Search results for: multiple distribution supply chain network
14899 Engaging Citizen, Sustaining Service Delivery of Rural Water Supply in Indonesia
Authors: Rahmi Yetri Kasri, Paulus Wirutomo
Abstract:
Citizen engagement approach has become increasingly important in the rural water sector. However, the question remains as to what exactly is meant by citizen engagement and how this approach can lead to sustainable service delivery. To understand citizen engagement, this paper argues that we need to understand basic elements of social life that consist of social structure, process, and culture within the realm of community’s living environment. Extracting from empirical data from Pamsimas villages in rural West Java, Indonesia, this paper will identify basic elements of social life and environment that influence and form the engagement of citizen and government in delivering and sustaining rural water supply services in Indonesia. Pamsimas or the Water Supply and Sanitation for Low Income Communities project is the biggest rural water program in Indonesia, implemented since 1993 in more than 27,000 villages. The sustainability of this sector is explored through a rural water supply service delivery life-cycle, starts with capital investment, operational and maintenance, asset expansion or renewal, strategic planning for future services and matching cost with financing. Using mixed-method data collection in case study research, this paper argues that increased citizen engagement contributes to a more sustainable rural water service delivery.Keywords: citizen engagement, rural water supply, sustainability, Indonesia
Procedia PDF Downloads 26914898 Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines
Authors: R. T. Aggangan
Abstract:
Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry.Keywords: biomass energy development, fuelwood, households and industry, innovations in combustion technology, supply and demand
Procedia PDF Downloads 33314897 The Use of Unmanned Aerial System (UAS) in Improving the Measurement System on the Example of Textile Heaps
Authors: Arkadiusz Zurek
Abstract:
The potential of using drones is visible in many areas of logistics, especially in terms of their use for monitoring and control of many processes. The technologies implemented in the last decade concern new possibilities for companies that until now have not even considered them, such as warehouse inventories. Unmanned aerial vehicles are no longer seen as a revolutionary tool for Industry 4.0, but rather as tools in the daily work of factories and logistics operators. The research problem is to develop a method for measuring the weight of goods in a selected link of the clothing supply chain by drones. However, the purpose of this article is to analyze the causes of errors in traditional measurements, and then to identify adverse events related to the use of drones for the inventory of a heap of textiles intended for production purposes. On this basis, it will be possible to develop guidelines to eliminate the causes of these events in the measurement process using drones. In a real environment, work was carried out to determine the volume and weight of textiles, including, among others, weighing a textile sample to determine the average density of the assortment, establishing a local geodetic network, terrestrial laser scanning and photogrammetric raid using an unmanned aerial vehicle. As a result of the analysis of measurement data obtained in the facility, the volume and weight of the assortment and the accuracy of their determination were determined. In this article, this work presents how such heaps are currently being tested, what adverse events occur, indicate and describes the current use of photogrammetric techniques of this type of measurements so far performed by external drones for the inventory of wind farms or construction of the station and compare them with the measurement system of the aforementioned textile heap inside a large-format facility.Keywords: drones, unmanned aerial system, UAS, indoor system, security, process automation, cost optimization, photogrammetry, risk elimination, industry 4.0
Procedia PDF Downloads 8614896 Advancing UAV Operations with Hybrid Mobile Network and LoRa Communications
Authors: Annika J. Meyer, Tom Piechotta
Abstract:
Unmanned Aerial Vehicles (UAVs) have increasingly become vital tools in various applications, including surveillance, search and rescue, and environmental monitoring. One common approach to ensure redundant communication systems when flying beyond visual line of sight is for UAVs to employ multiple mobile data modems by different providers. Although widely adopted, this approach suffers from several drawbacks, such as high costs, added weight and potential increases in signal interference. In light of these challenges, this paper proposes a communication framework intermeshing mobile networks and LoRa (Long Range) technology—a low-power, long-range communication protocol. LoRaWAN (Long Range Wide Area Network) is commonly used in Internet of Things applications, relying on stationary gateways and Internet connectivity. This paper, however, utilizes the underlying LoRa protocol, taking advantage of the protocol’s low power and long-range capabilities while ensuring efficiency and reliability. Conducted in collaboration with the Potsdam Fire Department, the