Search results for: lighting energy efficiency
12021 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair
Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar
Abstract:
Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol
Procedia PDF Downloads 20612020 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 5712019 Agegraphic Dark Energy with GUP
Authors: H. R. Fazlollahi
Abstract:
Dark Energy origin is unknown and so describing this mysterious component in large scale structure needs to manipulate our theories in general relativity. Although in most models, dark energy arises from extra terms through modifying Einstein-Hilbert action, maybe its origin traces back to fundamental aspects of ground energy of space-time given in quantum mechanics. Hence, diluting space-time in general relativity with quantum mechanics properties leads to the Karolyhazy relation corresponding energy density of quantum fluctuations of space-time. Through generalized uncertainty principle and an eye to Karolyhazy approach in this study we extend energy density of quantum fluctuations of space-time. Also, the application of this idea is considered in late time evolution and we have shown how extra term in generalized uncertainty principle plays as a plausible interaction term role in suggested model.Keywords: generalized uncertainty principle, karolyhazy approach, agegraphic dark energy, cosmology
Procedia PDF Downloads 7312018 The Energy Efficient Water Reuse by Combination of Nano-Filtration and Capacitive Deionization Processes
Authors: Youngmin Kim, Jae-Hwan Ahn, Seog-Ku Kim, Hye-Cheol Oh, Bokjin Lee, Hee-Jun Kang
Abstract:
The high energy consuming processes such as advanced oxidation and reverse osmosis are used as a reuse process. This study aims at developing an energy efficient reuse process by combination of nanofiltration (NF) and capacitive deionization processes (CDI) processes. Lab scale experiments were conducted by using effluents from a wastewater treatment plant located at Koyang city in Korea. Commercial NF membrane (NE4040-70, Toray Ltd.) and CDI module (E40, Siontech INC.) were tested in series. The pollutant removal efficiencies were evaluated on the basis of Korean water quality criteria for water reuse. In addition, the energy consumptions were also calculated. As a result, the hybrid process showed lower energy consumption than conventional reverse osmosis process even though its effluent did meet the Korean standard. Consequently, this study suggests that the hybrid process is feasible for the energy efficient water reuse.Keywords: capacitive deionization, energy efficient process, nanofiltration, water reuse
Procedia PDF Downloads 18212017 Assessment of the Relationship between Energy Price Dynamics and Green Growth in the Sub-Sharan Africa
Authors: Christopher I. Ifeacho, Adeleke Omolade
Abstract:
The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve green growth that can engender sustainability and stability has received more attention from researchers in recent times. This study uses a panel autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rates have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.Keywords: green growth, energy price dynamics, Sub Saharan Africa, relationship
Procedia PDF Downloads 9912016 Models Comparison for Solar Radiation
Authors: Djelloul Benatiallah
Abstract:
Due to the current high consumption and recent industry growth, the depletion of fossil and natural energy supplies like oil, gas, and uranium is declining. Due to pollution and climate change, there needs to be a swift switch to renewable energy sources. Research on renewable energy is being done to meet energy needs. Solar energy is one of the renewable resources that can currently meet all of the world's energy needs. In most parts of the world, solar energy is a free and unlimited resource that can be used in a variety of ways, including photovoltaic systems for the generation of electricity and thermal systems for the generation of heatfor the residential sector's production of hot water. In this article, we'll conduct a comparison. The first step entails identifying the two empirical models that will enable us to estimate the daily irradiations on a horizontal plane. On the other hand, we compare it using the data obtained from measurements made at the Adrar site over the four distinct seasons. The model 2 provides a better estimate of the global solar components, with an absolute mean error of less than 7% and a correlation coefficient of more than 0.95, as well as a relative coefficient of the bias error that is less than 6% in absolute value and a relative RMSE that is less than 10%, according to a comparison of the results obtained by simulating the two models.Keywords: solar radiation, renewable energy, fossil, photovoltaic systems
Procedia PDF Downloads 7912015 Wind Energy Status in Turkey
Authors: Mustafa Engin Başoğlu, Bekir Çakir
Abstract:
