Search results for: high relative accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24272

Search results for: high relative accuracy

22982 ANFIS Approach for Locating Faults in Underground Cables

Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat

Abstract:

This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.

Keywords: ANFIS, fault location, underground cable, wavelet transform

Procedia PDF Downloads 515
22981 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: case based reasoning, classification, expert's knowledge, hybrid model

Procedia PDF Downloads 367
22980 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI

Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova

Abstract:

The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.

Keywords: mechatronic systems, Matlab GUI, sensitivity, tolerance

Procedia PDF Downloads 433
22979 Modification of Fick’s First Law by Introducing the Time Delay

Authors: H. Namazi, H. T. N. Kuan

Abstract:

Fick's first law relates the diffusive flux to the concentration field, by postulating that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative). It is clear that the diffusion of flux cannot be instantaneous and should be some time delay in this propagation. But Fick’s first law doesn’t consider this delay which results in some errors especially when there is a considerable time delay in the process. In this paper, we introduce a time delay to Fick’s first law. By this modification, we consider that the diffusion of flux cannot be instantaneous. In order to verify this claim an application sample in fluid diffusion is discussed and the results of modified Fick’s first law, Fick’s first law and the experimental results are compared. The results of this comparison stand for the accuracy of the modified model. The modified model can be used in any application where the time delay has considerable value and neglecting its effect reflects in undesirable results.

Keywords: Fick's first law, flux, diffusion, time delay, modified Fick’s first law

Procedia PDF Downloads 410
22978 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery

Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley

Abstract:

Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.

Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter

Procedia PDF Downloads 473
22977 The Review of Permanent Downhole Monitoring System

Authors: Jing Hu, Dong Yang

Abstract:

With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.

Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield

Procedia PDF Downloads 79
22976 Structure and Tribological Properties of Moisture Insensitivity Si Containing Diamond-Like Carbon Film

Authors: Mingjiang Dai, Qian Shi, Fang Hu, Songsheng Lin, Huijun Hou, Chunbei Wei

Abstract:

A diamond-like carbon (DLC) is considered as a promising protective film since its high hardness and excellent tribological properties. However, DLC films are very sensitive to the environmental condition, its friction coefficient could dramatic change in high humidity, therefore, limited their further application in aerospace, the watch industry, and micro/nano-electromechanical systems. Therefore, most studies focus on the low friction coefficient of DLC films at a high humid environment. However, this is out of satisfied in practical application. An important thing was ignored is that the DLC coated components are usually used in the diversed environment, which means its friction coefficient may evidently change in different humid condition. As a result, the invalidation of DLC coated components or even sometimes disaster occurred. For example, DLC coated minisize gears were used in the watch industry, and the customer may frequently transform their locations with different weather and humidity even in one day. If friction coefficient is not stable in dry and high moisture conditions, the watch will be inaccurate. Thus, it is necessary to investigate the stable tribological behavior of DLC films in various environments. In this study, a-C:H:Si films were deposited by multi-function magnetron sputtering system, containing one ion source device and a pair of SiC dual mid-frequent targets and two direct current Ti/C targets. Hydrogenated carbon layers were manufactured by sputtering the graphite target in argon and methane gasses. The silicon was doped in DLC coatings by sputtering silicon carbide targets and the doping content were adjusted by mid-frequent sputtering current. The microstructure of the film was characterized by Raman spectrometry, X-ray photoelectron spectroscopy, and transmission electron microscopy while its friction behavior under different humidity conditions was studied using a ball-on-disc tribometer. The a-C:H films with Si content from 0 to 17at.% were obtained and the influence of Si content on the structure and tribological properties under the relative humidity of 50% and 85% were investigated. Results show that the a-C:H:Si film has typical diamond-like characteristics, in which Si mainly existed in the form of Si, SiC, and SiO2. As expected, the friction coefficient of a-C:H films can be effectively changed after Si doping, from 0.302 to 0.176 in RH 50%. The further test shows that the friction coefficient value of a-C:H:Si film in RH 85% is first increase and then decrease as a function of Si content. We found that the a-C:H:Si films with a Si content of 3.75 at.% show a stable friction coefficient of 0.13 in different humidity environment. It is suggestion that the sp3/sp2 ratio of a-C:H films with 3.75 at.% Si was higher than others, which tend to form the silica-gel-like sacrificial layers during friction tests. Therefore, the films deliver stable low friction coefficient under controlled RH value of 50 and 85%.