implementation of mobile network technology in combination with the LoRa protocol in small UAVs (take-off weight < 0.4 kg), specifically designed for search and rescue and area monitoring missions, is explored. This research aims to test the viability of LoRa as an additional redundant communication system during UAV flights as well as its intermeshing with the primary, mobile network-based controller. The methodology focuses on direct UAV-to-UAV and UAV-to-ground communications, employing different spreading factors optimized for specific operational scenarios—short-range for UAV-to-UAV interactions and long-range for UAV-to-ground commands. This explored use case also dramatically reduces one of the major drawbacks of LoRa communication systems, as a line of sight between the modules is necessary for reliable data transfer. Something that UAVs are uniquely suited to provide, especially when deployed as a swarm. Additionally, swarm deployment may enable UAVs that have lost contact with their primary network to reestablish their connection through another, better-situated UAV. The experimental setup involves multiple phases of testing, starting with controlled environments to assess basic communication capabilities and gradually advancing to complex scenarios involving multiple UAVs. Such a staged approach allows for meticulous adjustment of parameters and optimization of the communication protocols to ensure reliability and effectiveness. Furthermore, due to the close partnership with the Fire Department, the real-world applicability of the communication system is assured. The expected outcomes of this paper include a detailed analysis of LoRa's performance as a communication tool for UAVs, focusing on aspects such as signal integrity, range, and reliability under different environmental conditions. Additionally, the paper seeks to demonstrate the cost-effectiveness and operational efficiency of using a single type of communication technology that reduces UAV payload and power consumption. By shifting from traditional cellular network communications to a more robust and versatile cellular and LoRa-based system, this research has the potential to significantly enhance UAV capabilities, especially in critical applications where reliability is paramount. The success of this paper could pave the way for broader adoption of LoRa in UAV communications, setting a new standard for UAV operational communication frameworks.Keywords: LoRa communication protocol, mobile network communication, UAV communication systems, search and rescue operations
Procedia PDF Downloads 4314895 Optimal Capacitor Placement in Distribution Systems
Authors: Sana Ansari, Sirus Mohammadi
Abstract:
In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.Keywords: power losses, voltage stability, radial distribution systems, capacitor
Procedia PDF Downloads 64714894 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition
Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie
Abstract:
In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks
Procedia PDF Downloads 11214893 Performance Analysis of Next Generation OCDM-RoF-Based Hybrid Network under Diverse Conditions
Authors: Anurag Sharma, Rahul Malhotra, Love Kumar, Harjit Pal Singh
Abstract:
This paper demonstrates OCDM-ROF based hybrid architecture where data/voice communication is enabled via a permutation of Optical Code Division Multiplexing (OCDM) and Radio-over-Fiber (RoF) techniques under various diverse conditions. OCDM-RoF hybrid network of 16 users with DPSK modulation format has been designed and performance of proposed network is analyzed for 100, 150, and 200 km fiber span length under the influence of linear and nonlinear effect. It has been reported that Polarization Mode Dispersion (PMD) has the least effect while other nonlinearity affects the performance of proposed network.Keywords: OCDM, RoF, DPSK, PMD, eye diagram, BER, Q factor
Procedia PDF Downloads 63814892 Broadcast Routing in Vehicular Ad hoc Networks (VANETs)
Authors: Muazzam A. Khan, Muhammad Wasim
Abstract:
Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario.Keywords: vehicular ad-hoc network , broadcasting, networking protocols, traffic pattern, low intensity conflict
Procedia PDF Downloads 53214891 Ethereum Based Smart Contracts for Trade and Finance
Authors: Rishabh Garg
Abstract:
Traditionally, business parties build trust with a centralized operating mechanism, such as payment by letter of credit. However, the increase in cyber-attacks and malicious hacking has jeopardized business operations and finance practices. Emerging markets, owing to their higher banking risks and bigger presence of digital financing, are looking forward to technology-driven solutions, financial inclusion and innovative working paradigms. Blockchain has the potential to enhance transaction transparency and supply chain traceability. It has captured a vast landscape with 200 million crypto users worldwide. Fintech and blockchain products are popping up across brokerage, digital wallets, exchanges, post-trade clearance, settlement, middleware, infrastructure, and base protocols.Keywords: blockchain, distributed ledger technology, decentralized applications, ethereum, smart contracts, trade finance
Procedia PDF Downloads 15514890 The Effect of Soil Surface Slope on Splash Distribution under Water Drop Impact