Since large part of electricity generation is provided by using fossil based resources, energy is an important agenda for countries. Depletion of fossil resources, increasing awareness of climate change and global warming concerns are the major reasons for turning to alternative energy resources. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, wind energy is promising for Turkey whose installed power capacity increases approximately eight times between 2008 - seventh month of 2014. Signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish government has announced 2023 Vision (2023 targets) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). 2023 Energy targets can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Share of nuclear power plants in electricity generation will be 10% of total electricity generation by 2023. Dependence on foreign energy is reduced for sustainability and energy security. As of seventh month of 2014, total installed capacity of wind power plants is 3.42 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. MILRES is an important project aimed to promote the use of renewable sources in electricity generation. A 500 kW wind turbine will be produced in the first phase of project. Then 2.5 MW wind turbine will be manufactured domestically within this projectKeywords: wind energy, wind speed, 2023 vision, MILRES, wind energy potential in TURKEY
Procedia PDF Downloads 54512014 Feasibility Study on the Use of HEMS for Thermal Comfort and Energy Saving in Japanese Residential Buildings
Authors: K. C. Rajan, H. B. Rijal, Kazui Yoshida, Masanori Shukuya
Abstract:
The electricity consumption in the Japanese household sector has increased with higher rate than that of other sectors. This may be because of aging and information oriented society that requires more electrical appliances to make the life better and easier, under this circumstances, energy saving is one of the essential necessity in Japanese society. To understand the way of energy use and demand response of the residential occupants, it is important to understand the structure of energy used. Home Energy Management System (HEMS) may be used for understanding the pattern and the structure of energy used. HEMS is a visualization system of the energy usage by connecting the electrical equipment in the home and thereby automatically control the energy use in each device, so that the energy saving is achieved. Therefore, the HEMS can provide with the easiest way to understand the structure of energy use. The HEMS has entered the mainstream of the Japanese market. The objective of this study is to understand the pattern of energy saving and cost saving in different regions including Japan during HEMS use. To observe thermal comfort level of HEMS managed residential buildings in Japan, the field survey was made and altogether, 1534 votes from 37 occupants related to thermal comfort, occupants’ behaviors and clothing insulation were collected and analyzed. According to the result obtained, approximately 17.9% energy saving and 8.9% cost saving is possible if HEMS is applied effectively. We found the thermal sensation and overall comfort level of the occupants is high in the studied buildings. The occupants residing in those HEMS buildings are satisfied with the thermal environment and they have accepted it. Our study concluded that the significant reduction in Japanese residential energy use can be achieved by the proper utilization of the HEMS. Better thermal comfort is also possible with the use of HEMS if energy use is managed in a rationally effective manner.Keywords: energy reduction, thermal comfort, HEMS utility, thermal environment
Procedia PDF Downloads 28812013 Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell
Authors: Majid Ali, Xinfang Jin, Victor Eniola, Henning Hoene
Abstract:
The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices.Keywords: fuel cell, proton exchange membrane, renewable energy, power fluctuation, experimental
Procedia PDF Downloads 13512012 Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst
Authors: Meichen Lee, Michael K. H. Leung
Abstract:
In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.Keywords: microwave solvothermal process, nanoplates, solar energy, visible-light photocatalysis
Procedia PDF Downloads 45812011 Experimental Analysis of the Performance of a System for Freezing Fish Products Equipped with a Modulating Vapour Injection Scroll Compressor
Authors: Domenico Panno, Antonino D’amico, Hamed Jafargholi
Abstract:
This paper presents an experimental analysis of the performance of a system for freezing fish products equipped with a modulating vapour injection scroll compressor operating with R448A refrigerant. Freezing is a critical process for the preservation of seafood products, as it influences quality, food safety, and environmental sustainability. The use of a modulating scroll compressor with vapour injection, associated with the R448A refrigerant, is proposed as a solution to optimize the performance of the system, reducing energy consumption and mitigating the environmental impact. The stream injection modulating scroll compressor represents an advanced technology that allows you to adjust the compressor capacity based on the actual cooling needs of the system. Vapour injection allows the optimization of the refrigeration cycle, reducing the evaporation temperature and improving the overall