Keywords: diamond-like carbon, Si doping, moisture environment, table low friction coefficient

Procedia PDF Downloads 366
22975 NanoFrazor Lithography for advanced 2D and 3D Nanodevices

Authors: Zhengming Wu

Abstract:

NanoFrazor lithography systems were developed as a first true alternative or extension to standard mask-less nanolithography methods like electron beam lithography (EBL). In contrast to EBL they are based on thermal scanning probe lithography (t-SPL). Here a heatable ultra-sharp probe tip with an apex of a few nm is used for patterning and simultaneously inspecting complex nanostructures. The heat impact from the probe on a thermal responsive resist generates those high-resolution nanostructures. The patterning depth of each individual pixel can be controlled with better than 1 nm precision using an integrated in-situ metrology method. Furthermore, the inherent imaging capability of the Nanofrazor technology allows for markerless overlay, which has been achieved with sub-5 nm accuracy as well as it supports stitching layout sections together with < 10 nm error. Pattern transfer from such resist features below 10 nm resolution were demonstrated. The technology has proven its value as an enabler of new kinds of ultra-high resolution nanodevices as well as for improving the performance of existing device concepts. The application range for this new nanolithography technique is very broad spanning from ultra-high resolution 2D and 3D patterning to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. However, while patterning at below 10 nm resolution is achieved, significantly increasing the patterning speed at the expense of resolution is not feasible by using the heated tip alone. Towards this end, an integrated laser write head for direct laser sublimation (DLS) of the thermal resist has been introduced for significantly faster patterning of micrometer to millimeter-scale features. Remarkably, the areas patterned by the tip and the laser are seamlessly stitched together and both processes work on the very same resist material enabling a true mix-and-match process with no developing or any other processing steps in between. The presentation will include examples for (i) high-quality metal contacting of 2D materials, (ii) tuning photonic molecules, (iii) generating nanofluidic devices and (iv) generating spintronic circuits. Some of these applications have been enabled only due to the various unique capabilities of NanoFrazor lithography like the absence of damage from a charged particle beam.

Keywords: nanofabrication, grayscale lithography, 2D materials device, nano-optics, photonics, spintronic circuits

Procedia PDF Downloads 72
22974 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 103
22973 The Developing of Teaching Materials Online for Students in Thailand

Authors: Pitimanus Bunlue

Abstract:

The objectives of this study were to identify the unique characteristics of Salaya Old market, Phutthamonthon, Nakhon Pathom and develop the effective video media to promote the homeland awareness among local people and the characteristic features of this community were collectively summarized based on historical data, community observation, and people’s interview. The acquired data were used to develop a media describing prominent features of the community. The quality of the media was later assessed by interviewing local people in the old market in terms of content accuracy, video, and narration qualities, and sense of homeland awareness after watching the video. The result shows a 6-minute video media containing historical data and outstanding features of this community was developed. Based on the interview, the content accuracy was good. The picture quality and the narration were very good. Most people developed a sense of homeland awareness after watching the video also as well.

Keywords: audio-visual, creating homeland awareness, Phutthamonthon Nakhon Pathom, research and development

Procedia PDF Downloads 293
22972 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 271
22971 Species Diversity and Relative Abundance of Migratory Waterbirds in Abijata Lake, Central Rift Valley, Ethiopia

Authors: Teklebrhan Kidane

Abstract:

The aim of this study is to investigate the species diversity and relative abundance of migratory waterbirds in Abijata Lake, an Important Bird Area and potential Ramsar site located in the Central Rift Valley of Ethiopia. The study was carried out, using line transect method along the shoreline and open area of the Lake. The data was analyzed with different diversity indices; t-Test and descriptive statistics. Thirty-two migratory waterbird species grouped into twelve families consisting of globally threatened birds were identified and recorded. Family Scolopacidae (12 species) had the highest number of species. The lowest number of species was observed under the families Ciconidae, Accipitridae, Laridae and Falconidae with one species each. The recorded bird species comprised 19 Palearctic, 5 Intra-African, 2 local migrants as well as 6 resident Palearctic migratory waterbird species. The dry season had higher species diversity (H'=1.01) compared to the wet season (H'=0.76). The highest and lowest diversity of migratory waterbirds were recorded during January (H'= 1.28) and June (H'= 0.52), respectively. However, the highest evenness (E) of bird species was recorded during wet season (E=0.21) and lower during the dry season (E=0.09). The computed seasonal effect reveals that there is significant effect of seasons on species diversity (t=2.80, P < 0.05), but the effect of seasons on individuals of migratory bird species was not significant (t=1.42, P > 0.05). Even though Lake Abijata is the sanctuary of several migratory waterbirds, anthropogenic activities are rigorously threatening their survival. Therefore, it needs an urgent conservation concern.

