply chain using a conceptual model. The Donabedian’s structure, process, and outcome theory for service quality evaluation were used to analyse 20 Ghanaian hospitals. The data obtained was tested using the structural equation model (SEM). The findings from this research will help us to improve the overall quality of the Ghanaian healthcare supply chain. The model which will be developed will help us to understand better the linkage between quality healthcare and the healthcare supply chain as well as serving as a reference tool for future healthcare research in Ghana.

Keywords: Ghana, healthcare, outpatients, supply chain

Procedia PDF Downloads 182
1458 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation

Procedia PDF Downloads 323
1457 Preparation and Characterization of Poly (ε-caprolactone) Loaded with Layered Double Hydroxide Nanohybrid Intercalated with Alendronate for Osteoporosis Treatment

Authors: Seyedeh Faranak Baniahmad, Soroor Yousefi

Abstract:

Osteoporosis is a bone disease which increases the bone fracture risk, reduces the bone mineral density (BMD) and alters the amount and variety of proteins in bones. Antiresorptive therapy is one the most popular Osteoporosis treatment methods. In this method the bisphosphonates, hormones, calcitonin or the selective estrogen receptor modulators is replaced. In order to reduce undesirable effects and to increase the bioavailability of drug agents, the controlled drug delivery systems have been utilized. In current study, the controlled release of Alendronate from LDH-PCL with (0, 5, 10, 15 % wt. of LDH) was investigated. The results showed that the release of alendronate from the lamellar LDH incorporated into the PCL matrix is much slower than the release of alendronate from the PCL. Therefore such systems are very promising, in which the antiresorptive drug has to remain in the matrix for longer time and can be released in controlled manner.

Keywords: osteoporosis, alendronate, poly (ε–caprolactone), layered double hydroxide

Procedia PDF Downloads 392
1456 Comparison of Authentication Methods in Internet of Things Technology

Authors: Hafizah Che Hasan, Fateen Nazwa Yusof, Maslina Daud

Abstract:

Internet of Things (IoT) is a powerful industry system, which end-devices are interconnected and automated, allowing the devices to analyze data and execute actions based on the analysis. The IoT technology leverages the technology of Radio-Frequency Identification (RFID) and Wireless Sensor Network (WSN), including mobile and sensor. These technologies contribute to the evolution of IoT. However, due to more devices are connected each other in the Internet, and data from various sources exchanged between things, confidentiality of the data becomes a major concern. This paper focuses on one of the major challenges in IoT; authentication, in order to preserve data integrity and confidentiality are in place. A few solutions are reviewed based on papers from the last few years. One of the proposed solutions is securing the communication between IoT devices and cloud servers with Elliptic Curve Cryptograhpy (ECC) based mutual authentication protocol. This solution focuses on Hyper Text Transfer Protocol (HTTP) cookies as security parameter.  Next proposed solution is using keyed-hash scheme protocol to enable IoT devices to authenticate each other without the presence of a central control server. Another proposed solution uses Physical Unclonable Function (PUF) based mutual authentication protocol. It emphasizes on tamper resistant and resource-efficient technology, which equals a 3-way handshake security protocol.

Keywords: Internet of Things (IoT), authentication, PUF ECC, keyed-hash scheme protocol

Procedia PDF Downloads 262
1455 Integrated Care on Chronic Diseases in Asia-Pacific Countries

Authors: Chang Liu, Hanwen Zhang, Vikash Sharma, Don Eliseo Lucerno-Prisno III, Emmanuel Yujuico, Maulik Chokshi, Prashanthi Krishnakumar, Bach Xuan Tran, Giang Thu Vu, Kamilla Anna Pinter, Shenglan Tang

Abstract:

Background and Aims: Globally, many health systems focus on hospital-based healthcare models targeting acute care and disease treatment, which are not effective in addressing the challenges of ageing populations, chronic conditions, multi-morbidities, and increasingly unhealthy lifestyles. Recently, integrated care programs on chronic diseases have been developed, piloted, and implemented to meet such challenges. However, integrated care programs in the Asia-Pacific region vary in the levels of integration from linkage to coordination to full integration. This study aims to identify and analyze existing cases of integrated care in the Asia-Pacific region and identify the facilitators and barriers in order to improve existing cases and inform future cases. Methods: The study is a comparative study, with a combination approach of desk-based research and key informant interviews. The selected countries included in this study represent a good mix of lower-middle income countries (the Philippines, India, Vietnam, and Fiji), upper-middle income country (China), and high-income country (Singapore) in the Asia-Pacific region. Existing integrated care programs were identified through the scoping review approach. Trigger, history, general design, beneficiaries, and objectors were summarized with barriers and facilitators of integrated care based on key informant interviews. Representative case(s) in each country were selected and comprehensively analyzed through deep-dive case studies. Results: A total of 87 existing integrated care programs on chronic diseases were found in all countries, with 44 in China, 21 in Singapore, 12 in India, 5 in Vietnam, 4 in the Philippines, and 1 in Fiji. 9 representative cases of integrated care were selected for in-depth description and analysis, with 2 in China, the Philippines, and Vietnam, and 1 in Singapore, India, and Fiji. Population aging and the rising chronic disease burden have been identified as key drivers for almost all the six countries. Among the six countries, Singapore has the longest history of integrated care, followed by Fiji, the Philippines, and China, while India and Vietnam have a shorter history of integrated care. Incentives, technologies, education, and performance evaluation would be crucial for developing strategies for implementing future programs and improve already existing programs. Conclusion: Integrated care is important for addressing challenges surrounding the delivery of long-term care. To date, there is an increasing trend of integrated care programs on chronic diseases in the Asia-Pacific region, and all six countries in our study set integrated care as a direction for their health systems transformation.