efficiency of the system. The use of R448A refrigerant, with a low Global Warming Potential (GWP), is part of an environmental sustainability perspective, helping to reduce the climate impact of the system. The aim of this research was to evaluate the performance of the system through a series of experiments conducted on a pilot plant for the freezing of fish products. Several operational variables were monitored and recorded, including evaporation temperature, condensation temperature, energy consumption, and freezing time of seafood products. The results of the experimental analysis highlighted the benefits deriving from the use of the modulating vapour injection scroll compressor with the R448A refrigerant. In particular, a significant reduction in energy consumption was recorded compared to conventional systems. The modulating capacity of the compressor made it possible to adapt the cold production to variations in the thermal load, ensuring optimal operation of the system and reducing energy waste. Furthermore, the use of an electronic expansion valve highlighted greater precision in the control of the evaporation temperature, with minimal deviation from the desired set point. This helped ensure better quality of the final product, reducing the risk of damage due to temperature changes and ensuring uniform freezing of the fish products. The freezing time of seafood has been significantly reduced thanks to the configuration of the entire system, allowing for faster production and greater production capacity of the plant. In conclusion, the use of a modulating vapour injection scroll compressor operating with R448A has proven effective in improving the performance of a system for freezing fish products. This technology offers an optimal balance between energy efficiency, temperature control, and environmental sustainability, making it an advantageous choice for food industries.Keywords: scroll compressor, vapor injection, refrigeration system, EER
Procedia PDF Downloads 4512010 Energy Trading for Cooperative Microgrids with Renewable Energy Resources
Authors: Ziaullah, Shah Wahab Ali
Abstract:
Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids.Keywords: distributed energy management, information and communication technologies, microgrid, energy management
Procedia PDF Downloads 37512009 Efficiency of Secondary Schools by ICT Intervention in Sylhet Division of Bangladesh
Authors: Azizul Baten, Kamrul Hossain, Abdullah-Al-Zabir
Abstract:
The objective of this study is to develop an appropriate stochastic frontier secondary schools efficiency model by ICT Intervention and to examine the impact of ICT challenges on secondary schools efficiency in the Sylhet division in Bangladesh using stochastic frontier analysis. The Translog stochastic frontier model was found an appropriate than the Cobb-Douglas model in secondary schools efficiency by ICT Intervention. Based on the results of the Cobb-Douglas model, it is found that the coefficient of the number of teachers, the number of students, and teaching ability had a positive effect on increasing the level of efficiency. It indicated that these are related to technical efficiency. In the case of inefficiency effects for both Cobb-Douglas and Translog models, the coefficient of the ICT lab decreased secondary school inefficiency, but the online class in school was found to increase the level of inefficiency. The coefficients of teacher’s preference for ICT tools like multimedia projectors played a contributor role in decreasing the secondary school inefficiency in the Sylhet division of Bangladesh. The interaction effects of the number of teachers and the classrooms, and the number of students and the number of classrooms, the number of students and teaching ability, and the classrooms and teaching ability of the teachers were recorded with the positive values and these have a positive impact on increasing the secondary school efficiency. The overall mean efficiency of urban secondary schools was found at 84.66% for the Translog model, while it was 83.63% for the Cobb-Douglas model. The overall mean efficiency of rural secondary schools was found at 80.98% for the Translog model, while it was 81.24% for the Cobb-Douglas model. So, the urban secondary schools performed better than the rural secondary schools in the Sylhet division. It is observed from the results of the Tobit model that the teacher-student ratio had a positive influence on secondary school efficiency. The teaching experiences of those who have 1 to 5 years and 10 years above, MPO type school, conventional teaching method have had a negative and significant influence on secondary school efficiency. The estimated value of σ-square (0.0625) was different from Zero, indicating a good fit. The value of γ (0.9872) was recorded as positive and it can be interpreted as follows: 98.72 percent of random variation around in secondary school outcomes due to inefficiency.Keywords: efficiency, secondary schools, ICT, stochastic frontier analysis
Procedia PDF Downloads 15112008 Non-thermal Plasma Promotes Boar Sperm Quality Through Increasing AMPK Methylation
Authors: Jiaojiao Zhang
Abstract:
Boar sperm quality, as an important indicator of reproductive efficiency, directly affects the efficiency of livestock production. Here, this study was conducted to improve the boar sperm quality by using a non-thermal dielectric barrier discharge (DBD) plasma. Our results showed that DBD plasma exposure at 2.1 W for 15 s could improve boar sperm quality by increasing the exon methylation level of adenosine monophosphate-activated protein kinase (AMPK) and thus improving the glycolytic flux, mitochondrial function, and antioxidant capacity without damaging the integrity of sperm DNA and acrosome. In addition, DBD plasma could rescue DNA methyltransferase inhibitor decitabine-caused low sperm quality by reducing oxidative stress and mitochondrial damage. Therefore, the application of non-thermal plasma provides a new strategy for reducing sperm oxidative damage and improving sperm quality, which shows great potential in assisted reproduction to solve the problem of male infertility.Keywords: non-thermal DBD plasma, sperm quality, AMPK methylation, energy metabolism, antioxidant capacity
Procedia PDF Downloads 912007 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities
Authors: Salman Naseer
Abstract:
One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission
Procedia PDF Downloads 14212006 A Computational Investigation of Knocking Tendency in a Hydrogen-Fueled SI Engine
Authors: Hammam Aljabri, Hong G. Im
Abstract:
Hydrogen is a promising future fuel to support the transition of the energy sector toward carbon neutrality. The direct utilization of H2 in Internal Combustion Engines (ICEs) is possible, and this technology faces mainly two challenges; high NOx emissions and severe knocking at mid to high loads. In this study, we numerically investigated the potential of H2 combustion in a truck-size engine operated in SI mode. To mitigate the knocking nature of H2 combustion, we have focused on studying the effects of three primary parameters; the compression ratio (CR), the air-fuel ratio, and the spark time. The baseline case was set using a CR of 16.5 and an equivalence ratio of 0.35. In simulations, the auto-ignition tendency was evaluated based on the maximum pressure rise rate and the local pressure fluctuations at the monitoring points set along the wall of the combustion chamber. To mitigate the auto-ignition tendency while enabling a wider range of engine operation, the effect of lowering the compression ratio was assessed. The results indicate that by lowering the compression ratio from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved. Aiming to restrain the auto-ignition while maintaining good efficiency, a reduction in the equivalence ratio was examined under different compression ratios. The result indicates that higher compression ratios will require lower equivalence ratios, and due to practical limitations, a lower equivalence ratio of 0.25 was set as the limit. Using a compression ratio of 13.5 combined with an equivalence ratio of 0.3 resulted in an indicated thermal efficiency of 48.6%, that is, at a fixed spark time. It is found that under such lean conditions, the incomplete combustion losses and exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time, where an indicated thermal efficiency exceeding 50% was achieved using a compression ratio of 14.5:1 and an equivalence ratio of 0.25.Keywords: hydrogen, combustion, engine knock, SI engine
Procedia PDF Downloads 12912005 Soybean Oil Based Phase Change Material for Thermal Energy Storage
Authors: Emre Basturk, Memet Vezir Kahraman
Abstract:
In many developing countries, with the rapid economic improvements, energy shortage and environmental issues have become a serious problem. Therefore, it has become a very critical issue to improve energy usage efficiency and also protect the environment. Thermal energy storage system is an essential approach to match the thermal energy claim and supply. Thermal energy can be stored by heating, cooling or melting a material with the energy and then enhancing accessible when the procedure is reversed. The overall thermal energy storage techniques are sorted as; latent heat or sensible heat thermal energy storage technology segments. Among these methods, latent heat storage is the most effective method of collecting thermal energy. Latent heat thermal energy storage depend on the storage material, emitting or discharging heat as it undergoes a solid to liquid, solid to solid or liquid to gas phase change or vice versa. Phase change materials (PCMs) are promising materials for latent heat storage applications due to their capacities to accumulate high latent heat storage per unit volume by phase change at an almost constant temperature. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. Organic PCMs are rather expensive and they have average latent heat storage per unit volume and also have low density. Most organic PCMs are combustible in nature and also have a wide range of melting point. Organic PCMs can be categorized into two major categories: non-paraffinic and paraffin materials. Paraffin materials have been extensively used, due to their high latent heat and right thermal characteristics, such as minimal super cooling, varying phase change temperature, low vapor pressure while melting, good chemical and thermal stability, and self-nucleating behavior. Ultraviolet (UV)-curing technology has been generally used because it has many advantages, such as low energy consumption , high speed, high chemical stability, room-temperature operation, low processing costs and environmental friendly. For many years, PCMs have been used for heating and cooling industrial applications including textiles, refrigerators, construction, transportation packaging for temperature-sensitive products, a few solar energy based systems, biomedical and electronic materials. In this study, UV-curable, fatty alcohol containing soybean oil based phase change materials (PCMs) were obtained and characterized. The phase transition behaviors and thermal stability of the prepared UV-cured biobased PCMs were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The heating process phase change enthalpy is measured between 30 and 68 J/g, and the freezing process phase change enthalpy is found between 18 and 70 J/g. The decomposition of UVcured PCMs started at 260 ºC and reached a maximum of 430 ºC.Keywords: fatty alcohol, phase change material, thermal energy storage, UV curing
Procedia PDF Downloads 38212004 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks
Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith
Abstract:
Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN
Procedia PDF Downloads 13112003 Sustainable Renovation of Cultural Buildings Case Study: Red Bay National Historic Site, Canada
Authors: Richard Briginshaw, Hana Alaojeli, Javaria Ahmad, Hamza Gaffar, Nourtan Murad
Abstract:
Sustainable renovations to cultural buildings and sites require a high level of competency in the sometimes conflicting areas of social/historical demands, environmental concerns, and the programmatic and technical requirements of the project. A detailed analysis of the existing site, building and client program are critical to reveal both challenges and opportunities. This forms the starting point for the design process – empirical explorations that search for a balanced and inspired architectural solution to the project. The Red Bay National Historic Site on the Labrador Coast of eastern Canada is a challenging project to explore and resolve these ideas. Originally the site of a 16ᵗʰ century whaling station occupied by Basque sailors from France and Spain, visitors now experience this history at the interpretive center, along with the unique geography, climate, local culture and vernacular architecture of the area. Working with our client, Parks Canada, the project called for significant alterations and expansion to the existing facility due to an increase in the number of annual visitors. Sustainable aspects of the design are focused on sensitive site development, passive energy strategies such as building orientation and building envelope efficiency, active renewable energy systems, carefully considered material selections, water efficiency, and interiors that respond to human comfort and a unique visitor experience.Keywords: sustainability, renovations and expansion, cultural project, architectural design, green building
Procedia PDF Downloads 16812002 Characteristics and Drivers of Greenhouse Gas (GHG) emissions from China’s Manufacturing Industry: A Threshold Analysis
Abstract:
Only a handful of literature have used to non-linear model to investigate the influencing factors of greenhouse gas (GHG) emissions in China’s manufacturing sectors. And there is a limit in investigating quantitatively and systematically the mechanism of correlation between economic development and GHG emissions considering inherent differences among manufacturing sub-sectors. Considering the sectorial characteristics, the manufacturing sub-sectors with various impacts of output on GHG emissions may be explained by different development modes in each manufacturing sub-sector, such as investment scale, technology level and the level of international competition. In order to assess the environmental impact associated with any specific level of economic development and explore the factors that affect GHG emissions in China’s manufacturing industry during the process of economic growth, using the threshold Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) model, this paper investigated the influence impacts of GHG emissions for China’s manufacturing sectors of different stages of economic development. A data set from 28 manufacturing sectors covering an 18-year period was used. Results demonstrate that output per capita and investment scale contribute to increasing GHG emissions while energy efficiency, R&D intensity and FDI mitigate GHG emissions. Results also verify the nonlinear effect of output per capita on emissions as: (1) the Environmental Kuznets Curve (EKC) hypothesis is supported when threshold point RMB 31.19 million is surpassed; (2) the driving strength of output per capita on GHG emissions becomes stronger as increasing investment scale; (3) the threshold exists for energy efficiency with the positive coefficient first and negative coefficient later; (4) the coefficient of output per capita on GHG emissions decreases as R&D intensity increases. (5) FDI shows a reduction in elasticity when the threshold is compassed.Keywords: China, GHG emissions, manufacturing industry, threshold STIRPAT model
