Search results for: energy consumption in hospitals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10770

Search results for: energy consumption in hospitals

9480 Post Occupancy Evaluation of the Green Office Building with Different Air-Conditioning Systems

Authors: Ziwei Huang, Jian Ge, Jie Shen, Jiantao Weng

Abstract:

Retrofitting of existing buildings plays a critical role to achieve sustainable development. This is being considered as one of the approaches to achieving sustainability in the built environment. In order to evaluate the different air-conditioning systems effectiveness and user satisfaction of the existing building which had transformed into green building effectively and accurately. This article takes the green office building in Zhejiang province, China as an example, analyzing the energy consumption, occupant satisfaction and indoor environment quality (IEQ) from the perspective of the thermal environment. This building is special because it combines ground source heat pump system and Variable Refrigerant Flow (VRF) air-conditioning system. Results showed that the ground source heat pump system(EUIa≈25.6) consumes more energy than VRF(EUIb≈23.8). In terms of a satisfaction survey, the use of the VRF air-conditioning was more satisfactory in temperature. However, the ground source heat pump is more satisfied in air quality.

Keywords: post-occupancy evaluation, green office building, air-conditioning systems, ground source heat pump system

Procedia PDF Downloads 182
9479 Fatigue in Association with Road Crashes Among Healthcare Workers in Malaysia

Authors: Sharifah Liew, Azlihanis Abdul Hadi, Nurul Shahida Mohd Saffe, Azhar Hamzah, Maslina Musa

Abstract:

Fatigue is a common health problem among healthcare workers, ranging from ambulance drivers to specialist doctors. In Malaysia, majority of healthcare workers prefer to commute to work by their own vehicle compared to public transport. Thus, exposed to risk on the road while commuting to work. The aim of the study is to find out the effects of fatigue on road crashes among healthcare workers while they commute to work. The research conducted using the semi-quantitative approach based on self- reported questionnaires. In total, five hundred and fifty-one healthcare workers from selected five hospitals were involved in this study. Results showed significant differences between crash involvement, travelling distance and time to and from work among healthcare workers. Most of the participants (37%) reported that causes of road crashes were due to fatigue, sleepiness and microsleep while driving to and back from work. In addition, there were significant differences between fatigue and road crashes and near misses. This research suggests that the hospitals’ management may need to review their staffs’ job scopes and workloads to overcome the fatigue problems and, consider their feedback when designing work schedules and investigate staff commuting distance from home to workplace and vice-versa.

Keywords: fatigue, healthcare, road crashes, near misses, Malaysia

Procedia PDF Downloads 51
9478 Atmospheric Circulation Drivers Of Nationally-Aggregated Wind Energy Production Over Greece

Authors: Kostas Philippopoulos, Chris G. Tzanis, Despina Deligiorgi

Abstract:

Climate change adaptation requires the exploitation of renewable energy sources such as wind. However, climate variability can affect the regional wind energy potential and consequently the available wind power production. The goal of the research project is to examine the impact of atmospheric circulation on wind energy production over Greece. In the context of synoptic climatology, the proposed novel methodology employs Self-Organizing Maps for grouping and classifying the atmospheric circulation and nationally-aggregated capacity factor time series for a 30-year period. The results indicate the critical effect of atmospheric circulation on the national aggregated wind energy production values and therefore address the issue of optimum distribution of wind farms for a specific region.

Keywords: wind energy, atmospheric circulation, capacity factor, self-organizing maps

Procedia PDF Downloads 141
9477 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 56
9476 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels

Authors: Lorenzo Petrucci

Abstract:

This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.

Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration

Procedia PDF Downloads 158
9475 Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling

Authors: Kisan Sarda, Bhavika Shingote

Abstract:

This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage.

Keywords: semi parametric regression, photovoltaic (PV) system, regression modelling, irradiation

Procedia PDF Downloads 361
9474 Estimation of Energy Efficiency of Blue Hydrogen Production Onboard of Ships

Authors: Li Chin Law, Epaminondas Mastorakos, Mohd Roslee Othman, Antonis Trakakis

Abstract:

The paper introduces an alternative concept of carbon capture for shipping by using pre-combustion carbon capture technology (Pre-CCS), which was proven to be less energy intensive than post-combustion carbon capture from the engine exhaust. Energy assessment on amine-based post-combustion CCS on LNG-fuelled ships showed that the energy efficiency of CCS ships reduced from 48% to 36.6%. Then, an energy assessment was carried out to compare the power and heat requirements of the most used hydrogen production methods and carbon capture technologies. Steam methane reformer (SMR) was found to be 20% more energy efficient and achieved a higher methane conversion than auto thermal reaction and methane decomposition. Next, pressure swing adsorber (PSA) has shown a lower energy requirement than membrane separation, cryogenic separation, and amine absorption in pre-combustion carbon capture. Hence, an integrated system combining SMR and PSA (SMR-PSA) with waste heat integration (WHR) was proposed. This optimized SMR-based integrated system has achieved 65% of CO₂ reduction with less than 7-percentage point of energy penalty (41.7% of energy efficiency). Further integration of post-combustion CCS with the SMR-PSA integrated system improved carbon capture rate to 86.3% with 9-percentage points of energy penalty (39% energy efficiency). The proposed system was shown to be able to meet the carbon reduction targets set by International Maritime Organization (IMO) with certain energy penalties.

Keywords: shipping, decarbonisation, alternative fuels, low carbon, hydrogen, carbon capture

Procedia PDF Downloads 59
9473 Comparative Analysis of Costs and Well Drilling Techniques for Water, Geothermal Energy, Oil and Gas Production

Authors: Thales Maluf, Nazem Nascimento

Abstract:

The development of society relies heavily on the total amount of energy obtained and its consumption. Over the years, there has been an advancement on energy attainment, which is directly related to some natural resources and developing systems. Some of these resources should be highlighted for its remarkable presence in world´s energy grid, such as water, petroleum, and gas, while others deserve attention for representing an alternative to diversify the energy grid, like geothermal sources. Therefore, because all these resources can be extracted from the underground, drilling wells is a mandatory activity in terms of exploration, and it involves a previous geological study and an adequate preparation. It also involves a cleaning process and an extraction process that can be executed by different procedures. For that reason, this research aims the enhancement of exploration processes through a comparative analysis of drilling costs and techniques used to produce them. The analysis itself is based on a bibliographical review based on books, scientific papers, schoolwork and mainly explore drilling methods and technologies, equipment used, well measurements, extraction methods, and production costs. Besides techniques and costs regarding the drilling processes, some properties and general characteristics of these sources are also compared. Preliminary studies show that there are some major differences regarding the exploration processes, mostly because these resources are naturally distinct. Water wells, for instance, have hundreds of meters of length because water is stored close to the surface, while oil, gas, and geothermal production wells can reach thousands of meters, which make them more expensive to be drilled. The drilling methods present some general similarities especially regarding the main mechanism of perforation, but since water is a resource stored closer to the surface than the other ones, there is a wider variety of methods. Water wells can be drilled by rotary mechanisms, percussion mechanisms, rotary-percussion mechanisms, and some other simpler methods. Oil and gas production wells, on the other hand, require rotary or rotary-percussion drilling with a proper structure called drill rig and resistant materials for the drill bits and the other components, mostly because they´re stored in sedimentary basins that can be located thousands of meters under the ground. Geothermal production wells also require rotary or rotary-percussion drilling and require the existence of an injection well and an extraction well. The exploration efficiency also depends on the permeability of the soil, and that is why it has been developed the Enhanced Geothermal Systems (EGS). Throughout this review study, it can be verified that the analysis of the extraction processes of energy resources is essential since these resources are responsible for society development. Furthermore, the comparative analysis of costs and well drilling techniques for water, geothermal energy, oil, and gas production, which is the main goal of this research, can enable the growth of energy generation field through the emergence of ideas that improve the efficiency of energy generation processes.

Keywords: drilling, water, oil, Gas, geothermal energy

Procedia PDF Downloads 128
9472 Smart Architecture and Sustainability in the Built Environment for the Hatay Refugee Camp

Authors: Ali Mohammed Ali Lmbash

Abstract:

The global refugee crisis points to the vital need for sustainable and resistant solutions to different kinds of problems for displaced persons all over the world. Among the myriads of sustainable concerns, however, there are diverse considerations including energy consumption, waste management, water access, and resiliency of structures. Our research aims to develop distinct ideas for sustainable architecture given the exigent problems in disaster-threatened areas starting with the Hatay Refugee camp in Turkey where the majority of the camp dwellers are Syrian refugees. Commencing community-based participatory research which focuses on the socio-environmental issues of displaced populations, this study will apply two approaches with a specific focus on the Hatay region. The initial experiment uses Richter's predictive model and simulations to forecast earthquake outcomes in refugee campers. The result could be useful in implementing architectural design tactics that enhance structural reliability and ensure the security and safety of shelters through earthquakes. In the second experiment a model is generated which helps us in predicting the quality of the existing water sources and since we understand how greatly water is vital for the well-being of humans, we do it. This research aims to enable camp administrators to employ forward-looking practices while managing water resources and thus minimizing health risks as well as building resilience of the refugees in the Hatay area. On the other side, this research assesses other sustainability problems of Hatay Refugee Camp as well. As energy consumption becomes the major issue, housing developers are required to consider energy-efficient designs as well as feasible integration of renewable energy technologies to minimize the environmental impact and improve the long-term sustainability of housing projects. Waste management is given special attention in this case by imposing recycling initiatives and waste reduction measures to reduce the pace of environmental degradation in the camp's land area. As well, study gives an insight into the social and economic reality of the camp, investigating the contribution of initiatives such as urban agriculture or vocational training to the enhancement of livelihood and community empowerment. In a similar fashion, this study combines the latest research with practical experience in order to contribute to the continuing discussion on sustainable architecture during disaster relief, providing recommendations and info that can be adapted on every scale worldwide. Through collaborative efforts and a dedicated sustainability approach, we can jointly get to the root of the cause and work towards a far more robust and equitable society.

Keywords: smart architecture, Hatay Camp, sustainability, machine learning.

Procedia PDF Downloads 29
9471 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization

Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson

Abstract:

A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.

Keywords: FCCU modeling, optimization, oxy-combustion, post-combustion

Procedia PDF Downloads 199
9470 Functionally Graded MEMS Piezoelectric Energy Harvester with Magnetic Tip Mass

Authors: M. Derayatifar, M. Packirisamy, R.B. Bhat

Abstract:

Role of piezoelectric energy harvesters has gained interest in supplying power for micro devices such as health monitoring sensors. In this study, in order to enhance the piezoelectric energy harvesting in capturing energy from broader range of excitation and to improve the mechanical and electrical responses, bimorph piezoelectric energy harvester beam with magnetic mass attached at the end is presented. In view of overcoming the brittleness of piezo-ceramics, functionally graded piezoelectric layers comprising of both piezo-ceramic and piezo-polymer is employed. The nonlinear equations of motions are derived using energy method and then solved analytically using perturbation scheme. The frequency responses of the forced vibration case are obtained for the near resonance case. The nonlinear dynamic responses of the MEMS scaled functionally graded piezoelectric energy harvester in this paper may be utilized in different design scenarios to increase the efficiency of the harvester.

Keywords: energy harvesting, functionally graded piezoelectric material, magnetic force, MEMS (micro-electro-mechanical systems) piezoelectric, perturbation method

Procedia PDF Downloads 177
9469 Factors Affecting the Mental and Physical Health of Nurses during the Outbreak of COVID-19: A Case Study of a Hospital in Mashhad

Authors: Ghorbanali Mohammadi

Abstract:

Background: Due to the widespread outbreak of the COVID-19 virus, a large number of people become infected with the disease every day and go to hospitals. The acute condition of this disease has caused the death of many people. Since all the stages of treatment for these people happen in the hospitals, nurses are at the forefront of the fight against this virus. This causes nurses to suffer from physical and mental health problems. Methods: Physical and mental problems in nurses were assessed using the Depression, Anxiety and Stress Scale (DASS-42) of Lovibond (1995) and the Nordic Questionnaire. Results: 90 nurses from emergency, intensive care, and coronary care units were examined, and a total of 180 questionnaires were collected and evaluated. It was found that 37.78%, 47.78%, and 21.11% of nurses have symptoms of depression, anxiety, and stress, respectively. 40% of the nurses had physical problems. In total, 65.17% of them were involved in one or more mental or physical illnesses. Conclusions: Of the three units surveyed, the nurses in intensive care, emergency room, and coronary care units worked more than ten hours a day. Examining the interaction of physical and mental health problems indicated that physical problems can aggravate mental problems.