Authors: H. Aissa, L. Mouzai, M. Bouhadef
Abstract:
The effects of down slope steepness on soil splash distribution under a water drop impact have been investigated in this study. The equipment used are the burette to simulate a water drop, a splash cup filled with sandy soil which forms the source area and a splash board to collect the ejected particles. The results found in this study have shown that the apparent mass increased with increasing downslope angle following a linear regression equation with high coefficient of determination. In the same way, the radial soil splash distribution over the distance has been analyzed statistically, and an exponential function was the best fit of the relationship for the different slope angles. The curves and the regressions equations validate the well known FSDF and extend the theory of Van Dijk.Keywords: splash distribution, water drop, slope steepness, soil detachment
Procedia PDF Downloads 33814889 Contribution of Intermediate Diaphragms on LDFs of Straight and Skew Concrete Multicell Box-Girder Bridges
Authors: Iman Mohseni
Abstract:
Current studies indicate that neglecting the effect of intermediate diaphragms might lead to highly conservative values for bending moment distribution factors and result in non-economic designs for skew bridges. This paper reports on a parametric study performed on 160 prototypes of straight and skew concrete multicell box-girder bridges. The obtained results were used to develop practical expressions to account for the diaphragm effects on American Association of State Highway and Transportation Officials formulas for live load distribution factors. It was observed that decks with internal transverse diaphragms perpendicular to the longitudinal webs are the best arrangement for load distribution in skew bridges.Keywords: box bridges, truck, distribution factor, diaphragm
Procedia PDF Downloads 38014888 Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton
Authors: Dewi Retno Sari Saputro, Purnami Widyaningsih, Hendrika Handayani
Abstract:
Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased.Keywords: parameter estimation, Gumbel distribution, maximum likelihood, broyden fletcher goldfarb shanno (BFGS)quasi newton
Procedia PDF Downloads 32414887 Special Case of Trip Distribution Model and Its Use for Estimation of Detailed Transport Demand in the Czech Republic
Authors: Jiri Dufek
Abstract:
The national model of the Czech Republic has been modified in a detailed way to get detailed travel demand in the municipality level (cities, villages over 300 inhabitants). As a technique for this detailed modelling, three-dimensional procedure for calibrating gravity models, was used. Besides of zone production and attraction, which is usual in gravity models, the next additional parameter for trip distribution was introduced. Usually it is called by “third dimension”. In the model, this parameter is a demand between regions. The distribution procedure involved calculation of appropriate skim matrices and its multiplication by three coefficients obtained by iterative balancing of production, attraction and third dimension. This type of trip distribution was processed in R-project and the results were used in the Czech Republic transport model, created in PTV Vision. This process generated more precise results in local level od the model (towns, villages)Keywords: trip distribution, three dimension, transport model, municipalities
Procedia PDF Downloads 13014886 Determinants of Sustainable Supplier Selection: An Exploratory Study of Manufacturing Tunisian’s SMEs
Authors: Ahlem Dhahri, Audrey Becuwe
Abstract:
This study examines the adoption of sustainable purchasing practices among Tunisian SMEs, with a focus on assessing how environmental and social sustainability maturity affects the implementation of sustainable supplier selection (SSS) criteria. Using institutional theory to classify coercive, normative, and mimetic pressures, as well as emerging drivers and barriers, this study explores the institutional factors influencing sustainable purchasing practices and the specific barriers faced by Tunisian SMEs in this area. An exploratory, abductive qualitative research design was adopted for this multiple case study, which involved 19 semi-structured interviews with owners and managers of 17 Tunisian manufacturing SMEs. The Gioia method was used to analyze the data, thus enabling the identification of key themes and relationships directly from the raw data. This approach facilitated a structured interpretation of the institutional factors influencing sustainable purchasing practices, with insights drawn from the participants' perspectives. The study reveals that Tunisian SMEs are at different levels of sustainability maturity, with a significant impact on their procurement practices. SMEs with advanced sustainability maturity integrate both environmental and social criteria into their supplier selection processes, while those with lower maturity levels rely on mostly traditional criteria such as cost, quality, and delivery. Key institutional drivers identified include regulatory pressure, market expectations, and stakeholder influence. Additional emerging drivers—such as certifications and standards, economic incentives, environmental commitment as a core value, and group-wide strategic alignment—also play a critical role in driving