Search results for: metal ion detection
4540 A Review of Security Attacks and Intrusion Detection Schemes in Wireless Sensor Networks: A Survey
Authors: Maleh Yassine, Ezzati Abdellah
Abstract:
Wireless Sensor Networks (WSNs) are currently used in different industrial and consumer applications, such as earth monitoring, health related applications, natural disaster prevention, and many other areas. Security is one of the major aspects of wireless sensor networks due to the resource limitations of sensor nodes. However, these networks are facing several threats that affect their functioning and their life. In this paper we present security attacks in wireless sensor networks, and we focus on a review and analysis of the recent Intrusion Detection schemes in WSNs.Keywords: wireless sensor networks, security attack, denial of service, IDS, cluster-based model, signature based IDS, hybrid IDS
Procedia PDF Downloads 3924539 Comparative Study of Al₂O₃ and HfO₂ as Gate Dielectric on AlGaN/GaN Metal Oxide Semiconductor High-Electron Mobility Transistors
Authors: Kaivan Karami, Sahalu Hassan, Sanna Taking, Afesome Ofiare, Aniket Dhongde, Abdullah Al-Khalidi, Edward Wasige
Abstract:
We have made a comparative study on the influence of Al₂O₃ and HfO₂ grown using atomic layer deposition (ALD) technique as dielectric in the AlGaN/GaN metal oxide semiconductor high electron mobility transistor (MOS-HEMT) structure. Five samples consisting of 20 nm and 10 nm each of Al₂O₃ and HfO₂ respectively and a Schottky gate HEMT, were fabricated and measured. The threshold voltage shifts towards negative by 0.1 V and 1.8 V for 10 nm thick HfO2 and 10 nm thick Al₂O₃ gate dielectric layers respectively. The negative shift for the 20 nm HfO2 and 20 nm Al₂O₃ were 1.2 V and 4.9 V respectively. Higher gm/IDS (transconductance to drain current) ratio was also obtained in HfO₂ than Al₂O₃. With both materials as dielectric, a significant reduction in the gate leakage current in the order of 10^4 was obtained compared to the sample without the dielectric material.Keywords: AlGaN/GaN HEMTs, Al2O3, HfO2, MOSHEMTs.
Procedia PDF Downloads 1094538 Assessment of Metal Dynamics in Dissolved and Particulate Phase in Human Impacted Hooghly River Estuary, India
Authors: Soumita Mitra, Santosh Kumar Sarkar
Abstract:
Hooghly river estuary (HRE), situated at the north eastern part of Bay of Bengal has global significance due to its holiness. It is of immense importance to the local population as it gives perpetual water supply for various activities such as transportation, fishing, boating, bathing etc. to the local people who settled on both the banks of this estuary. This study was done to assess the dissolved and particulate trace metal in the estuary covering a stretch of about 175 Km. The water samples were collected from the surface (0-5 cm) along the salinity gradient and metal concentration were studied both in dissolved and particulate phase using Graphite Furnace Atomic Absorption Spectrophotometer (GF-AAS) along some physical characteristics such as water temperature, salinity, pH, turbidity and total dissolved solids. Although much significant spatial variation was noticed but little enrichment was found along the downstream of the estuary. The mean concentration of the metals in the dissolved and particulate phase followed the same trend and as follows: Fe>Mn>Cr>Zn>Cu>Ni>Pb. The concentration of the metals in the particulate phase were much greater than that in dissolved phase which was also depicted from the values of the partition coefficient (Kd)(ml mg-1). The Kdvalues ranged from 1.5x105 (in case of Pb) to 4.29x106 (in case of Cr). The high value of Kd for Cr denoted that the metal Cr is mostly bounded with the suspended particulate matter while the least value for Pb signified it presence more in dissolved phase. Moreover, the concentrations of all the studied metals in the dissolved phase were many folds higher than their respective permissible limits assested by WHO 2008, 2009 and 2011. On the other hand, according to Sediment Quality Guidelines (SQGs), Zn, Cu and Ni in the particulate phase lied between ERL and ERM values but Cr exceeded ERM values at all the stations confirming that the estuary is mostly contaminated with the particulate Cr and it might cause frequent adverse effects on the aquatic life. Multivariate statistics Cluster analysis was also performed which separated the stations according to the level of contamination from several point and nonpoint sources. Thus, it is found that the estuarine system is much polluted by the toxic metals and further investigation, toxicological studies should be implemented for full risk assessment of this system, better management and restoration of the water quality of this globally significant aquatic system.Keywords: dissolved and particulate phase, Hooghly river estuary, partition coefficient, surface water, toxic metals