Keywords: depression anxiety and stress scale of Lovibond, nordic questionnaire, mental health of nurses, physical health problems in nurses

Procedia PDF Downloads 103
9468 Assessing the Feasibility of Italian Hydrogen Targets with the Open-Source Energy System Optimization Model TEMOA - Italy

Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

Hydrogen is expected to become a game changer in the energy transition, especially enabling sector coupling possibilities and the decarbonization of hard-to-abate end-uses. The Italian National Recovery and Resilience Plan identifies hydrogen as one of the key elements of the ecologic transition to meet international decarbonization objectives, also including it in several pilot projects for the early development in Italy. This matches the European energy strategy, which aims to make hydrogen a leading energy carrier of the future, setting ambitious goals to be accomplished by 2030. The huge efforts needed to achieve the announced targets require to carefully investigate of their feasibility in terms of economic expenditures and technical aspects. In order to quantitatively assess the hydrogen potential within the Italian context and the feasibility of the planned investments and projects, this work uses the TEMOA-Italy energy system model to study pathways to meet the strict objectives above cited. The possible hydrogen development has been studied both in the supply-side and demand-side of the energy system, also including storage options and distribution chains. The assessment comprehends alternative hydrogen production technologies involved in a competition market, reflecting the several possible investments declined by the Italian National Recovery and Resilience Plan to boost the development and spread of this infrastructure, including the sector coupling potential with natural gas through the currently existing infrastructure and CO2 capture for the production of synfuels. On the other hand, the hydrogen end-uses phase covers a wide range of consumption alternatives, from fuel-cell vehicles, for which both road and non-road transport categories are considered, to steel, and chemical industries uses and cogeneration for residential and commercial buildings. The model includes both high and low TRL technologies in order to provide a consistent outcome for the future decades as it does for the present day, and since it is developed through the use of an open-source code instance and database, transparency and accessibility are fully granted.

Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA

Procedia PDF Downloads 86
9467 Stress and Personality as Predictors of Aggressive Behaviour among Nurses of Private Hospitals in Imo State, Nigeria

Authors: Ngozi N. Sydney-Agbor, Chioma N. Ihegboro

Abstract:

Stress and personality as factors influencing nurses’ aggressive behaviour were investigated. The participants comprised of one hundred and fifty nurses selected through convenience sampling technique from four (4) private hospitals in Imo State, Nigeria; namely: Eastern Summit Specialist Clinics and Maternity, St. David Hospital, New Cross Hospital, and Christian Teaching Hospital. The nurses were all females with ages between 20–35 and a mean age of 25.10 years and a standard deviation of 4.15. The participants were administered with Job Related Tension Scale, Type A Behaviour Scale and Buss- Perry Aggressive Behaviour Scale. Two hypotheses were postulated and tested. Cross- sectional survey and Regression Analysis were adopted as design and statistics respectively. Results showed that as stress increased, nurses aggression also increased. Personality also predicted nurses aggressive behaviour with Type As’ exhibiting higher aggression than Type Bs’.The study recommended that hospital management board should improve the welfare of the nurses and their morale should be boosted by involving them in policy-making concerning their welfare and care of their patients, this will help minimise situations capable of increasing aggressive behaviour. There should also be sensitization on the negative impact of aggressive behaviour to patients especially amongst the personality Type A’s who are more susceptible to aggression.

Keywords: aggressive behaviour, nurses, personality, stress

Procedia PDF Downloads 324
9466 Teachers' Knowledge, Perceptions, and Attitudes towards Renewable Energy Policy in Malaysia

Authors: Kazi Enamul Hoque

Abstract:

Initiatives on sustainable development are currently aggressively pursued throughout the world. The Malaysian government has developed key policies and strategies for over 30 years to achieve the nation’s policy objectives which are designed to mitigate the issues of security, energy efficiency and environmental impact to meet the rising energy demand. Malaysia’s current focus is on developing effective policies on renewable energy (RE) in order to reduce dependency on fossil fuel and contribute towards mitigating the effects of climate change. In this light mass awareness should be considered as the highest priority to protect the environment and to escape disaster due to climate change. Schools can be the reliable and effective foundation to prepare students to get familiar with environmental issues such as renewable and non-renewable energy sources. Teachers can play a vital role to create awareness among students about the advantages and disadvantages of using different renewable and nonrenewable energy resources. Thus, this study aims to investigate teachers’ knowledge, perceptions and attitudes towards renewable energy through a survey aiming a sustainable energy future. Five hundred sets of questionnaires were distributed to the school teachers in Malaysia. Total 420 questionnaires were returned of which 410 were complete to analyze. Finding shows that teachers are very familiar with the renewable energy like solar, wind and also geothermal. Most teachers were not sure about the Photovoltaics and biodiesel. Furthermore, teachers are also aware that primary energy in Malaysia is imported fossil fuels. Most teachers heard about the renewable energy in Malaysia and only few claims that they did not hear of such things and the others said that they never heard of it. The outcomes of the study will assist the energy policy makers to use teachers to create mass awareness of energy usages for future planning.