sustainable procurement. Conversely, the study reveals significant barriers, including economic constraints, limited awareness, and resource limitations. It also identifies three main categories of emerging barriers: (1) logistical and supply chain constraints, including retailer/intermediary dependency, tariff regulations, and a perceived lack of direct responsibility in B2B supply chains; (2) economic and financial constraints; and (3) operational barriers, such as unilateral environmental responsibility, a product-centric focus and the influence of personal relationships. Providing valuable insights into the role of sustainability maturity in supplier selection, this study is the first to explore sustainable procurement practices in the Tunisian SME context. Integrating an analysis of institutional drivers, including emerging incentives and barriers, provides practical implications for SMEs seeking to improve sustainability in procurement. The results highlight the need for stronger regulatory frameworks and support mechanisms to facilitate the adoption of sustainable practices among SMEs in Tunisia.Keywords: Tunisian SME, sustainable supplier selection, institutional theory, determinant, qualitative study
Procedia PDF Downloads 1014885 Power Aware Modified I-LEACH Protocol Using Fuzzy IF Then Rules
Authors: Gagandeep Singh, Navdeep Singh
Abstract:
Due to limited battery of sensor nodes, so energy efficiency found to be main constraint in WSN. Therefore the main focus of the present work is to find the ways to minimize the energy consumption problem and will results; enhancement in the network stability period and life time. Many researchers have proposed different kind of the protocols to enhance the network lifetime further. This paper has evaluated the issues which have been neglected in the field of the WSNs. WSNs are composed of multiple unattended ultra-small, limited-power sensor nodes. Sensor nodes are deployed randomly in the area of interest. Sensor nodes have limited processing, wireless communication and power resource capabilities Sensor nodes send sensed data to sink or Base Station (BS). I-LEACH gives adaptive clustering mechanism which very efficiently deals with energy conservations. This paper ends up with the shortcomings of various adaptive clustering based WSNs protocols.Keywords: WSN, I-Leach, MATLAB, sensor
Procedia PDF Downloads 27514884 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.Keywords: inland waterways, YOLO, sensor fusion, self-attention
Procedia PDF Downloads 12414883 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes
Procedia PDF Downloads 17714882 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network
Authors: Parisa Mansour
Abstract:
Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence
Procedia PDF Downloads 6514881 Supply, Trade-offs, and Synergies Estimation for Regulating Ecosystem Services of a Local Forest
Authors: Jang-Hwan Jo
Abstract:
The supply management of ecosystem services of local forests is an essential issue as it is linked to the ecological welfare of local residents. This study aims to estimate the supply, trade-offs, and synergies of local forest regulating ecosystem services using a land cover classification map (LCCM) and a forest types map (FTM). Rigorous literature reviews and Expert Delphi analysis were conducted using the detailed variables of 1:5,000 LCCM and FTM. Land-use scoring method and Getis-Ord Gi* Analysis were utilized on detailed variables to propose a method for estimating supply, trade-offs, and synergies of the local forest regulating ecosystem services. The analysis revealed that the rank order (1st to 5th) of supply of regulating ecosystem services was Erosion prevention, Air quality regulation, Heat island mitigation, Water quality regulation, and Carbon storage. When analyzing the correlation between defined services of the entire city, almost all services showed a synergistic effect. However, when analyzing locally, trade-off effects (Heat island mitigation – Air quality regulation, Water quality regulation – Air quality regulation) appeared in the eastern and northwestern forest areas. This suggests the need to consider not only the synergy and trade-offs of the entire forest between specific ecosystem services but also the synergy and trade-offs of local areas in managing the regulating ecosystem services of local forests. The study result can provide primary data for the stakeholders to determine the initial conditions of the planning stage when discussing the establishment of policies related to the adjustment of the supply of regulating ecosystem services of the forests with limited access. Moreover, the study result can also help refine the estimation of the supply of the regulating ecosystem services with the availability of other forms of data.Keywords: ecosystem service, getis ord gi* analysis, land use scoring method, regional forest, regulating service, synergies, trade-offs
Procedia PDF Downloads 9014880 Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution
Authors: P. Zarfam, M. Mansouri Baghbaderani
Abstract:
In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too.Keywords: modal pushover analysis, concrete structure, seismic damage, log-normal distribution, logistic distribution
Procedia PDF Downloads 24614879 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition
Authors: Li Zhang, Yuehong Su
Abstract:
Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.Keywords: neural network, bended lightpipe, transmittance, Photopia
Procedia PDF Downloads 15214878 Evaluation of Aggregate Risks in Sustainable Manufacturing Using Fuzzy Multiple Attribute Decision Making
Authors: Gopinath Rathod, Vinod Puranik
Abstract:
Sustainability is regarded as a key concept for survival in the competitive scenario. Industrial risk and diversification of risk type’s increases with industrial developments. In the context of sustainable manufacturing, the evaluation of risk is difficult because of the incomplete information and multiple indicators. Fuzzy Multiple Attribute Decision Method (FMADM) has been used with a three level hierarchical decision making model to evaluate aggregate risk for sustainable manufacturing projects. A case study has been presented to reflect the risk characteristics in sustainable manufacturing projects.Keywords: sustainable manufacturing, decision making, aggregate risk, fuzzy logic, fuzzy multiple attribute decision method
Procedia PDF Downloads 51914877 Trusted Neural Network: Reversibility in Neural Networks for Network Integrity Verification
Authors: Malgorzata Schwab, Ashis Kumer Biswas
Abstract:
In this concept paper, we explore the topic of Reversibility in Neural Networks leveraged for Network Integrity Verification and crafted the term ''Trusted Neural Network'' (TNN), paired with the API abstraction around it, to embrace the idea formally. This newly proposed high-level generalizable TNN model builds upon the Invertible Neural Network architecture, trained simultaneously in both forward and reverse directions. This allows for the original system inputs to be compared with the ones reconstructed from the outputs in the reversed flow to assess the integrity of the end-to-end inference flow. The outcome of that assessment is captured as an Integrity Score. Concrete implementation reflecting the needs of specific problem domains can be derived from this general approach and is demonstrated in the experiments. The model aspires to become a useful practice in drafting high-level systems architectures which incorporate AI capabilities.Keywords: trusted, neural, invertible, API
Procedia PDF Downloads 14614876 An Assessment of Drainage Network System in Nigeria Urban Areas using Geographical Information Systems: A Case Study of Bida, Niger State
Authors: Yusuf Hussaini Atulukwu, Daramola Japheth, Tabitit S. Tabiti, Daramola Elizabeth Lara
Abstract:
In view of the recent limitations faced by the township concerning poorly constructed and in some cases non - existence of drainage facilities that resulted into incessant flooding in some parts of the community poses threat to life,property and the environment. The research seeks to address this issue by showing the spatial distribution of drainage network in Bida Urban using Geographic information System techniques. Relevant features were extracted from existing Bida based Map using un-screen digitization and x, y, z, data of existing drainages were acquired using handheld Global Positioning System (GPS). These data were uploaded into ArcGIS 9.2, software, and stored in the relational database structure that was used to produce the spatial data drainage network of the township. The result revealed that about 40 % of the drainages are blocked with sand and refuse, 35 % water-logged as a result of building across erosion channels and dilapidated bridges as a result of lack of drainage along major roads. The study thus concluded that drainage network systems in Bida community are not in good working condition and urgent measures must be initiated in order to avoid future disasters especially with the raining season setting in. Based on the above findings, the study therefore recommends that people within the locality should avoid dumping municipal waste within the drainage path while sand blocked or weed blocked drains should be clear by the authority concerned. In the same vein the authority should ensured that contract of drainage construction be awarded to professionals and all the natural drainages caused by erosion should be addressed to avoid future disasters.Keywords: drainage network, spatial, digitization, relational database, waste
Procedia PDF Downloads 33414875 Using AI to Advance Factory Planning: A Case Study to Identify Success Factors of Implementing an AI-Based Demand Planning Solution
Authors: Ulrike Dowie, Ralph Grothmann
Abstract:
Rational planning decisions are based upon forecasts. Precise forecasting has, therefore, a central role in business. The prediction of customer demand is a prime example. This paper introduces recurrent neural networks to model customer demand and combines the forecast with uncertainty measures to derive decision support of the demand planning department. It identifies and describes the keys to the successful implementation of an AI-based solution: bringing together data with business knowledge, AI methods, and user experience, and applying agile software development practices.Keywords: agile software development, AI project success factors, deep learning, demand forecasting, forecast uncertainty, neural networks, supply chain management
Procedia PDF Downloads 18914874 Aerodynamic Analysis of Multiple Winglets for Aircrafts
Authors: S. Pooja Pragati, B. Sudarsan, S. Raj Kumar