Procedia PDF Downloads 2814537 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 1374536 A Combined Fiber-Optic Surface Plasmon Resonance and Ta2O5: rGO Nanocomposite Synergistic Scheme for Trace Detection of Insecticide Fenitrothion
Authors: Ravi Kant, Banshi D. Gupta
Abstract:
The unbridled application of insecticides to enhance agricultural yield has become a matter of grave concern to both the environment and the human health and, thus pose a potential threat to sustainable development. Fenitrothion is an extensively used organophosphate insecticide whose residues are reported to be extremely toxic for birds, humans and aquatic life. A sensitive, swift and accurate detection protocol for fenitrothion is, thus, highly demanded. In this work, we report an SPR based fiber optic sensor for the detection of fenitrothion, where a nanocomposite arrangement of Ta2O5 and reduced graphene oxide (rGO) (Ta₂O₅: rGO) decorated on silver coated unclad core region of an optical fiber forms the sensing channel. A nanocomposite arrangement synergistically integrates the properties of involved components and consequently furnishes a conducive framework for sensing applications. The modification of the dielectric function of the sensing layer on exposure to fenitrothion solutions of diverse concentration forms the sensing mechanism. This modification is reflected in terms of the shift in resonance wavelength. Experimental variables such as the concentration of rGO in the nanocomposite configuration, dip time of silver coated fiber optic probe for deposition of sensing layer and influence of pH on the performance of the sensor have been optimized to extract the best performance of the sensor. SPR studies on the optimized sensing probe reveal the high sensitivity, wide operating range and good reproducibility of the fabricated sensor, which unveil the promising utility of Ta₂O₅: rGO nanocomposite framework for developing an efficient detection methodology for fenitrothion. FOSPR approach in cooperation with nanomaterials projects the present work as a beneficial approach for fenitrothion detection by imparting numerous useful advantages such as sensitivity, selectivity, compactness and cost-effectiveness.Keywords: surface plasmon resonance, optical fiber, sensor, fenitrothion
Procedia PDF Downloads 2134535 The Synthesis, Structure and Catalytic Activity of Iron(II) Complex with New N2O2 Donor Schiff Base Ligand
Authors: Neslihan Beyazit, Sahin Bayraktar, Cahit Demetgul
Abstract:
Transition metal ions have an important role in biochemistry and biomimetic systems and may provide the basis of models for active sites of biological targets. The presence of copper(II), iron(II) and zinc(II) is crucial in many biological processes. Tetradentate N2O2 donor Schiff base ligands are well known to form stable transition metal complexes and these complexes have also applications in clinical and analytical fields. In this study, we present salient structural features and the details of cathecholase activity of Fe(II) complex of a new Schiff Base ligand. A new asymmetrical N2O2 donor Schiff base ligand and its Fe(II) complex were synthesized by condensation of 4-nitro-1,2 phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Fe(II) salt, respectively. Schiff base ligand and its metal complex were characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and magnetic susceptibility. In order to determine the kinetics parameters of catechol oxidase-like activity of Schiff base Fe(II) complex, the oxidation of the 3,5-di-tert-butylcatechol (3,5-DTBC) was measured at 25°C by monitoring the increase of the absorption band at 390-400 nm of the product 3,5-di-tert-butylcatequinone (3,5-DTBQ). The compatibility of catalytic reaction with Michaelis-Menten kinetics also investigated by the method of initial rates by monitoring the growth of the 390–400 nm band of 3,5-DTBQ as a function of time. Kinetic studies showed that Fe(II) complex of the new N2O2 donor Schiff base ligand was capable of acting as a model compound for simulating the catecholase properties of type-3 copper proteins.Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals
Procedia PDF Downloads 3974534 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 1034533 A Survey and Analysis on Inflammatory Pain Detection and Standard Protocol Selection Using Medical Infrared Thermography from Image Processing View Point
Authors: Mrinal Kanti Bhowmik, Shawli Bardhan Jr., Debotosh Bhattacharjee
