Search results for: artificial artery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2415

Search results for: artificial artery

1125 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network

Authors: A. Morsli, A. Tlemçani, N. Ould Cherchali, M. S. Boucherit

Abstract:

This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to an Active Power Filter shunt (APFs) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.

Keywords: fuzzy logic controller, P-Q method, pulse width modulation (PWM), shunt active power filter (sAPF), total harmonic distortion (THD)

Procedia PDF Downloads 548
1124 Evotrader: Bitcoin Trading Using Evolutionary Algorithms on Technical Analysis and Social Sentiment Data

Authors: Martin Pellon Consunji

Abstract:

Due to the rise in popularity of Bitcoin and other crypto assets as a store of wealth and speculative investment, there is an ever-growing demand for automated trading tools, such as bots, in order to gain an advantage over the market. Traditionally, trading in the stock market was done by professionals with years of training who understood patterns and exploited market opportunities in order to gain a profit. However, nowadays a larger portion of market participants are at minimum aided by market-data processing bots, which can generally generate more stable signals than the average human trader. The rise in trading bot usage can be accredited to the inherent advantages that bots have over humans in terms of processing large amounts of data, lack of emotions of fear or greed, and predicting market prices using past data and artificial intelligence, hence a growing number of approaches have been brought forward to tackle this task. However, the general limitation of these approaches can still be broken down to the fact that limited historical data doesn’t always determine the future, and that a lot of market participants are still human emotion-driven traders. Moreover, developing markets such as those of the cryptocurrency space have even less historical data to interpret than most other well-established markets. Due to this, some human traders have gone back to the tried-and-tested traditional technical analysis tools for exploiting market patterns and simplifying the broader spectrum of data that is involved in making market predictions. This paper proposes a method which uses neuro evolution techniques on both sentimental data and, the more traditionally human-consumed, technical analysis data in order to gain a more accurate forecast of future market behavior and account for the way both automated bots and human traders affect the market prices of Bitcoin and other cryptocurrencies. This study’s approach uses evolutionary algorithms to automatically develop increasingly improved populations of bots which, by using the latest inflows of market analysis and sentimental data, evolve to efficiently predict future market price movements. The effectiveness of the approach is validated by testing the system in a simulated historical trading scenario, a real Bitcoin market live trading scenario, and testing its robustness in other cryptocurrency and stock market scenarios. Experimental results during a 30-day period show that this method outperformed the buy and hold strategy by over 260% in terms of net profits, even when taking into consideration standard trading fees.

Keywords: neuro-evolution, Bitcoin, trading bots, artificial neural networks, technical analysis, evolutionary algorithms

Procedia PDF Downloads 123
1123 The Routine Use of a Negative Pressure Incision Management System in Vascular Surgery: A Case Series

Authors: Hansraj Bookun, Angela Tan, Rachel Xuan, Linheng Zhao, Kejia Wang, Animesh Singla, David Kim, Christopher Loupos

Abstract:

Introduction: Incisional wound complications in vascular surgery patients represent a significant clinical and econometric burden of morbidity and mortality. The objective of this study was to trial the feasibility of applying the Prevena negative pressure incision management system as a routine dressing in patients who had undergone arterial surgery. Conventionally, Prevena has been applied to groin incisions, but this study features applications on multiple wound sites such as the thigh or major amputation stumps. Method: This was a cross-sectional observational, single-centre case series of 12 patients who had undergone major vascular surgery. Their wounds were managed with the Prevena system being applied either intra-operatively or on the first post-operative day. Demographic and operative details were collated as well as the length of stay and complication rates. Results: There were 9 males (75%) with mean age of 66 years and the comorbid burden was as follows: ischaemic heart disease (92%), diabetes (42%), hypertension (100%), stage 4 or greater kidney impairment (17%) and current or ex-smoking (83%). The main indications were acute ischaemia (33%), claudication (25%), and gangrene (17%). There were single instances of an occluded popliteal artery aneurysm, diabetic foot infection, and rest pain. The majority of patients (50%) had hybrid operations with iliofemoral endarterectomies, patch arterioplasties, and further peripheral endovascular treatment. There were 4 complex arterial bypass operations and 2 major amputations. The mean length of stay was 17 ± 10 days, with a range of 4 to 35 days. A single complication, in the form of a lymphocoele, was encountered in the context of an iliofemoral endarterectomy and patch arterioplasty. This was managed conservatively. There were no deaths. Discussion: The Prevena wound management system shows that in conjunction with safe vascular surgery, absolute wound complication rates remain low and that it remains a valuable adjunct in the treatment of vasculopaths.