Procedia PDF Downloads 42812001 Application of Biomimetic Approach in Optimizing Buildings Heat Regulating System Using Parametric Design Tools to Achieve Thermal Comfort in Indoor Spaces in Hot Arid Regions
Authors: Aya M. H. Eissa, Ayman H. A. Mahmoud
Abstract:
When it comes to energy efficient thermal regulation system, natural systems do not only offer an inspirational source of innovative strategies but also sustainable and even regenerative ones. Using biomimetic design an energy efficient thermal regulation system can be developed. Although, conventional design process methods achieved fairly efficient systems, they still had limitations which can be overcome by using parametric design software. Accordingly, the main objective of this study is to apply and assess the efficiency of heat regulation strategies inspired from termite mounds in residential buildings’ thermal regulation system. Parametric design software is used to pave the way for further and more complex biomimetic design studies and implementations. A hot arid region is selected due to the deficiency of research in this climatic region. First, the analysis phase in which the stimuli, affecting, and the parameters, to be optimized, are set mimicking the natural system. Then, based on climatic data and using parametric design software Grasshopper, building form and openings height and areas are altered till settling on an optimized solution. Finally, an assessment of the efficiency of the optimized system, in comparison with a conventional system, is determined by firstly, indoors airflow and indoors temperature, by Ansys Fluent (CFD) simulation. Secondly by and total solar radiation falling on the building envelope, which was calculated using Ladybug, Grasshopper plugin. The results show an increase in the average indoor airflow speed from 0.5m/s to 1.5 m/s. Also, a slight decrease in temperature was noticed. And finally, the total radiation was decreased by 4%. In conclusion, despite the fact that applying a single bio-inspired heat regulation strategy might not be enough to achieve an optimum system, the concluded system is more energy efficient than the conventional ones as it aids achieving indoors comfort through passive techniques. Thus demonstrating the potential of parametric design software in biomimetic design.Keywords: biomimicry, heat regulation systems, hot arid regions, parametric design, thermal comfort
Procedia PDF Downloads 29412000 Assessment of the Relationship Between Energy Price Dynamics and Green Growth in Sub-Saharan Africa
Authors: Christopher Ikechukwu Ifeacho
Abstract:
The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve the green growth that can engender sustainability, and stability has received more attention from researchers in recent times. This study uses a panel Autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rate have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.Keywords: green growth, energy price dynamics, Sub Sahara Africa., sustainability
Procedia PDF Downloads 2111999 Rethinking The Residential Paradigm: Regenerative Design and the Contemporary Housing Industry
Authors: Gabriela Lucas Sanchez
Abstract:
The contemporary housing industry is dominated by tract houses, which prioritize uniformity and cost-efficiency over environmental and ecological considerations. However, as the world faces the growing challenges of climate change and resource depletion, there is an urgent need to rethink the residential paradigm. This essay explores how regenerative practices can be integrated into standard residential designs to create a shift that reduces the environmental impact of housing and actively contributes to ecological health. Passive sustainable practices, such as passive solar design, natural ventilation, and the use of energy-efficient materials, aim to maximize resource use efficiency, minimize waste, and create healthy living environments. Regenerative practices, on the other hand, go beyond sustainability to work in harmony with natural systems, actively restoring and enriching the environment. Integrating these two approaches can redefine the residential paradigm, creating homes that reduce harm and positively impact the local ecosystem. The essay begins by exploring the principles and benefits of passive sustainable practices, discussing how they can reduce energy consumption and improve indoor environmental quality in standardized housing. Passive sustainability minimizes energy consumption through strategic design choices, such as optimizing building orientation, utilizing natural ventilation, and incorporating high-performance insulation and glazing. However, while sustainability efforts have been important steps in the right direction, a more holistic, regenerative approach is needed to address the root causes of environmental degradation. Regenerative development and design seek to go beyond simply reducing negative impacts, instead aiming to create built environments that actively contribute to restoring and enhancing natural systems. This shift in perspective is critical, as it recognizes the interdependence between human settlements and the natural world and the potential for buildings to serve as catalysts for positive change.Keywords: passive sustainability, regenerative architecture, residential architecture, community