Abstract:
Human skin containing temperature value more than absolute zero, discharges infrared radiation related to the frequency of the body temperature. The difference in infrared radiation from the skin surface reflects the abnormality present in human body. Considering the difference, detection and forecasting the temperature variation of the skin surface is the main objective of using Medical Infrared Thermography(MIT) as a diagnostic tool for pain detection. Medical Infrared Thermography(MIT) is a non-invasive imaging technique that records and monitors the temperature flow in the body by receiving the infrared radiated from the skin and represent it through thermogram. The intensity of the thermogram measures the inflammation from the skin surface related to pain in human body. Analysis of thermograms provides automated anomaly detection associated with suspicious pain regions by following several image processing steps. The paper represents a rigorous study based survey related to the processing and analysis of thermograms based on the previous works published in the area of infrared thermal imaging for detecting inflammatory pain diseases like arthritis, spondylosis, shoulder impingement, etc. The study also explores the performance analysis of thermogram processing accompanied by thermogram acquisition protocols, thermography camera specification and the types of pain detected by thermography in summarized tabular format. The tabular format provides a clear structural vision of the past works. The major contribution of the paper introduces a new thermogram acquisition standard associated with inflammatory pain detection in human body to enhance the performance rate. The FLIR T650sc infrared camera with high sensitivity and resolution is adopted to increase the accuracy of thermogram acquisition and analysis. The survey of previous research work highlights that intensity distribution based comparison of comparable and symmetric region of interest and their statistical analysis assigns adequate result in case of identifying and detecting physiological disorder related to inflammatory diseases.Keywords: acquisition protocol, inflammatory pain detection, medical infrared thermography (MIT), statistical analysis
Procedia PDF Downloads 3454532 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 464531 Integrating Knowledge Distillation of Multiple Strategies
Authors: Min Jindong, Wang Mingxia
Abstract:
With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.Keywords: object detection, knowledge distillation, convolutional network, model compression
Procedia PDF Downloads 2834530 Spectroscopic (Ir, Raman, Uv-Vis) and Biological Study of Copper and Zinc Complexes and Sodium Salt with Cichoric Acid
Authors: Renata Swislocka, Grzegorz Swiderski, Agata Jablonska-Trypuc, Wlodzimierz Lewandowski
Abstract:
Forming a complex of a phenolic compound with a metal not only alters the physicochemical properties of the ligand (including increase in stability or changes in lipophilicity), but also its biological activity, including antioxidant, antimicrobial and many others. As part of our previous projects, we examined the physicochemical and antimicrobial properties of phenolic acids and their complexes with metals naturally occurring in foods. Previously we studied the complexes of manganese(II), copper(II), cadmium(II) and alkali metals with ferulic, caffeic and p-coumaric acids. In the framework of this study, the physicochemical and biological properties of cicoric acid, its sodium salt, and complexes with copper and zinc were investigated. Cichoric acid is a derivative of both caffeic acid and tartaric acid. It has first been isolated from Cichorium intybus (chicory) but also it occurs in significant amounts in Echinacea, particularly E. purpurea, dandelion leaves, basil, lemon balm and in aquatic plants, including algae and sea grasses. For the study of spectroscopic and biological properties of cicoric acid, its sodium salt, and complexes with zinc and copper a variety of methods were used. Studies of antioxidant properties were carried out in relation to selected stable radicals (method of reduction of DPPH and reduction of FRAP). As a result, the structure and spectroscopic properties of cicoric acid and its complexes with selected metals in the solid state and in the solutions were defined. The IR and Raman spectra of cicoric acid displayed a number of bands that were derived from vibrations of caffeic and tartaric acids moieties. At 1746 and 1716 cm-1 the bands assigned to the vibrations of the carbonyl group of tartaric acid occurred. In the spectra of metal complexes with cichoric these bands