Keywords: wound care, negative pressure, vascular surgery, closed incision

Procedia PDF Downloads 136
1122 Use of Satellite Imaging to Understand Earth’s Surface Features: A Roadmap

Authors: Sabri Serkan Gulluoglu

Abstract:

It is possible with Geographic Information Systems (GIS) that the information about all natural and artificial resources on the earth is obtained taking advantage of satellite images are obtained by remote sensing techniques. However, determination of unknown sources, mapping of the distribution and efficient evaluation of resources are defined may not be possible with the original image. For this reasons, some process steps are needed like transformation, pre-processing, image enhancement and classification to provide the most accurate assessment numerically and visually. Many studies which present the phases of obtaining and processing of the satellite images have examined in the literature study. The research showed that the determination of the process steps may be followed at this subject with the existence of a common whole may provide to progress the process rapidly for the necessary and possible studies which will be.

Keywords: remote sensing, satellite imaging, gis, computer science, information

Procedia PDF Downloads 318
1121 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor

Authors: Pranav Gulati, Isha Sharma

Abstract:

Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.

Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring

Procedia PDF Downloads 277
1120 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10

Procedia PDF Downloads 231
1119 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics

Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima

Abstract:

This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.

Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks

Procedia PDF Downloads 164
1118 Probabilistic-Based Design of Bridges under Multiple Hazards: Floods and Earthquakes

Authors: Kuo-Wei Liao, Jessica Gitomarsono

Abstract:

Bridge reliability against natural hazards such as floods or earthquakes is an interdisciplinary problem that involves a wide range of knowledge. Moreover, due to the global climate change, engineers have to design a structure against the multi-hazard threats. Currently, few of the practical design guideline has included such concept. The bridge foundation in Taiwan often does not have a uniform width. However, few of the researches have focused on safety evaluation of a bridge with a complex pier. Investigation of the scouring depth under such situation is very important. Thus, this study first focuses on investigating and improving the scour prediction formula for a bridge with complicated foundation via experiments and artificial intelligence. Secondly, a probabilistic design procedure is proposed using the established prediction formula for practical engineers under the multi-hazard attacks.

Keywords: bridge, reliability, multi-hazards, scour

Procedia PDF Downloads 374
1117 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models

Authors: Reza Bazargan lari, Mohammad H. Fattahi

Abstract:

Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.

Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN

Procedia PDF Downloads 368
1116 A Real-time Classification of Lying Bodies for Care Application of Elderly Patients

Authors: E. Vazquez-Santacruz, M. Gamboa-Zuniga

Abstract:

In this paper, we show a methodology for bodies classification in lying state using HOG descriptors and pressures sensors positioned in a matrix form (14 x 32 sensors) on the surface where bodies lie down. it will be done in real time. Our system is embedded in a care robot that can assist the elderly patient and medical staff around to get a better quality of life in and out of hospitals. Due to current technology a limited number of sensors is used, wich results in low-resolution data array, that will be used as image of 14 x 32 pixels. Our work considers the problem of human posture classification with few information (sensors), applying digital process to expand the original data of the sensors and so get more significant data for the classification, however, this is done with low-cost algorithms to ensure the real-time execution.

Keywords: real-time classification, sensors, robots, health care, elderly patients, artificial intelligence

Procedia PDF Downloads 866
1115 Application of an Artificial Neural Network to Determine the Risk of Malignant Tumors from the Images Resulting from the Asymmetry of Internal and External Thermograms of the Mammary Glands

Authors: Amdy Moustapha Drame, Ilya V. Germashev, E. A. Markushevskaya

Abstract:

Among the main problems of medicine is breast cancer, from which a significant number of women around the world are constantly dying. Therefore, the detection of malignant breast tumors is an urgent task. For many years, various technologies for detecting these tumors have been used, in particular, in thermal imaging in order to determine different levels of breast cancer development. These periodic screening methods are a diagnostic tool for women and may have become an alternative to older methods such as mammography. This article proposes a model for the identification of malignant neoplasms of the mammary glands by the asymmetry of internal and external thermal imaging fields.