Keywords: integrated healthcare, integrated care delivery, chronic diseases, Asia-Pacific region

Procedia PDF Downloads 133
1454 Customized Design of Amorphous Solids by Generative Deep Learning

Authors: Yinghui Shang, Ziqing Zhou, Rong Han, Hang Wang, Xiaodi Liu, Yong Yang

Abstract:

The design of advanced amorphous solids, such as metallic glasses, with targeted properties through artificial intelligence signifies a paradigmatic shift in physical metallurgy and materials technology. Here, we developed a machine-learning architecture that facilitates the generation of metallic glasses with targeted multifunctional properties. Our architecture integrates the state-of-the-art unsupervised generative adversarial network model with supervised models, allowing the incorporation of general prior knowledge derived from thousands of data points across a vast range of alloy compositions, into the creation of data points for a specific type of composition, which overcame the common issue of data scarcity typically encountered in the design of a given type of metallic glasses. Using our generative model, we have successfully designed copper-based metallic glasses, which display exceptionally high hardness or a remarkably low modulus. Notably, our architecture can not only explore uncharted regions in the targeted compositional space but also permits self-improvement after experimentally validated data points are added to the initial dataset for subsequent cycles of data generation, hence paving the way for the customized design of amorphous solids without human intervention.

Keywords: metallic glass, artificial intelligence, mechanical property, automated generation

Procedia PDF Downloads 55
1453 Country Experience on Regulation of Traditional Medicine in Eritrea

Authors: Liya Abraham

Abstract:

Eritrea is located along the Red Sea, north of the Horn of Africa, between Djibouti and Sudan and has a population of about 3.2 million as of 2010. It has six administrative regions; Anseba, Debub, Debubawi K’eyih Bahri, Gash-Barka, Ma'akel, and Semenawi K’eyih Bahri. Eritrea has got its independence in 1991 after 30 years war of liberation. The country is blessed with various medicinal flora and fauna, and marine and terrestrial biodiversity. Traditional Medicine (TM) has been an integral part of the Eritrean culture for centuries. So far, more than 19 TM modalities have been recognized, and are broadly categorized as; herbal, procedure-based and spiritual. Despite the availability of modern medicine to the majority of the population, TM is still widely practiced. The rationale behind widespread use is accessibility, affordability and cultural acceptability. Hence, TM is of great contribution to the Eritrean health care system. As a matter of fact, harnessing the potential contribution of effective and safe TM in order to attain Universal Health Coverage (UHC) has been emphasized in the WHO TM strategy 2014-2023. The Eritrean TM, however, was operating without regulation and reliable scientific justification behind its safety and efficacy. Thus, the Ministry of Health (MoH), in recognition of the role of TM in primary healthcare and safeguard public health, established a regulatory body for TM so-called as Traditional Medicine Unit (TMU) in 2012. The mission of the unit is to ensure rational TM use through an integrated health service delivery system and contribute to the country’s economic and social development. The unit has established its national TM policy in 2017. The activities of the unit are guided by the National TM Advisory Committee (TMAC), responsible for the provision of technical assistance and advisory role. Moreover, the Legal Framework and Code of Ethics and Practice which provide a legal basis for the regulation of TM have also been drafted. In recognition of the importance of TM research and development, the unit launched a nationwide TM survey in 2017 and had surveyed two zones (Gash-Barka and Debub). The findings of the survey were subjected to a research dissemination workshop and publication in international journals. Furthermore, TM-related adverse events reporting tool (Green Form) aiming to guide regulatory interventions and researches have been established by the unit, and ever since reports are flowing. The unit has also been offering training to THPs, pharmacy students and health care professionals regarding TM and its regulatory activities. In addition, as part of the establishment of the national medicinal plants' database and herbal monograph, more than 329 and 30 medicinal plants, have been compiled respectively. In conclusion, TM is still widely accepted and practiced in Eritrea. The TMU ever since its establishment is endeavoring to ensure the safety and efficacy of the TM, and its integration in the mainstream health service delivery system.

Keywords: efficacy, regulation, safety, traditional medicine, traditional medicine unit, universal health coverage

Procedia PDF Downloads 185
1452 Evaluation and Selection of SaaS Product Based on User Preferences

Authors: Boussoualim Nacira, Aklouf Youcef

Abstract:

Software as a Service (SaaS) is a software delivery paradigm in which the product is not installed on-premise, but it is available on Internet and Web. The customers do not pay to possess the software itself but rather to use it. This concept of pay per use is very attractive. Hence, we see increasing number of organizations adopting SaaS. However, each customer is unique, which leads to a very large variation in the requirements off the software. As several suppliers propose SaaS products, the choice of this latter becomes a major issue. When multiple criteria are involved in decision making, we talk about a problem of «Multi-Criteria Decision-Making» (MCDM). Therefore, this paper presents a method to help customers to choose a better SaaS product satisfying most of their conditions and alternatives. Also, we know that a good method of adaptive selection should be based on the correct definition of the different parameters of choice. This is why we started by extraction and analysis the various parameters involved in the process of the selection of a SaaS application.

Keywords: cloud computing, business operation, Multi-Criteria Decision-Making (MCDM), Software as a Service (SaaS)

Procedia PDF Downloads 481
1451 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 120
1450 Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios

Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi

Abstract:

Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints. This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.

Keywords: DSDV, OLSR, quality of service, routing protocols, VANET

Procedia PDF Downloads 468