Keywords: migration, important bird area, species diversity, wetland birds

Procedia PDF Downloads 206
22970 Highly Accurate Target Motion Compensation Using Entropy Function Minimization

Authors: Amin Aghatabar Roodbary, Mohammad Hassan Bastani

Abstract:

One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.

Keywords: automatic target recognition (ATR), high resolution range profile (HRRP), motion compensation, stepped frequency waveform technique (SFW), target motion parameters (TMPs)

Procedia PDF Downloads 153
22969 Prioritization Ranking for Managing Moisture Problems in a Building

Authors: Sai Amulya Gollapalli, Dilip A. Patel, Parth Patel K., Lukman E. Mansuri

Abstract:

Accumulation of moisture is one of the most worrisome aspects of a building. Architects and engineers tend to ignore its vitality during the designing and construction stage. Major fatalities in buildings can be caused by it. People avoid spending a lot of money on waterproofing. If the same mistake is repeated, no deep thinking is done. The quality of workmanship and construction is depleting due to negligence. It is important to do an analysis of the water maintenance issues happening in the current buildings and give a database for all the factors that are causing the defect. In this research, surveys are done with two waterproofing consultants, two client engineers, and two project managers. The survey was based on a matrix that was based on the causes of water maintenance issues. There were around 100 causes that were identified. The causes were categorized into six, namely, manpower, finance, method, management, environment, and material. In the matrices, the causes on the x-direction matched with the causes on the y-direction. 3 Likert scale was used to make a pairwise comparison between causes on each cell. Matrices were evaluated for the main categories and for each category separately. A final ranking was done by the weights achieved, and ‘cracks arriving from various construction joints’ was the highest with 0.57 relative significance, and ‘usage of the material’ was the lowest with 0.03 relative significance. Twelve defects due to water leakage were identified, and interviewees were asked to make a pairwise comparison of them, too, to understand the priorities. When the list of causes is achieved, the prioritization as per the stratification analysis is done. This will be beneficial to the consultants and contractors as they will get a primary idea of which causes to focus on.

Keywords: water leakage, survey, causes, matrices, prioritization

Procedia PDF Downloads 99
22968 Automated Tracking and Statistics of Vehicles at the Signalized Intersection

Authors: Qiang Zhang, Xiaojian Hu1

Abstract:

Intersection is the place where vehicles and pedestrians must pass through, turn and evacuate. Obtaining the motion data of vehicles near the intersection is of great significance for transportation research. Since there are usually many targets and there are more conflicts between targets, this makes it difficult to obtain vehicle motion parameters in traffic videos of intersections. According to the characteristics of traffic videos, this paper applies video technology to realize the automated track, count and trajectory extraction of vehicles to collect traffic data by roadside surveillance cameras installed near the intersections. Based on the video recognition method, the vehicles in each lane near the intersection are tracked with extracting trajectory and counted respectively in various degrees of occlusion and visibility. The performances are compared with current recognized CPU-based algorithms of real-time tracking-by-detection. The speed of the presented system is higher than the others and the system has a better real-time performance. The accuracy of direction has reached about 94.99% on average, and the accuracy of classification and statistics has reached about 75.12% on average.

Keywords: tracking and statistics, vehicle, signalized intersection, motion parameter, trajectory

Procedia PDF Downloads 221
22967 Spatial Working Memory Is Enhanced by the Differential Outcome Procedure in a Group of Participants with Mild Cognitive Impairment

Authors: Ana B. Vivas, Antonia Ypsilanti, Aristea I. Ladas, Angeles F. Estevez

Abstract:

Mild Cognitive Impairment (MCI) is considered an intermediate stage between normal and pathological aging, as a substantial percentage of people diagnosed with MCI converts later to dementia of the Alzheimer’s type. Memory is of the first cognitive processes to deteriorate in this condition. In the present study we employed the differential outcomes procedure (DOP) to improve visuospatial memory in a group of participants with MCI. The DOP requires the structure of a conditional discriminative learning task in which a correct choice response to a specific stimulus-stimulus association is reinforced with a particular reinforcer or outcome. A group of 10 participants with MCI, and a matched control group had to learn and keep in working memory four target locations out of eight possible locations where a shape could be presented. Results showed that participants with MCI had a statistically significant better terminal accuracy when a unique outcome was paired with a location (76% accuracy) as compared to a non differential outcome condition (64%). This finding suggests that the DOP is useful in improving working memory in MCI patients, which may delay their conversion to dementia.