Abstract:
This paper provides a practical design of a new concept of massive Induced Drag reductions of stream vise staggered multiple winglets. It is designed to provide an optimum performance of a winglet from conventional designs. In preparing for a mechanical design, aspects such as shape, dimensions are analyzed to yield a huge amount of reduction in fuel consumption and increased performance. Owing to its simplicity of application and effectiveness we believe that it will enable us to consider its enhanced version for the grid effect of the staggered multiple winglets on the deflected mass flow of the wing system. The objective of the analysis were to compare the aerodynamic characteristics of two winglet configuration and to investigate the performance of two winglets shape simulated at selected cant angle of 0,45,60 degree.Keywords: multiple winglets, induced drag, aerodynamics analysis, low speed aircrafts
Procedia PDF Downloads 48014873 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 30614872 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network
Authors: Magdi. M. Nabi, Ding-Li Yu
Abstract:
Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward, feedback control
Procedia PDF Downloads 70214871 The Impact of a Lower Health Literacy in the Self-Management of Patients with a Multiple Sclerosis: A Literature Review
Authors: Helga Martins, Idália Matias
Abstract:
Background:Multiple sclerosis is a chronic inflammatory autoimmune demyelinating disease that affects young adults. Multiple sclerosis is a chronic disease in which the patient needs to self-manage the disease and the therapeutic regimen. Consequently, the promotion of health literacy assumes a relevant role for the accessibility, understanding, and use of information in order to promote and maintain the health of patients with multiple sclerosis. Aim: To determine the impact of lower health literacy in the self-management of patients with a multiple sclerosis. Methods: Literature review based on a search on the following electronic databases: CINAHLand MEDLINE; comprising all results published between September 2016 and September 2021. The search strategy was: (“Self-management [MeSH]” AND “Multiple sclerosis[MeSH]”AND “Health literacy[MeSH]”). The inclusion criteria were: original papers reporting about multiple sclerosis patients; participants with age above 18 years old, written in English, Spanish, French, or Portuguese. Two independent reviewers have done the screening and analysis of the results. 38 citations were identified, and after duplicates removal, a total of 25 results were screened; 14 were included after the application of the inclusion criteria. Results: The lower health literacy in the self-management of patients with a multiple sclerosis is related toless healthy choices, riskier health behavior, poor health outcomes, decreased of adhering to the therapeutic regimen after discharge, less self-management of chronic illness, and increased the time of hospitalization. Conclusion: Inadequate levels of health literacy contribute to poor health outcomes, unsuccessful self-management of chronic illness, and inadequate adherence to the therapeutic regimen. Therefore, health literacy is important for health policy and the healthcare services, as it can be understood as a mediator of self-management of multiple sclerosis disease.Keywords: health literacy, multiple sclerosis, review, self-management
Procedia PDF Downloads 15314870 Assessment of E-Readiness in Libraries of Public Sector Universities Khyber Pakhtunkhwa-Pakistan
Authors: Saeed Ullah Jan
Abstract:
This study has examined the e-readiness in libraries of public sector universities in Khyber Pakhtunkhwa. Efforts were made to evaluate the availability of human resources, electronic infrastructure, and network services and programs in the public sector university libraries. The population of the study was the twenty-seven public sector university libraries of Khyber Pakhtunkhwa. A quantitative approach was adopted, and a questionnaire-based survey was conducted to collect data from the librarian/in charge of public sector university libraries. The collected data were analyzed using Statistical Package for Social Sciences version 22 (SPSS). The mean score of the knowledge component interpreted magnitudes below three which indicates that the respondents are poorly or moderately satisfied regards knowledge of libraries. The satisfaction level of the respondents about the other components, such as electronic infrastructure, network services and programs, and enhancers of the networked world, was rated as average or below. The study suggested that major aspects of existing public-sector university libraries require significant transformation. For this purpose, the government should provide all the required resources and facilities to meet the population's informational and recreational demands. The Information Communication Technology (ICT) infrastructure of public university libraries needs improvement in terms of the availability of computer equipment, databases, network servers, multimedia projectors, digital cameras, uninterruptible power supply, scanners, and backup devices such as hard discs and Digital Video Disc/Compact Disc.Keywords: ICT-libraries, e-readiness-libraries, e-readiness-university libraries, e-readiness-Pakistan
Procedia PDF Downloads 88