Keywords: asymmetry, breast cancer, tumors, deep learning, thermogram, convolutional transformation, classification

Procedia PDF Downloads 60
1114 Artificial Intelligence and Governance in Relevance to Satellites in Space

Authors: Anwesha Pathak

Abstract:

With the increasing number of satellites and space debris, space traffic management (STM) becomes crucial. AI can aid in STM by predicting and preventing potential collisions, optimizing satellite trajectories, and managing orbital slots. Governance frameworks need to address the integration of AI algorithms in STM to ensure safe and sustainable satellite activities. AI and governance play significant roles in the context of satellite activities in space. Artificial intelligence (AI) technologies, such as machine learning and computer vision, can be utilized to process vast amounts of data received from satellites. AI algorithms can analyse satellite imagery, detect patterns, and extract valuable information for applications like weather forecasting, urban planning, agriculture, disaster management, and environmental monitoring. AI can assist in automating and optimizing satellite operations. Autonomous decision-making systems can be developed using AI to handle routine tasks like orbit control, collision avoidance, and antenna pointing. These systems can improve efficiency, reduce human error, and enable real-time responsiveness in satellite operations. AI technologies can be leveraged to enhance the security of satellite systems. AI algorithms can analyze satellite telemetry data to detect anomalies, identify potential cyber threats, and mitigate vulnerabilities. Governance frameworks should encompass regulations and standards for securing satellite systems against cyberattacks and ensuring data privacy. AI can optimize resource allocation and utilization in satellite constellations. By analyzing user demands, traffic patterns, and satellite performance data, AI algorithms can dynamically adjust the deployment and routing of satellites to maximize coverage and minimize latency. Governance frameworks need to address fair and efficient resource allocation among satellite operators to avoid monopolistic practices. Satellite activities involve multiple countries and organizations. Governance frameworks should encourage international cooperation, information sharing, and standardization to address common challenges, ensure interoperability, and prevent conflicts. AI can facilitate cross-border collaborations by providing data analytics and decision support tools for shared satellite missions and data sharing initiatives. AI and governance are critical aspects of satellite activities in space. They enable efficient and secure operations, ensure responsible and ethical use of AI technologies, and promote international cooperation for the benefit of all stakeholders involved in the satellite industry.

Keywords: satellite, space debris, traffic, threats, cyber security.

Procedia PDF Downloads 76
1113 Biomechanical Analysis on Skin and Jejunum of Chemically Prepared Cat Cadavers Used in Surgery Training

Authors: Raphael C. Zero, Thiago A. S. S. Rocha, Marita V. Cardozo, Caio C. C. Santos, Alisson D. S. Fechis, Antonio C. Shimano, FabríCio S. Oliveira

Abstract:

Biomechanical analysis is an important factor in tissue studies. The objective of this study was to determine the feasibility of a new anatomical technique and quantify the changes in skin and the jejunum resistance of cats’ corpses throughout the process. Eight adult cat cadavers were used. For every kilogram of weight, 120ml of fixative solution (95% 96GL ethyl alcohol and 5% pure glycerin) was applied via the external common carotid artery. Next, the carcasses were placed in a container with 96 GL ethyl alcohol for 60 days. After fixing, all carcasses were preserved in a 30% sodium chloride solution for 60 days. Before fixation, control samples were collected from fresh cadavers and after fixation, three skin and jejunum fragments from each cadaver were tested monthly for strength and displacement until complete rupture in a universal testing machine. All results were analyzed by F-test (P <0.05). In the jejunum, the force required to rupture the fresh samples and the samples fixed in alcohol for 60 days was 31.27±19.14N and 29.25±11.69N, respectively. For the samples preserved in the sodium chloride solution for 30 and 60 days, the strength was 26.17±16.18N and 30.57±13.77N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days was 2.79±0.73mm and 2.80±1.13mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 2.53±1.03mm and 2.83±1.27mm, respectively. There was no statistical difference between the samples (P=0.68 with respect to strength, and P=0.75 with respect to displacement). In the skin, the force needed to rupture the fresh samples and the samples fixed for 60 days in alcohol was 223.86±131.5N and 211.86±137.53N respectively. For the samples preserved in sodium chloride solution for 30 and 60 days, the force was 227.73±129.06 and 224.78±143.83N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days were 3.67±1.03mm and 4.11±0.87mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 4.21±0.93mm and 3.93±0.71mm, respectively. There was no statistical difference between the samples (P=0.65 with respect to strength, and P=0.98 with respect to displacement). The resistance of the skin and intestines of the cat carcasses suffered little change when subjected to alcohol fixation and preservation in sodium chloride solution, each for 60 days, which is promising for use in surgery training. All experimental procedures were approved by the Municipal Legal Department (protocol 02.2014.000027-1). The project was funded by FAPESP (protocol 2015-08259-9).

Keywords: anatomy, conservation, fixation, small animal

Procedia PDF Downloads 295
1112 The Challenges and Opportunities Faced by Women in Geomatics Engineering: The Case of the SADC Region

Authors: Moreblessings Shoko

Abstract:

Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. Also, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.