Procedia PDF Downloads 3511998 Shifting of Global Energy Security: A Comparative Analysis of Indonesia and China’s Renewable Energy Policies
Authors: Widhi Hanantyo Suryadinata
Abstract:
Efforts undertaken by Indonesia and China to shift the strategies and security of renewable energy on a global stage involve approaches through policy construction related to rare minerals processing or value-adding in Indonesia and manufacturing policies through the New Energy Vehicles (NEVs) policy in China. Both policies encompass several practical regulations and policies that can be utilized for the implementation of Indonesia and China's grand efforts and ideas. Policy development in Indonesia and China can be analyzed using a comparative analysis method, as well as employing a pyramid illustration to identify policy construction phases based on the real conditions of the domestic market and implemented policies. This approach also helps to identify the potential integration of policies needed to enhance the policy development phase of a country within the pyramid. It also emphasizes the significance of integration policy to redefine renewable energy strategy and security on the global stage.Keywords: global renewable energy security, global energy security, policy development, comparative analysis, shifting of global energy security, Indonesia, China
Procedia PDF Downloads 6911997 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles
Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli
Abstract:
Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system
Procedia PDF Downloads 5811996 Low Energy Mechanism in Pelvic Trauma at Elderly
Authors: Ravid Yinon
Abstract:
Introduction: Pelvic trauma causes high mortality, particularly among the elderly population. Pelvic injury ranges from low-energy incidents such as falls to high-energy trauma like motor vehicle accidents. The mortality rate among high-energy trauma patients is higher, as can be expected. The elderly population is more vulnerable to pelvic trauma even at low energy mechanisms due to the fragility and diminished physiological reserve of these patients. The aim of this study is to examine whether there is a higher long-term mortality in pelvic injuries in the elderly from the low-energy mechanism than those injured in high energy. Methods: A retrospective cohort study was conducted in a level 1 trauma center with injured patients aged 65 years and over with pelvic trauma. The patients were divided into two groups of low and high-energy mechanisms of injury. Multivariate analysis was conducted to characterize the differences between the groups. Results: There were 585 consecutive injured patients over the age of 65 with a documented pelvic injury who were treated at the primary trauma center between 2008-2020. The injured in the high energy group were younger (mean HE- 75.18, LE-80.73), with fewer comorbidities (mean 0.78 comorbidities at HE and 1.28 at LE), more men (52.6% at HE and 27.4% at LE), were consumed more treatments facilities such as angioembolization, ICU admission, emergency surgeries and blood products transfusion and higher mortality rate at admission (HE- 19/133, 14.28%, LE- 10/452, 2.21%) compared to the low energy group. However, in a long-term follow-up of one year after the injury, mortality in the low-energy group was significantly higher (HE- 14/114, 12.28%, LE- 155/442, 35.06%). Discussion: Although it can be expected that in the mechanism of high energy, the mortality rate in the long term would be higher, it was found that mortality at the low energy patient was higher. Apparently, low-energy pelvic injury in geriatric patients is a measure of frailty in these patients, causes injury to more frail and morbid patients, and is a predictor of mortality in this population in the long term. Conclusion: The long-term follow-up of injured elderly with pelvic trauma should be more intense, and the healthcare provider should put more emphasis on the rehabilitation of these special patient populations in an attempt to prevent long-term mortality.Keywords: pelvic trauma, elderly trauma, high energy trauma, low energy trauma
Procedia PDF Downloads 5211995 A Performance Analysis Study of an Active Solar Still Integrating Fin at the Basin Plate
Authors: O. Ansari, H. Hafs, A. Bah, M. Asbik, M. Malha, M. Bakhouya
Abstract:
Water is one of the most important and vulnerable natural resources due to human activities and climate change. Water-level continues declining year after year and it is primarily caused by sustained, extensive, and traditional usage methods. Improving water utilization becomes an urgent issue in order satisfy the increasing population needs. Desalination of seawater or brackish water could help in increasing water potential. However, a cost-effective desalination process is required. The most appropriate method for performing this desalination is solar-driven distillation, given its simplicity, low cost and especially the availability of the solar energy source. The main objective of this paper is to demonstrate the influence of coupling integrated basin plate by fins with preheating by solar collector on the performance of solar still. The energy balance equations for the various elements of the solar still are introduced. A numerical example is used to show the efficiency of the proposed solution.Keywords: active solar still, desalination, fins, solar collector
Procedia PDF Downloads 21811994 Optimization of Energy Harvesting Systems for RFID Applications
Authors: P. Chambe, B. Canova, A. Balabanian, M. Pele, N. Coeur
Abstract:
To avoid battery assisted tags with limited lifetime batteries, it is proposed here to replace them by energy harvesting systems, able to feed from local environment. This would allow total independence to RFID systems, very interesting for applications where tag removal from its location is not possible. Example is here described for luggage safety in airports, and is easily extendable to similar situation in terms of operation constraints. The idea is to fix RFID tag with energy harvesting system not only to identify luggage but also to supply an embedded microcontroller with a sensor delivering luggage weight making it impossible to add or to remove anything from the luggage during transit phases. The aim is to optimize the harvested energy for such RFID applications, and to study in which limits these applications are theoretically possible. Proposed energy harvester is based on two energy sources: piezoelectricity and electromagnetic waves, so that when the luggage is moving on ground transportation to airline counters, the piezo module supplies the tag and its microcontroller, while the RF module operates during luggage transit thanks to readers located along the way. Tag location on the luggage is analyzed to get best vibrations, as well as harvester better choice for optimizing the energy supply depending on applications and the amount of energy harvested during a period of time. Effects of system parameters (RFID UHF frequencies, limit distance between the tag and the antenna necessary to harvest energy, produced voltage and voltage threshold) are discussed and working conditions for such system are delimited.Keywords: RFID tag, energy harvesting, piezoelectric, EM waves
Procedia PDF Downloads 45211993 Analysis and Improvement of Efficiency for Food Processing Assembly Lines
Authors: Mehmet Savsar
Abstract:
Several factors affect productivity of Food Processing Assembly Lines (FPAL). Engineers and line managers usually do not recognize some of these factors and underutilize their production/assembly lines. In this paper, a special food processing assembly line is studied in detail, and procedures are presented to illustrate how productivity and efficiency of such lines can be increased. The assembly line considered produces ten different types of freshly prepared salads on the same line, which is called mixed model assembly line. Problems causing delays and inefficiencies on the line are identified. Line balancing and related tools are used to increase line efficiency and minimize balance delays. The procedure and the approach utilized in this paper can be useful for the operation managers and industrial engineers dealing with similar assembly lines in food processing industry.Keywords: assembly lines, line balancing, production efficiency, bottleneck
Procedia PDF Downloads 38811992 Energy in the Nexus of Defense and Border Security: Securing Energy Deposits in the Natuna Islands of Indonesia
Authors: Debby Rizqie Amelia Gustin, Purnomo Yusgiantoro
Abstract:
Hydrocarbon energy is still pivotal to today’s economy, but its existence is continually declining. Thus, preserving future energy supply has become the national interest of many countries, which they cater in various way, from importing to expansion and occupation. Underwater of Natuna islands in Indonesia deposits great amount of natural gas reserved, numbered to 46 TCF (trillion cubic feet), which is highly potential to meet Indonesia future energy demand. On the other hand, there could be a possibility that others also seek this natural resources. Natuna is located in the borderline of Indonesia, directly adjacent to the South China Sea, an area which is prolonged to conflict. It is a challenge for Indonesia government to preserve their energy deposit in Natuna islands and to response accordingly if the tension in South China Sea rises. This paper examines that nowadays defense and border security is not only a matter of guarding a country from foreign invasion, but also securing its resources accumulated on the borderline. Countries with great amount of energy deposits on their borderline need to build up their defense capacity continually, to ensure their territory along with their energy deposits is free from any interferences.Keywords: border security, defense, energy, national interest, threat
Procedia PDF Downloads 482