Keywords: mild cognitive impairment, working memory, differential outcomes, cognitive process

Procedia PDF Downloads 462
22966 Uncommon Causes of Acute Abdominal Pain: A Pictorial Essay

Authors: Mahesh Hariharan, Rajan Balasubramaniam, Sharath Kumar Shetty, Shanthala Yadavalli, Mohammed Ahetasham, Sravya Devarapalli

Abstract:

Acute abdomen is one of the most common clinical conditions requiring a radiological investigation. Ultrasound is the primary modality of choice which can diagnose some of the common causes of acute abdomen. However, sometimes the underlying cause for the pain is far more complicated than expected to mandate a high degree of suspicion to suggest further investigation with contrast-enhanced computed tomography or magnetic resonance imaging. Here, we have compiled a comprehensive series of selected cases to highlight the conditions which can be easily overlooked unless carefully sought for. This also emphasizes the importance of multimodality approach to arrive at the final diagnosis with an increased overall diagnostic accuracy which in turn improves patient management and prognosis.

Keywords: acute abdomen, contrast-enhanced computed tomography scan, magnetic resonance imaging, plain radiographs, ultrasound

Procedia PDF Downloads 364
22965 Spatiotemporal Neural Network for Video-Based Pose Estimation

Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan

Abstract:

Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.

Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series

Procedia PDF Downloads 150
22964 A Pilot Randomized Controlled Trial of a Physical Activity Intervention in a Low Socioeconomic Population: Focus on Mental Contrasting with Implementation Intentions

Authors: Shaun G. Abbott, Rebecca C. Reynolds, John B. F. de Wit

Abstract:

Low physical activity (PA) levels are a major public health concern in Australia. There is some evidence that PA interventions can increase PA levels via various methods, including online delivery. Low Socioeconomic Status (SES) people participate in less PA than the rest of the population, partly due to poor self-regulation behaviors associated with socioeconomic characteristics. Interventions that involve a particular method of self-regulation, Mental Contrasting with Implementation Intentions (MCII), has regularly achieved healthy behavior change, but few studies focus on PA behavior outcomes and no studies examining the effect of MCII on the PA behaviors of low SES people has been done. In this study, a pilot randomized controlled trial (RCT) will deliver MCII for PA behavior change to individuals of relative disadvantage for the first time. The current pilot study will predict sample size for a future full RCT and test the hypothesis that sedentary participants from areas of relative socioeconomic disadvantage of Sydney, who learn the MCII technique will be more physically active, have improved anthropometry and psychological indicators at the completion of a 12-week intervention compared to baseline and control. Eligible participants of relative socioeconomic disadvantage will be randomly assigned to either the ‘PA Information Plus MCII Intervention Group’ or a ‘PA Information-Only Control Group’. Both groups will attend a baseline and 12-week face-to-face consultation; where PA, anthropometric and psychological data will be gathered. The intervention group will be guided through an MCII session at the baseline appointment to establish a PA goal to aim to achieve over 12 weeks. Other than these baseline and 12-week consultations, all participant interaction will occur online. All participants will receive a ‘Fitbit’ accelerometer to record objectively. PA as a daily step count, along with a PA diary for the duration of the study. PA data will be recorded on a personalized online spreadsheet. Both groups will receive a standard PA information email at weeks 2, 4, and 8. The intervention group will also receive scripted follow-up online appointments to discuss goal progress. The current pilot study is in recruitment stage with findings to be presented at the conference in December if selected.