Keywords: Malaysia, non-renewable energy, renewable energy, school teacher

Procedia PDF Downloads 417
9465 Integration of Smart Grid Technologies with Smart Phones for Energy Monitoring and Management

Authors: Arjmand Khaliq, Pemra Sohaib

Abstract:

There is increasing trend of use of smart devices in the present age. The growth of computing techniques and advancement in hardware has also brought the use of sensors and smart devices to a high degree during the course of time. So use of smart devices for control, management communication and optimization has become very popular. This paper gives proposed methodology which involves sensing and switching unite for load, two way communications between utility company and smart phones of consumers using cellular techniques and price signaling resulting active participation of user in energy management .The goal of this proposed control methodology is active participation of user in energy management with accommodation of renewable energy resource. This will provide load adjustment according to consumer’s choice, increased security and reliability for consumer, switching of load according to consumer need and monitoring and management of energy.

Keywords: cellular networks, energy management, renewable energy source, smart grid technology

Procedia PDF Downloads 388
9464 Building a Performance Outline for Health Care Workers at Teaching Hospitals, Nigeria: The Role of Different Leadership Styles

Authors: Osuagwu Justine Ugochukwu

Abstract:

Investigating the effects of transformational and transactional leadership styles on the performance of healthcare employees at the University Teaching Hospital (UNTH) in Enugu, Nigeria, was the goal of the research. The respondents were asked to fill out a structured questionnaire. The respondents were chosen using a straightforward random sampling technique and consisted of 370 health workers at the hospital. The result of the analysis revealed that transactional and transformational leadership style has a positive while ambidextrous leadership has a negative effect on healthcare workers' performance in UNTH, Enugu. Therefore, the management of public hospitals that have the capacity to change their top management approach to leadership styles will gain substantial support from their employees’ thereby increasing organizational commitment and performance among health workers. This will have remarkable social implications, one of which is a change in the work culture and attitude of medical personnel from the seemingly anti-community of patients to friendly engagement and treatment of patients leading to a harmonious coexistence among these individuals in society. Investigating ambidextrous leadership and the use of nonparametric analysis is unique and has brought brand-new knowledge to leadership literature.

Keywords: workers performance, transformational leadership, transactional leadership, governance quality, ambidextrous leadership

Procedia PDF Downloads 67
9463 India’s Energy System Transition, Survival of the Greenest

Authors: B. Sudhakara Reddy

Abstract:

The transition to a clean and green energy system is an economic and social transformation that is exciting as well as challenging. The world today faces a formidable challenge in transforming its economy from being driven primarily by fossil fuels, which are non-renewable and a major source of global pollution, to becoming an economy that can function effectively using renewable energy sources and by achieving high energy efficiency levels. In the present study, a green economy scenario is developed for India using a bottom-up approach. The results show that the penetration rate of renewable energy resources will reduce the total primary energy demand by 23% under GE. Improvements in energy efficiency (e.g. households, industrial and commercial sectors) will result in reduced demand to the tune of 318 MTOE. The volume of energy-related CO2 emissions decline to 2,218 Mt in 2030 from 3,440 under the BAU scenario and the per capita emissions will reduce by about 35% (from 2.22 to 1.45) under the GE scenario. The reduction in fossil fuel demand and focus on clean energy will reduce the energy intensity to 0.21 (TOE/US$ of GDP) and carbon intensity to 0.42 (ton/US$ of GDP) under the GE scenario. total import bill (coal and oil) will amount to US$ 334 billion by 2030 (at 2010/11 prices), but as per the GE scenario, it would be US$ 194.2 billion, a saving of about US$ 140 billion. The building of a green energy economy can also serve another purpose: to develop new ‘pathways out of poverty’ by creating more than 10 million jobs and thus raise the standard of living of low-income people. The differences between the baseline and green energy scenarios are not so much the consequence of the diffusion of various technologies. It is the result of the active roles of different actors and the drivers that become dominant.