Keywords: women, geomatics, challenges, capacity building

Procedia PDF Downloads 574
1111 Multiple Fault Detection and Classification in a Coupled Motor with Rotor Using Artificial Neural Network

Authors: Mehrdad Nouri Khajavi, Gollamhassan Payganeh, Mohsen Fallah Tafti

Abstract:

Fault diagnosis is an important aspect of maintaining rotating machinery health and increasing productivity. Many researches has been done in this regards. Many faults such as unbalance, misalignment, looseness, bearing faults, etc. have been considered and diagnosed with different techniques. Most of the researches in fault diagnosis of rotating machinery deal with single fault. Where as in reality faults usually occur simultaneously and it is, therefore, necessary to recognize them at the same time. In this research, two of the most common faults namely unbalance and misalignment have been considered simultaneously with different intensity and then identified and classified with the use of Multi-Layer Perception Neural Network (MLPNN). Processed Vibration signals are used as the input to the MLPNN, and the class of mixed unbalancy, and misalignment is the output of the NN.

Keywords: unbalance, parallel misalignment, combined faults, vibration signals

Procedia PDF Downloads 354
1110 Generative AI in Higher Education: Pedagogical and Ethical Guidelines for Implementation

Authors: Judit Vilarmau

Abstract:

Generative AI is emerging rapidly and transforming higher education in many ways, occasioning new challenges and disrupting traditional models and methods. The studies and authors explored remark on the impact on the ethics, curriculum, and pedagogical methods. Students are increasingly using generative AI for study, as a virtual tutor, and as a resource for generating works and doing assignments. This point is crucial for educators to make sure that students are using generative AI with ethical considerations. Generative AI also has relevant benefits for educators and can help them personalize learning experiences and promote self-regulation. Educators must seek and explore tools like ChatGPT to innovate without forgetting an ethical and pedagogical perspective. Eighteen studies were systematically reviewed, and the findings provide implementation guidelines with pedagogical and ethical considerations.

Keywords: ethics, generative artificial intelligence, guidelines, higher education, pedagogy

Procedia PDF Downloads 88
1109 Cardio-respiratory Rehabilitation in Patients With Chronic or Post-acute Cardiomyopathy and COPD

Authors: Ledi Neçaj

Abstract:

Introduction: Cardio-respiratory rehabilitation is the set of coordinated interventions needed to provide the best physical, psychological, and social conditions so that patients with chronic or post-acute cardiopulmonary disease, with their efforts, maintain or resume optimal functioning in society through improved health behaviors. Purpose: To study the effectiveness of the application of Cardio-Respiratory Rehabilitation in the typology of patients with chronic or post-acute cardiomyopathy and chronic respiratory diseases in order to facilitate their therapeutic use and to improve the overall quality of life. Material and Method: This is a prospective study including patients with COPD and cardiac disease who were included in the rehabilitation program during the period January 2019 - November 2021. The study was conducted at the University Hospital Center "Mother Teresa" in Tirana, University Hospital "SHEFQET NDROQI", AMERICAN Hospital, HYGEA Hospital, and "Our Lady of Good Counsel, Tirana". An individual chart was used to collect sociodemographic, physical, clinical, and functional examinations for each patient. Results: The study included 253 patients, with a mean age of 62.1 (± 7.9) years, ranging from 48 to 82 years. (67.6%) of the patients were males, and (32.4%) female. Male patients predominated in all age groups, with a statistically significant difference with females (p<0.01). The most common cardiac pathologies are coronary artery bypass (24%), cerebral stroke (9%), myocardial infarction (17%), Stent placement (8%) (p<0.01). Correlation matrix of risk factors found a significant correlation of alcohol consumption with diabetes, smoking, dyslipidemia, sedentary life, obesity, AVC, and hypertension. Functional capacity estimated by change in metabolic equivalents (MET) improved by 46% from 4. ±2.2 to 7.2± .8 METs (p<0.01). Duration of exercise after rehabilitation was increased by 21% compared to baseline (p<0.01). The mean score of all three subscales of the questionnaire: symptoms (p=0.03), activity (p<0.01), and impact (p<0.01) after rehabilitation, was lower compared to pre-rehabilitation. Conclusions: The rehabilitation program has impacted on improving the quality of life, reducing symptoms, reducing the impact of negative factors on daily life, and reducing dyspnea during daily activities.