Keywords: implementation intentions, mental contrasting, motivation, pedometer, physical activity, socioeconomic

Procedia PDF Downloads 307
22963 Enhancing Heavy Oil Recovery: Experimental Insights into Low Salinity Polymer in Sandstone Reservoirs

Authors: Intisar, Khalifa, Salim, Al Busaidi

Abstract:

Recently, the synergic combination of low salinity water flooding with polymer flooding has been a subject of paramount interest for the oil industry. Numerous studies have investigated the efficiency of enhanced oil recovery using low salinity polymer flooding (LSPF). However, there is no clear conclusion that can explain the incremental oil recovery, determine the main factors controlling the oil recovery process, and define the relative contribution of rock/fluids or fluid/fluid interactions to extra oil recovery. Therefore, this study aims to perform a systematic investigation of the interactions between oil, polymer, low salinity and sandstone rock surface from pore to core scale during LSPF. Partially hydrolyzed polyacrylamide (HPAM) polymer, Boise outcrop, a crude oil sample and reservoir cores from an Omani oil field, and brine at two different salinities were used in the study. Several experimental measurements including static bulk measurements of polymer solutions prepared with brines of high and low salinities, single phase displacement experiments, along with rheological, total organic carbon and ion chromatography measurements to analyze ion exchange reactions, polymer adsorption, and viscosity loss were used. In addition, two-phase experiments were performed to demonstrate the oil recovery efficiency of LSPF. The results revealed that the incremental oil recovery from LSPF was attributed to the combination of the reduction in the water-oil mobility ratio, an increase in the repulsion forces between crude oil/brine/rock interfaces and an increase in pH of the aqueous solution. In addition, lowering the salinity of the make-up brine resulted in a larger conformation (expansion) of the polymer molecules, which in turn resulted in less adsorption and a greater in-situ viscosity without any negative impact on injectivity. This plays a positive role in the oil displacement process. Moreover, the loss of viscosity in the effluent of polymer solutions was lower in low-salinity than in high-salinity brine, indicating that an increase in cations concentration (mainly driven by Ca2+ ions) has stronger effect on the viscosity of high-salinity polymer solution compared with low-salinity polymer.

Keywords: polymer, heavy oil, low salinity, COBR interactions

Procedia PDF Downloads 93
22962 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames

Authors: H. Katkhuda

Abstract:

A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.

Keywords: dynamic force identification, dynamic responses, sub-structure, time domain

Procedia PDF Downloads 361
22961 The Change of Urban Land Use/Cover Using Object Based Approach for Southern Bali

Authors: I. Gusti A. A. Rai Asmiwyati, Robert J. Corner, Ashraf M. Dewan

Abstract:

Change on land use/cover (LULC) dominantly affects spatial structure and function. It can have such impacts by disrupting social culture practice and disturbing physical elements. Thus, it has become essential to understand of the dynamics in time and space of LULC as it can be used as a critical input for developing sustainable LULC. This study was an attempt to map and monitor the LULC change in Bali Indonesia from 2003 to 2013. Using object based classification to improve the accuracy, and change detection, multi temporal land use/cover data were extracted from a set of ASTER satellite image. The overall accuracies of the classification maps of 2003 and 2013 were 86.99% and 80.36%, respectively. Built up area and paddy field were the dominant type of land use/cover in both years. Patch increase dominantly in 2003 illustrated the rapid paddy field fragmentation and the huge occurring transformation. This approach is new for the case of diverse urban features of Bali that has been growing fast and increased the classification accuracy than the manual pixel based classification.

Keywords: land use/cover, urban, Bali, ASTER

Procedia PDF Downloads 542
22960 Study and Conservation of Cultural and Natural Heritages with the Use of Laser Scanner and Processing System for 3D Modeling Spatial Data

Authors: Julia Desiree Velastegui Caceres, Luis Alejandro Velastegui Caceres, Oswaldo Padilla, Eduardo Kirby, Francisco Guerrero, Theofilos Toulkeridis

Abstract:

It is fundamental to conserve sites of natural and cultural heritage with any available technique or existing methodology of preservation in order to sustain them for the following generations. We propose a further skill to protect the actual view of such sites, in which with high technology instrumentation we are able to digitally preserve natural and cultural heritages applied in Ecuador. In this project the use of laser technology is presented for three-dimensional models, with high accuracy in a relatively short period of time. In Ecuador so far, there are not any records on the use and processing of data obtained by this new technological trend. The importance of the project is the description of the methodology of the laser scanner system using the Faro Laser Scanner Focus 3D 120, the method for 3D modeling of geospatial data and the development of virtual environments in the areas of Cultural and Natural Heritage. In order to inform users this trend in technology in which three-dimensional models are generated, the use of such tools has been developed to be able to be displayed in all kinds of digitally formats. The results of the obtained 3D models allows to demonstrate that this technology is extremely useful in these areas, but also indicating that each data campaign needs an individual slightly different proceeding starting with the data capture and processing to obtain finally the chosen virtual environments.