Keywords: emissions, green energy, fossil fuels, green jobs, renewables, scenario

Procedia PDF Downloads 521
9462 Fan Engagement Sustainability and Fan Fatigue: Understanding the Role of Marvel Franchise for Fans

Authors: Mitrajit Biswas

Abstract:

This paper is trying to understand the issues related to maintaining a fan base over a period of time. The paper would be trying to look into how the fan base can be actually engaged. That is what are the attributes of keeping a fan base interested and not feeling fatigued or tired. It would also try to understand that what are the key elements required for a franchise to be active and keep the fans engaged. The paper would look to understand the primary elements of a franchise like Marvel to keep the fans engaged for such a long period of time. This will help to improve the scope of literature on consumer engagement and consumption behaviour in modern times of unpredictability. It will also help to understand how the consumers take in a longer period of engagement. This would help to understand that despite huge success and investment in fan engagement and what could be the possible reasons for disengagement? This would include in-depth interviews with a global sample of around 50 people, which would be connected through purposive, convenient, and snowball sampling. It will help to understand whether the customer lifetime value as a theory can be sustained based on customer relationship management. If yes, how can products from certain companies predict and keep up the strategy for the prediction of the consumer engagement process?

Keywords: consumption, fatigue, brand loyalty, sustainable consumption

Procedia PDF Downloads 59
9461 Assessing the Impact of Renewable Energy on Regional Sustainability: A Comparative Study of Suwon and Seoul

Authors: Jongsoo Jurng

Abstract:

The drive to expand renewable energies is often in direct conflict with sustainable development goals. Thus, it is important that energy policies account for potential trade-offs. We assess the interlinkages between energy, food, water, and land, for two case studies, Suwon and Seoul. We apply a range of assessment methods and study their usefulness as tools to identify trade-offs and to compare the sustainability performance. We calculate cross-sectoral footprints, self-sufficiency ratios and perform a simplified Energy-Water-Food nexus analysis. We use the latter for assessing scenarios to increase energy and food self-sufficiency in Suwon, while we use ecosystem service (ESS) accounting for Seoul. For Suwon, we find that constraints on the energy, food and water sectors urgently call for integrated approaches to energy policy; for Seoul, the further expansion of renewables comes at the expense of cultural and supporting ESS, which could outweigh gains from increased energy exports. We recommend a general upgrade to indicators and visualization methods that look beyond averages and a fostering of infrastructure for data on sustainable development based on harmonized international protocols. We warn against rankings of countries or regions based on benchmarks that are neither theory-driven nor location-specific.

Keywords: ESS, renewable energy, energy-water-food nexus, assessment

Procedia PDF Downloads 118
9460 Ultracapacitor State-of-Energy Monitoring System with On-Line Parameter Identification

Authors: N. Reichbach, A. Kuperman

Abstract:

The paper describes a design of a monitoring system for super capacitor packs in propulsion systems, allowing determining the instantaneous energy capacity under power loading. The system contains real-time recursive-least-squares identification mechanism, estimating the values of pack capacitance and equivalent series resistance. These values are required for accurate calculation of the state-of-energy.

Keywords: real-time monitoring, RLS identification algorithm, state-of-energy, super capacitor

Procedia PDF Downloads 514
9459 Development of Vacuum Planar Membrane Dehumidifier for Air-Conditioning

Authors: Chun-Han Li, Tien-Fu Yang, Chen-Yu Chen, Wei-Mon Yan

Abstract:

The conventional dehumidification method in air-conditioning system mostly utilizes a cooling coil to remove the moisture in the air via cooling the supply air down below its dew point temperature. During the process, it needs to reheat the supply air to meet the set indoor condition that consumes a considerable amount of energy and affect the coefficient of performance of the system. If the processes of dehumidification and cooling are separated and operated respectively, the indoor conditions will be more efficiently controlled. Therefore, decoupling the dehumidification and cooling processes in heating, ventilation and air conditioning system is one of the key technologies as membrane dehumidification processes for the next generation. The membrane dehumidification method has the advantages of low cost, low energy consumption, etc. It utilizes the pore size and hydrophilicity of the membrane to transfer water vapor by mass transfer effect. The moisture in the supply air is removed by the potential energy and driving force across the membrane. The process can save the latent load used to condense water, which makes more efficient energy use because it does not involve heat transfer effect. In this work, the performance measurements including the permeability and selectivity of water vapor and air with the composite and commercial membranes were conducted. According to measured data, we can choose the suitable dehumidification membrane for designing the flow channel length and components of the planar dehumidifier. The vacuum membrane dehumidification system was set up to examine the effects of temperature, humidity, vacuum pressure, flow rate, the coefficient of performance and other parameters on the dehumidification efficiency. The results showed that the commercial Nafion membrane has better water vapor permeability and selectivity. They are suitable for filtration with water vapor and air. Meanwhile, Nafion membrane has promising potential in the dehumidification process.