disappeared what indicated that metal ion was coordinated by the carboxylic groups of tartaric acid. In the spectra of the sodium salt, a characteristic wide-band vibrations of carboxylate anion occurred. In the spectra of cicoric acid and its salt and complexes, a number of bands derived from the vibrations of the aromatic ring (caffeic acid) were assigned. Upon metal-ligand attachment, the changes in the values of the wavenumbers of these bands occurred. The impact of metals on the antioxidant properties of cicoric acid was also examined. Cichoric acid has a high antioxidant potential. Complexation by metals (zinc, copper) did not significantly affect its antioxidant capacity. The work was supported by the National Science Centre, Poland (grant no. 2015/17/B/NZ9/03581).Keywords: chicoric acid, metal complexes, natural antioxidant, phenolic acids
Procedia PDF Downloads 3414529 Evaluation of Ensemble Classifiers for Intrusion Detection
Authors: M. Govindarajan
Abstract:
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection.Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy
Procedia PDF Downloads 2524528 Heavy Metal Reduction in Plant Using Soil Amendment
Authors: C. Chaiyaraksa, T. Khamko
Abstract:
This study investigated the influence of limestone and sepiolite on heavy metals accumulation in the soil and soybean. The soil was synthesized to contaminate with zinc 150 mg/kg, copper 100 mg/kg, and cadmium 1 mg/kg. The contaminated soil was mixed with limestone and sepiolite at the ratio of 1:0, 0:1, 1:1, and 2:1. The amount of soil modifier added to soil was 0.2%, 0.4%, and 0.8%. The metals determination was performed on soil both before and after soybean planting and in the root, shoot, and seed of soybean after harvesting. The study was also on metal translocate from root to seed and on bioaccumulation factor. Using of limestone and sepiolite resulted in a reduction of metals accumulated in soybean. For soil containing a high concentration of copper, cadmium, and zinc, a mixture of limestone and sepiolite (1:1) was recommended to mix with soil with the amount of 0.2%. Zinc could translocate from root to seed more than copper, and cadmium. From studying the movement of metals from soil to accumulate in soybean, the result was that soybean could absorb the highest amount of cadmium, followed by zinc, and copper, respectively.Keywords: heavy metals, limestone, sepiolite, soil, soybean
Procedia PDF Downloads 1614527 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 864526 Analysis of Drilling Parameters for Al-Mg2-Si Metal Matrix Composite
Authors: S. Jahangir, S. H. I. Jaffery, M. Khan, Z. Zareef, A. Yar, A. Mubashir, S. Butt, L. Ali
Abstract:
In this work, drilling responses and behavior of MMC was investigated in Al-Mg2Si composites. For the purpose Al-15% wt. Mg2Si, was selected from the hypereutectic region of Al- Mg2Si phase diagram. Based on hardness and tensile strength, drill bit of appropriate material and morphology was selected. The performance of different drill bits of different morphology and material was studied and analysed using experimental data. For theoretical calculations of axial thrust force and required power calculation, material factor “K” was obtained from different data charts and at the same time cutting forces (drilling forces) were practically obtained using a Peizo electric force dynamometer. These results show the role of reinforcement particles on the machinability of MMCs and provide a useful guide for a better control and optimized drilling parameters for the drilling process. Furthermore, in this work, comparison of MMC with non -reinforced Aluminum Alloy regarding drilling operation was also studied.Keywords: drilling, metal matrix composite (MMC), cutting forces, thrust force
Procedia PDF Downloads 4364525 Assessment of Air Pollutant Dispersion and Soil Contamination: The Critical Role of MATLAB Modeling in Evaluating Emissions from the Covanta Municipal Solid Waste Incineration Facility
Authors: Jadon Matthiasa, Cindy Donga, Ali Al Jibouria, Hsin Kuo
Abstract:
The environmental impact of emissions from the Covanta Waste-to-Energy facility in Burnaby, BC, was comprehensively evaluated, focusing on the dispersion of air pollutants and the subsequent assessment of heavy metal contamination in surrounding soils. A Gaussian Plume Model, implemented in MATLAB, was utilized to simulate the dispersion of key pollutants to understand their atmospheric behaviour and potential deposition patterns. The MATLAB code developed for this study enhanced the accuracy of pollutant concentration predictions and provided capabilities for visualizing pollutant dispersion in 3D plots. Furthermore, the code could predict the maximum concentration of pollutants at ground level, eliminating the need to use the Ranchoux model for predictions. Complementing the modelling approach, empirical soil sampling and analysis were conducted to evaluate heavy metal concentrations in the vicinity of the facility. This integrated methodology underscored the importance of computational modelling in air pollution assessment and highlighted the necessity of soil analysis to obtain a holistic understanding of environmental impacts. The findings emphasized the effectiveness of current emissions controls while advocating for ongoing monitoring to safeguard public health and environmental integrity.Keywords: air emissions, Gaussian Plume Model, MATLAB, soil contamination, air pollution monitoring, waste-to-energy, pollutant dispersion visualization, heavy metal analysis, environmental impact assessment, emission control effectiveness
Procedia PDF Downloads 244524 Removal of Heavy Metal from Wastewater using Bio-Adsorbent
Authors: Rakesh Namdeti
Abstract:
The liquid waste-wastewater- is essentially the water supply of the community after it has been used in a variety of applications. In recent years, heavy metal concentrations, besides other pollutants, have increased to reach dangerous levels for the living environment in many regions. Among the heavy metals, Lead has the most damaging effects on human health. It can enter the human body through the uptake of food (65%), water (20%), and air (15%). In this background, certain low-cost and easily available biosorbent was used and reported in this study. The scope of the present study is to remove Lead from its aqueous solution using Olea EuropaeaResin as biosorbent. The results showed that the biosorption capacity of Olea EuropaeaResin biosorbent was more for Lead removal. The Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich (D-R) models were used to describe the biosorption equilibrium of Lead Olea EuropaeaResin biosorbent, and the biosorption followed the Langmuir isotherm. The kinetic models showed that the pseudo-second-order rate expression was found to represent well the biosorption data for the biosorbent.Keywords: novel biosorbent, central composite design, Lead, isotherms, kinetics
Procedia PDF Downloads 844523 Porous Alumina-Carbon Nanotubes Nanocomposite Membranes Processed via Spark Plasma Sintering for Heavy Metal Removal from Contaminated Water
Authors: H. K. Shahzad, M. A. Hussein, F. Patel, N. Al-Aqeeli, T. Laoui
Abstract:
The purpose of the present study was to use the adsorption mechanism with microfiltration synergistically for efficient heavy metal removal from contaminated water. Alumina (Al2O3) is commonly used for ceramic membranes development while recently carbon nanotubes (CNTs) have been considered among the best adsorbent materials for heavy metals. In this work, we combined both of these materials to prepare porous Al2O3-CNTs nanocomposite membranes via Spark Plasma Sintering (SPS) technique. Alumina was used as a base matrix while CNTs were added as filler. The SPS process parameters i.e. applied pressure, temperature, heating rate, and holding time were varied to obtain the best combination of porosity (64%, measured according to ASTM c373-14a) and strength (3.2 MPa, measured by diametrical compression test) of the developed membranes. The prepared membranes were characterized using X-ray diffraction (XRD), field emission secondary electron microscopy (FE-SEM), contact angle and porosity measurements. The results showed that properties of the synthesized membranes were highly influenced by the SPS process parameters. FE-SEM images revealed that CNTs were reasonably dispersed in the alumina matrix. The porous membranes were evaluated for their water flux transport as well as their capacity to adsorb heavy metals ions. Selected membranes were able to remove about 97% cadmium from contaminated water. Further work is underway to enhance the removal efficiency of the developed membranes as well as to remove other heavy metals such as arsenic and mercury.Keywords: heavy metal removal, inorganic membrane, nanocomposite, spark plasma sintering
Procedia PDF Downloads 2654522 Synthesis of Uio-66 Metal Organic Framework Impregnated Thin-Film Nanocomposite Membrane for the Desalination via Pressure Assisted Osmosis
Authors: Rajesha Kumar Alambi, Mansour Ahmed, Garudachari Bhadrachari, Safiyah Al-Muqahwi, Mansour Al-Rughaib, Jibu P. Thomas
Abstract:
Membrane-based pressure assisted osmosis (PAO) for seawater desalination has the potential to overcome the challenges of forward osmosis technology. PAO technology is gaining interest among the research community to ensure the sustainability of freshwater with a significant reduction in energy. The requirements of PAO membranes differ from the FO membrane; as it needs a slightly higher porous with sufficient mechanical strength to overcome the applied hydraulic pressure. The porous metal-organic framework (MOF) as a filler for the membrane synthesis has demonstrated a great potential to generate new channels for water transport, high selectivity, and reduced fouling propensity. Accordingly, this study is aimed at fabricating the UiO-66 MOF-based thin film nanocomposite membranes with specific characteristics for water desalination by PAO. A PAO test unit manufactured by Trevi System, USA, was used to determine the performance of the synthesized membranes. Further, the synthesized membranes were characterized in terms of morphological features, hydrophilicity, surface roughness, and mechanical properties. The 0.05 UiO-66 loaded membrane produced highest flux of 38L/m2h and with low reverse salt leakage of 2.1g/m²h for the DI water as feed solution and 2.0 M NaCl as draw solutions at the inlet feed pressure of 0.6 MPa. The new membranes showed a good tolerance toward the applied hydraulic pressure attributed to the fabric support used during the membrane synthesis.Keywords: metal organic framework, composite membrane, desalination, salt rejection, flux
Procedia PDF Downloads 1404521 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion
Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin
Abstract:
This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection
Procedia PDF Downloads 4824520 Investigation of Several New Ionic Liquids’ Behaviour during ²¹⁰PB/²¹⁰BI Cherenkov Counting in Waters
Authors: Nataša Todorović, Jovana Nikolov, Ivana Stojković, Milan Vraneš, Jovana Panić, Slobodan Gadžurić
Abstract:
The detection of ²¹⁰Pb levels in aquatic environments evokes interest in various scientific studies. Its precise determination is important not only for the radiological assessment of drinking waters but also ²¹⁰Pb, and ²¹⁰Po distribution in the marine environment are significant for the assessment of the removal rates of particles from the ocean and particle fluxes during transport along the coast, as well as particulate organic carbon export in the upper ocean. Measurement techniques for ²¹⁰Pb determination, gamma spectrometry, alpha spectrometry, or liquid scintillation counting (LSC) are either time-consuming or demand expensive equipment or complicated chemical pre-treatments. However, one other possibility is to measure ²¹⁰Pb on an LS counter if it is in equilibrium with its progeny ²¹⁰Bi - through the Cherenkov counting method. It is unaffected by the chemical quenching and assumes easy sample preparation but has the drawback of lower counting efficiencies than standard LSC methods, typically from 10% up to 20%. The aim of the presented research in this paper is to investigate the possible increment of detection efficiency of Cherenkov counting during ²¹⁰Pb/²¹⁰Bi detection on an LS counter Quantulus 1220. Considering naturally low levels of ²¹⁰Pb in aqueous samples, the addition of ionic liquids to the counting vials with the analysed samples has the benefit of detection limit’s decrement during ²¹⁰Pb quantification. Our results demonstrated that ionic liquid, 1-butyl-3-methylimidazolium salicylate, is more efficient in Cherenkov counting efficiency increment than the previously explored 2-hydroxypropan-1-amminium salicylate. Consequently, the impact of a few other ionic liquids that were synthesized with the same cation group (1-butyl-3-methylimidazolium benzoate, 1-butyl-3-methylimidazolium 3-hydroxybenzoate, and 1-butyl-3-methylimidazolium 4-hydroxybenzoate) was explored in order to test their potential influence on Cherenkov counting efficiency. It was confirmed that, among the explored ones, only ionic liquids in the form of salicylates exhibit a wavelength shifting effect. Namely, the addition of small amounts (around 0.8 g) of 1-butyl-3-methylimidazolium salicylate increases the detection efficiency from 16% to >70%, consequently reducing the detection threshold by more than four times. Moreover, the addition of ionic liquids could find application in the quantification of other radionuclides besides ²¹⁰Pb/²¹⁰Bi via Cherenkov counting method.Keywords: liquid scintillation counting, ionic liquids, Cherenkov counting, ²¹⁰PB/²¹⁰BI in water
Procedia PDF Downloads 1064519 CSRFDtool: Automated Detection and Prevention of a Reflected Cross-Site Request Forgery
Authors: Alaa A. Almarzuki, Nora A. Farraj, Aisha M. Alshiky, Omar A. Batarfi
Abstract:
The number of internet users is dramatically increased every year. Most of these users are exposed to the dangers of attackers in one way or another. The reason for this lies in the presence of many weaknesses that are not known for native users. In addition, the lack of user awareness is considered as the main reason for falling into the attackers’ snares. Cross Site Request Forgery (CSRF) has placed in the list of the most dangerous threats to security in OWASP Top Ten for 2013. CSRF is an attack that forces the user’s browser to send or perform unwanted request or action without user awareness by exploiting a valid session between the browser and the server. When CSRF attack successes, it leads to many bad consequences. An attacker may reach private and personal information and modify it. This paper aims to detect and prevent a specific type of CSRF, called reflected CSRF. In a reflected CSRF, a malicious code could be injected by the attackers. This paper explores how CSRF Detection Extension prevents the reflected CSRF by checking browser specific information. Our evaluation shows that the proposed solution succeeds in preventing this type of attack.Keywords: CSRF, CSRF detection extension, attackers, attacks
Procedia PDF Downloads 4164518 Mage Fusion Based Eye Tumor Detection
Authors: Ahmed Ashit
Abstract:
Image fusion is a significant and efficient image processing method used for detecting different types of tumors. This method has been used as an effective combination technique for obtaining high quality images that combine anatomy and physiology of an organ. It is the main key in the huge biomedical machines for diagnosing cancer such as PET-CT machine. This thesis aims to develop an image analysis system for the detection of the eye tumor. Different image processing methods are used to extract the tumor and then mark it on the original image. The images are first smoothed using median filtering. The background of the image is subtracted, to be then added to the original, results in a brighter area of interest or tumor area. The images are adjusted in order to increase the intensity of their pixels which lead to clearer and brighter images. once the images are enhanced, the edges of the images are detected using canny operators results in a segmented image comprises only of the pupil and the tumor for the abnormal images, and the pupil only for the normal images that have no tumor. The images of normal and abnormal images are collected from two sources: “Miles Research” and “Eye Cancer”. The computerized experimental results show that the developed image fusion based eye tumor detection system is capable of detecting the eye tumor and segment it to be superimposed on the original image.Keywords: image fusion, eye tumor, canny operators, superimposed
Procedia PDF Downloads 3674517 The Influence of Brazing Method on Corrosion Behavior of Brazed Aluminum Joints
Authors: F. Ghasim-akbari, A. M. Hadian, A. M. Aminazad
Abstract:
Fluid transmission pipes made of aluminum are widely use in petrochemical industries. For many applications they have to be brazed to each other. The brazed joints, in many cases, are encountered with corrosive medias. This paper reports a part of a work to investigate the corrosion behavior of brazed Al6061 using Al4047 as filler metal with and without the use of flux to discover the effect of different brazing atmospheres. The samples brazed under air, vacuum, argon, and hydrogen atmospheres. The interfacial area of the joints was examined to ensure being free of any defects. The sides of each test piece were covered with insulator and the surface of the joint was encountered to polarization test. The results revealed a significant difference of corrosion resistance. The samples that brazed under argon and hydrogen atmospheres had better corrosion resistance than other samples. Microstructure of the corroded joints revealed that the amount of the filler metal is a critical parameter on corrosion resistance of the joints.Keywords: brazing, corrosion behavior, Al6061, polarization
Procedia PDF Downloads 4994516 Intelligent Platform for Photovoltaic Park Operation and Maintenance
Authors: Andreas Livera, Spyros Theocharides, Michalis Florides, Charalambos Anastassiou
Abstract:
A main challenge in the quest for ensuring quality of operation, especially for photovoltaic (PV) systems, is to safeguard the reliability and optimal performance by detecting and diagnosing potential failures and performance losses at early stages or before the occurrence through real-time monitoring, supervision, fault detection, and predictive maintenance. The purpose of this work is to present the functionalities and results related to the development and validation of a software platform for PV assets diagnosis and maintenance. The platform brings together proprietary hardware sensors and software algorithms to enable the early detection and prediction of the most common and critical faults in PV systems. It was validated using field measurements from operating PV systems. The results showed the effectiveness of the platform for detecting faults and losses (e.g., inverter failures, string disconnections, and potential induced degradation) at early stages, forecasting PV power production while also providing recommendations for maintenance actions. Increased PV energy yield production and revenue can be thus achieved while also minimizing operation and maintenance (O&M) costs.Keywords: failure detection and prediction, operation and maintenance, performance monitoring, photovoltaic, platform, recommendations, predictive maintenance
Procedia PDF Downloads 574515 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform
Authors: Sadam Alwadi
Abstract:
Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.Keywords: outlier values, imputation, stock market data, detecting, estimation
Procedia PDF Downloads 844514 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System
Authors: Nareshkumar Harale, B. B. Meshram
Abstract:
The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design
Procedia PDF Downloads 2304513 Novel Routes to the Synthesis and Functionalization of Metallic and Semiconductor Thin Film and Nanoparticles
Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien
Abstract:
The process of assembling metal nanoparticles at the interface of two liquids has received a great deal of attention over the past few years due to a wide range of important applications and their unusual properties as compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: Firstly, to describe the achievement of a closed loop recycling for producing cadmium sulfide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulfides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferrofluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Coinage metals like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.Keywords: metal nanoparticles, core/shell structures and semiconductors, ferromagnetic properties, closed loop recycling, liquid/liquid interface
Procedia PDF Downloads 4644512 Fusarium Wilt of Tomato: Plant Growth, Physiology and Biological Disease Management
Authors: Amna Shoaib, Sidrah Hanif, Rashid Mehmood
Abstract:
Current research work was carried out to check influence of farmyard manure (FYM) in Lycopersicon esculentum L. against Fusarium oxysporum f. sp. lycopersici (FO) in copper polluted soil. Silt-loam soil naturally enriched with 70 ppm of Cu was inoculated with 1 x 106 spore suspensions of FO and incorporated with 0%, 1%, 1.5% or 2% FYM. The multilateral interaction of host-pathogen-metal-organic amendment was assessed in terms of morphology, growth, yield, physiology, biochemistry and metal uptake in tomato plant after 30 and 60 days of sowing. When soil was inoculated with FO, plant growth and biomass were significantly increased during vegetative stage, while declining during flowering stage with substantial increase in productivity over control. Infected plants exhibited late wilting and disease severity was found on 26-50% of plant during reproductive stage. Incorporation of up to 1% FYM suppressed disease severity, improved plant growth and biomass, while it decreased yield. Rest of manure doses was found ineffective in suppressing disease. Content of total chlorophyll, sugar and protein were significantly declined in FO inoculated plants and incorporation of FYM caused significant reduction or no influence on sugar and chlorophyll content, and no pronounced difference among different FYM doses were observed. On the other hand, proline, peroxidase, catalase and nitrate reductase activity were found to be increased in infected plants and incorporation of 1-2% FYM further enhanced the activity of these enzymes. Tomato plant uptake of 30-40% of copper naturally present in the soil and incorporation of 1-2% FYM markedly decreased plant uptake of metal by 15-30%, while increased Cu retention in soil. Present study concludes that lower dose (1%) of FYM could be used to manage disease, increase growth and biomass, while being ineffective for yield and productivity in Cu-polluted soil. Altered physiology/biochemistry of plant in response to any treatment could be served as basis for resistant against pathogen and metal homeostasis in plants.Keywords: Lycopersicon esculentum, copper, Fusarium wilt, farm yard manure
Procedia PDF Downloads 4174511 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks
Procedia PDF Downloads 226