Keywords: laser scanner system, 3D model, cultural heritage, natural heritage

Procedia PDF Downloads 309
22959 Spatial Integration at the Room-Level of 'Sequina' Slum Area in Alexandria, Egypt

Authors: Ali Essam El Shazly

Abstract:

The slum survey of 'Sequina' area in Alexandria details the building rooms of twenty-building samples according to the integral measure of space syntax. The essence of room organization sets the most integrative 'visitor' domain between the 'inhabitant' wings of less integrated 'parent' than the 'children' structure with visual ring of 'balcony' space. Despite the collective real relative asymmetry of 'pheno-type' aggregation, the relative asymmetry of individual layouts reveals 'geno-type' structure of spatial diversity. The multifunction of rooms optimizes the integral structure of graph and visibility merge, which contrasts with the deep tailing structure of distinctive social domains. The most integrative layout inverts the geno-type into freed rooms of shallow 'inhabitant' domain against the off-centered 'visitor' space, while the most segregated layout further restricts the pheno-type through isolated 'visitor' from 'inhabitant' domains across the 'staircase' public domain. The catalyst 'kitchen & living' spaces demonstrate multi-structural dimensions among the various social domains. The former ranges from most exposed central integrity to the most hidden 'motherhood' territories. The latter, however, mostly integrates at centrality or at the further ringy 'childern' domain. The study concludes social structure of spatial integrity for redevelopment, which is determined through the micro-level survey of rooms with integral dimensions.

Keywords: Alexandria, Sequina slum, spatial integration, space syntax

Procedia PDF Downloads 440
22958 Evaluation of Forage Yield and Competition Indices for Intercropped Barley and Legumes

Authors: Abdollah Javanmard, Fariborz Shekari

Abstract:

Barley (Hordeum vulgare L.), vetch (Vicia villosa), and grass pea (Lathyrus sativus L.) monocultures as well as mixtures of barley with each of the above legumes, in three seeding ratios (i.e., barley: legume 75:25, 50:50 and 25:75 based on seed numbers) were used to investigate forage yield and competition indices. The results showed that intercropping reduced the dry matter yield of the three component plants, compared with their respective monocrops. The greatest value of total dry matter yield was obtained from barley25-grasspea75 (5.44 t ha-1) mixture, followed by grass pea sole crop (4.99 t ha-1). The total AYL values were positive and greater than 0 in all mixtures, indicating an advantage from intercropping over sole crops. Intercropped barley had a higher relative crowding coefficient (K=1.64) than intercropped legumes (K=1.20), indicating that barley was more competitive than legumes in mixtures. Furthermore, grass pea was more competitive than vetch in mixtures with barley. The highest LER, SPI and MAI were obtained when barley was mixed at a rate of 25% with 75% seed rate of grass pea. It is concluded that intercropping of barley with grass pea has a good potential to improve the performance of forage with high land-use efficiency.

Keywords: forage, grass pea, intercropping, LER, monetary advantage

Procedia PDF Downloads 389
22957 Screening the Growth Inhibition Mechanism of Sulfate-Reducing Bacteria by Chitosan/Lignosulfonate Nanocomposite in Seawater Media

Authors: K. Rasool

Abstract:

Sulfate-reducing bacteria (SRBs) induced biofilm formation is a global industrial concern due to its role in the development of microbial-induced corrosion (MIC). Herein, we have developed a biodegradable chitosan/lignosulfonate nanocomposite (CS@LS) as an efficient green biocide for the inhibition of SRBs biofilms. We investigated in detail the inhibition mechanism of SRBs by CS@LS in seawater media. Stable CS@LS-1:1 with 150–200 nm average size and zeta potential of + 34.25 mV was synthesized. The biocidal performance of CS@LS was evaluated by sulfate reduction profiles coupled with analysis of extracted extracellular polymeric substances (EPS) and lactate dehydrogenase (LDH) release assays. As the nanocomposite concentration was increased from 50 to 500 µg/mL, the specific sulfate reduction rate (SSRR) decreased from 0.278 to 0.036 g-sulfate/g-VSS*day showing a relative sulfate reduction inhibition of 86.64% as compared to that of control. Similarly, the specific organic uptake rate (SOUR) decreased from 0.082 to 0.039 0.036 g-TOC/g-VSS*day giving a relative co-substrate oxidation inhibition of 52.19% as compared to that of control. The SRBs spiked with 500 µg/mL CS@LS showed a reduction in cell viability to 1.5 × 106 MPN/mL. To assess the biosafety of the nanocomposite on the marine biota, the 72-hours acute toxicity assays using the zebrafish embryo model revealed that the LC50 for the CS@LS was 103.3 µg/mL. Thus, CS@LS can be classified as environmentally friendly. The nanocomposite showed long-term stability and excellent antibacterial properties against SRBs growth and is thus potentially useful for combating the problems of biofilm growth in harsh marine and aquatic environments.