Keywords: vacuum membrane dehumidification, planar membrane dehumidifier, water vapour and air permeability, air conditioning

Procedia PDF Downloads 129
9458 Glycemic Control in Rice Consumption among Households with Diabetes Patients: The Role of Food Security

Authors: Chandanee Wasana Kalansooriya

Abstract:

Dietary behaviour is a crucial factor affecting diabetes control. With increasing rates of diabetes prevalence in Asian countries, examining their dietary patterns, which are largely based on rice, is timely required. It has been identified that higher consumption of some rice varieties is associated with increased risk of type 2 diabetes. Although diabetes patients are advised to consume healthier rice varieties, which contains low glycemic, several conditions, one of which food insecurity, make them difficult to preserve those healthy dietary guidelines. Hence this study tries to investigate how food security affects on making right decisions of rice consumption within diabetes affected households using a sample from Sri Lanka, a country which rice considered as the staple food and records the highest diabetes prevalence rate in South Asia. The study uses data from the Household Income and Expenditure Survey 2016, a nationally representative sample conducted by the Department of Census and Statistics, Sri Lanka. The survey used a two-stage stratified sampling method to cover different sectors and districts of the country and collected micro-data on demographics, health, income and expenditures of different categories. The study uses data from 2547 households which consist of one or more diabetes patients, based on the self-recorded health status. The Household Dietary Diversity Score (HDDS), which constructed based on twelve food groups, is used to measure the level of food security. Rice is categorized into three groups according to their Glycemic Index (GI), high GI, medium GI and low GI, and the likelihood and impact made by food security on each rice consumption categories are estimated using a Two-part Model. The shares of each rice categories out of total rice consumption is considered as the dependent variable to exclude the endogeneity issue between rice consumption and the HDDS. The results indicate that the consumption of medium GI rice is likely to increase with the increasing household food security, but low GI varieties are not. Households in rural and estate sectors are less likely and Tamil ethnic group is more likely to consume low GI rice varieties. Further, an increase in food security significantly decreases the consumption share of low GI rice, while it increases the share of medium GI varieties. The consumption share of low GI rice is largely affected by the ethnic variability. The effects of food security on the likelihood of consuming high GI rice varieties and changing its shares are statistically insignificant. Accordingly, the study concludes that a higher level of food security does not ensure diabetes patients are consuming healthy rice varieties or reducing consumption of unhealthy varieties. Hence policy attention must be directed towards educating people for making healthy dietary choices. Further, the study provides a room for further studies as it reveals considerable ethnic and sectorial differences in making healthy dietary decisions.

Keywords: diabetes, food security, glycemic index, rice consumption

Procedia PDF Downloads 84
9457 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process

Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai

Abstract:

An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.

Keywords: stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling

Procedia PDF Downloads 425
9456 Feasibility Study of Tidal Current of the Bay of Bengal to Generate Electricity as a Renewable Energy

Authors: Myisha Ahmad, G. M. Jahid Hasan

Abstract:

Electricity is the pinnacle of human civilization. At present, the growing concerns over significant climate change have intensified the importance of the use of renewable energy technologies for electricity generation. The interest is primarily due to better energy security, smaller environmental impact and providing a sustainable alternative compared to the conventional energy sources. Solar power, wind, biomass, tidal power, and wave power are some of the most reliable sources of renewable energy. Ocean approximately holds 2×10³ TW of energy and has the largest renewable energy resource on the planet. Ocean energy has many forms namely, encompassing tides, ocean circulation, surface waves, salinity and thermal gradients. Ocean tide in particular, associates both potential and kinetic energy. The study is focused on the latter concept that deals with tidal current energy conversion technologies. Tidal streams or marine currents generate kinetic energy that can be extracted by marine current energy devices and converted into transmittable energy form. The principle of technology development is very comparable to that of wind turbines. Conversion of marine tidal resources into substantial electrical power offers immense opportunities to countries endowed with such resources and this work is aimed at addressing such prospects of Bangladesh. The study analyzed the extracted current velocities from numerical model works at several locations in the Bay of Bengal. Based on current magnitudes, directions and available technologies the most fitted locations were adopted and possible annual generation capacity was estimated. The paper also examines the future prospects of tidal current energy along the Bay of Bengal and establishes a constructive approach that could be adopted in future project developments.

Keywords: bay of Bengal, energy potential, renewable energy, tidal current

Procedia PDF Downloads 358
9455 Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources

Authors: Rade M. Ciric, Nikola L. J. Rajakovic

Abstract:

This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators.

Keywords: distributed generation, renewable energy sources, energy policy, curriculum

Procedia PDF Downloads 340
9454 The Effect of Photovoltaic Integrated Shading Devices on the Energy Performance of Apartment Buildings in a Mediterranean Climate

Authors: Jenan Abu Qadourah

Abstract:

With the depletion of traditional fossil resources and the growing human population, it is now more important than ever to reduce our energy usage and harmful emissions. In the Mediterranean region, the intense solar radiation contributes to summertime overheating, which raises energy costs and building carbon footprints, alternatively making it suitable for the installation of solar energy systems. In urban settings, where multi-story structures predominate and roof space is limited, photovoltaic integrated shading devices (PVSD) are a clean solution for building designers. However, incorporating photovoltaic (PV) systems into a building's envelope is a complex procedure that, if not executed correctly, might result in the PV system failing. As a result, potential PVSD design solutions must be assessed based on their overall energy performance from the project's early design stage. Therefore, this paper aims to investigate and compare the possible impact of various PVSDs on the energy performance of new apartments in the Mediterranean region, with a focus on Amman, Jordan. To achieve the research aim, computer simulations were performed to assess and compare the energy performance of different PVSD configurations. Furthermore, an energy index was developed by taking into account all energy aspects, including the building's primary energy demand and the PVSD systems' net energy production. According to the findings, the PVSD system can meet 12% to 43% of the apartment building's electricity needs. By highlighting the potential interest in PVSD systems, this study aids the building designer in producing more energy-efficient buildings and encourages building owners to install PV systems on the façade of their buildings.

Keywords: photovoltaic integrated shading device, solar energy, architecture, energy performance, simulation, overall energy index, Jordan

Procedia PDF Downloads 63
9453 Operation Strategy of Multi-Energy Storage System Considering Power System Reliability

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE).

Keywords: multiple energy storage system (MESS), energy allocation method, SOC schedule, reliability constraints

Procedia PDF Downloads 349
9452 A Study for Turkish Underwater Sports Federation Athletes: Evaluation of the Street Foods Consumption

Authors: Su Tezel

Abstract:

The paper deals with licensed athletes affiliated with the Turkish Underwater Sports Federation to assess the consumption status of street food. The aim of the paper is the frequency of training during competition preparatory training or season periods, the athletes' economic situation, social life, work-life or education situations are the directs them to street food? Also to evaluate the importance that athletes attach to their nutritional status. Data were collected with survey method. 141 underwater sports athletes participated in the survey. Empirical findings on 141 respondents are related to athletes' demographic information, which underwater sports branch they doing (underwater hockey, underwater rugby and free diving), with whom they live, training hours and frequency, street food consumption frequency and preferences, which type drinks they prefer drink with or without street foods and other similar things. Most of the athletes were male (64.5%), female (35.5%) and the most athletes from the sports branches included in the survey belong to underwater hockey (95.7%). 93.7% of athletes have a training time between 08:00 pm to 00:00 am and the frequency of consuming street food after training is 88%. As a remarkable result, 48% of the reasons for consuming street food easy access to street foods after training. Statistical analyzes were made with the data obtained and the status of street food consumption of athletes, whether they were suitable for professional athlete nutrition and their attitudes were evaluated.

Keywords: nutrition, street foods, underwater hockey, underwater sport

Procedia PDF Downloads 127
9451 Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier

Authors: Hassan Jassim Motlak

Abstract:

A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption whivh has a very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to symmetrical input stage. P-Spice simulation results using 0.18µm MIETEC CMOS process parameters using supply voltage of ±1.2V and 50μA biasing current. The P-Spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, open-loop gain-bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/µS, THD of -63dB and DC consumption power (PC) of 2mW.

Keywords: pseudo-OTA used CMOS CFOA, low power CFOA, high-performance CFOA, novel CFOA

Procedia PDF Downloads 298