Keywords: green biocides, chitosan/lignosulfonate nanocomposite, SRBs, toxicity

Procedia PDF Downloads 122
22956 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 61
22955 A Phishing Email Detection Approach Using Machine Learning Techniques

Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani

Abstract:

Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.

Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning

Procedia PDF Downloads 342
22954 Sample Preparation and Coring of Highly Friable and Heterogeneous Bonded Geomaterials

Authors: Mohammad Khoshini, Arman Khoshghalb, Meghdad Payan, Nasser Khalili

Abstract:

Most of the Earth’s crust surface rocks are technically categorized as weak rocks or weakly bonded geomaterials. Deeply weathered, weakly cemented, friable and easily erodible, they demonstrate complex material behaviour and understanding the overlooked mechanical behaviour of such materials is of particular importance in geotechnical engineering practice. Weakly bonded geomaterials are so susceptible to surface shear and moisture that conventional methods of core drilling fail to extract high-quality undisturbed samples out of them. Moreover, most of these geomaterials are of high heterogeneity rendering less reliable and feasible material characterization. In order to compensate for the unpredictability of the material response, either numerous experiments are needed to be conducted or large factors of safety must be implemented in the design process. However, none of these approaches is sustainable. In this study, a method for dry core drilling of such materials is introduced to take high-quality undisturbed core samples. By freezing the material at certain moisture content, a secondary structure is developed throughout the material which helps the whole structure to remain intact during the core drilling process. Moreover, to address the heterogeneity issue, the natural material was reconstructed artificially to obtain a homogeneous material with very high similarity to the natural one in both micro and macro-mechanical perspectives. The method is verified for both micro and macro scale. In terms of micro-scale analysis, using Scanning Electron Microscopy (SEM), pore spaces and inter-particle bonds were investigated and compared between natural and artificial materials. X-Ray Diffraction, XRD, analyses are also performed to control the chemical composition. At the macro scale, several uniaxial compressive strength tests, as well as triaxial tests, were performed to verify the similar mechanical response of the materials. A high level of agreement is observed between micro and macro results of natural and artificially bonded geomaterials. The proposed methods can play an important role to cut down the costs of experimental programs for material characterization and also to promote the accuracy of the numerical modellings based on the experimental results.

Keywords: Artificial geomaterial, core drilling, macro-mechanical behavior, micro-scale, sample preparation, SEM photography, weakly bonded geomaterials

Procedia PDF Downloads 216
22953 Photocatalytic Degradation of Gaseous Toluene: Effects of Operational Variables on Efficiency Rate of TiO2 Coated on Nickel Foam

Authors: Jafar Akbari, Masoud Rismanchian, Samira Ramezani

Abstract:

Purpose: The photocatalytic degradation of pollutants is a novel technology with various advantages such as high efficiency and energy saving. In this research, the effects of operational variables on the photocatalytic efficiency of TiO₂ coated on nickel foam in the removal of toluene from the simulated indoor air have been investigated. Methods: TiO₂ film were prepared via the sol-gel method and coated on nickel foam. The characteristics and morphology were found using XRD, SEM, and BET technique. Then, the effects of relative humidity, UV-A intensity, the initial toluene concentration, TiO₂ loading, and the air circulation velocity on the photocatalytic degradation rate have been evaluated. Results: The optimal degradation of toluene has been achieved with loading 4.35 g TiO2 on the foam, 30% RH, 5.4 µW.cm−2 UV-A intensity, and 20 ppm initial concentration in the air circulation velocity of 0.15 fpm. Conclusion: The changes of toluene photocatalytic degradation rate have been studied at various times. Also, the kinetic behavior of toluene photocatalytic degradation has been investigated using Langmuir-Hinshelwood (L-H) model.

Keywords: photocatalytic degradation, operational variables, tio₂, nickel foam, gaseous toluene, nanotechnology

Procedia PDF Downloads 88