Keywords: cardio-respiratory rehabilitation, physical exercise, quality of life, diseases

Procedia PDF Downloads 91
1108 The Impact of Artificial Intelligence on Human Developments Obligations and Theories

Authors: Seham Elia Moussa Shenouda

Abstract:

The relationship between development and human rights has long been the subject of academic debate. To understand the dynamics between these two concepts, various principles are adopted, from the right to development to development-based human rights. Despite the initiatives taken, the relationship between development and human rights remains unclear. However, the overlap between these two views and the idea that efforts should be made in the field of human rights have increased in recent years. It is then evaluated whether the right to sustainable development is acceptable or not. The article concludes that the principles of sustainable development are directly or indirectly recognized in various human rights instruments, which is a good answer to the question posed above. This book therefore cites regional and international human rights agreements such as , as well as the jurisprudence and interpretative guidelines of human rights institutions, to prove this hypothesis.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security

Procedia PDF Downloads 37
1107 Concrete-Wall-Climbing Testing Robot

Authors: S. Tokuomi, K. Mori, Y. Tsuruzono

Abstract:

A concrete-wall-climbing testing robot, has been developed. This robot adheres and climbs concrete walls using two sets of suction cups, as well as being able to rotate by the use of the alternating motion of the suction cups. The maximum climbing speed is about 60 cm/min. Each suction cup has a pressure sensor, which monitors the adhesion of each suction cup. The impact acoustic method is used in testing concrete walls. This robot has an impact acoustic device and four microphones for the acquisition of the impact sound. The effectiveness of the impact acoustic system was tested by applying it to an inspection of specimens with artificial circular void defects. A circular void defect with a diameter of 200 mm at a depth of 50 mm was able to be detected. The weight and the dimensions of the robot are about 17 kg and 1.0 m by 1.3 m, respectively. The upper limit of testing is about 10 m above the ground due to the length of the power cable.

Keywords: concrete wall, nondestructive testing, climbing robot, impact acoustic method

Procedia PDF Downloads 659
1106 A Nonlinear Approach for System Identification of a Li-Ion Battery Based on a Non-Linear Autoregressive Exogenous Model

Authors: Meriem Mossaddek, El Mehdi Laadissi, El Mehdi Loualid, Chouaib Ennawaoui, Sohaib Bouzaid, Abdelowahed Hajjaji

Abstract:

An electrochemical system is a subset of mechatronic systems that includes a wide variety of batteries and nickel-cadmium, lead-acid batteries, and lithium-ion. Those structures have several non-linear behaviors and uncertainties in their running range. This paper studies an effective technique for modeling Lithium-Ion (Li-Ion) batteries using a Nonlinear Auto-Regressive model with exogenous input (NARX). The Artificial Neural Network (ANN) is trained to employ the data collected from the battery testing process. The proposed model is implemented on a Li-Ion battery cell. Simulation of this model in MATLAB shows good accuracy of the proposed model.

Keywords: lithium-ion battery, neural network, energy storage, battery model, nonlinear models

Procedia PDF Downloads 114
1105 Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading

Authors: Michał Rogala, Jakub Gajewski

Abstract:

As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush.

Keywords: aluminium foam, crashworthiness, neural networks, thin-walled structure

Procedia PDF Downloads 146
1104 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG

Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat

Abstract:

Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.

Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy

Procedia PDF Downloads 520
1103 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling

Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé

Abstract:

Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.

Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation

Procedia PDF Downloads 80
1102 Artificial Neural Network in FIRST Robotics Team-Based Prediction System

Authors: Cedric Leong, Parth Desai, Parth Patel

Abstract:

The purpose of this project was to develop a neural network based on qualitative team data to predict alliance scores to determine winners of matches in the FIRST Robotics Competition (FRC). The game for the competition changes every year with different objectives and game objects, however the idea was to create a prediction system which can be reused year by year using some of the statistics that are constant through different games, making our system adaptable to future games as well. Aerial Assist is the FRC game for 2014, and is played in alliances of 3 teams going against one another, namely the Red and Blue alliances. This application takes any 6 teams paired into 2 alliances of 3 teams and generates the prediction for the final score between them.

Keywords: artifical neural network, prediction system, qualitative team data, FIRST Robotics Competition (FRC)

Procedia PDF Downloads 513
1101 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 111
1100 Robust Control of a Single-Phase Inverter Using Linear Matrix Inequality Approach

Authors: Chivon Choeung, Heng Tang, Panha Soth, Vichet Huy

Abstract:

This paper presents a robust control strategy for a single-phase DC-AC inverter with an output LC-filter. An all-pass filter is utilized to create an artificial β-signal so that the proposed controller can be simply used in dq-synchronous frame. The proposed robust controller utilizes a state feedback control with integral action in the dq-synchronous frame. A linear matrix inequality-based optimization scheme is used to determine stabilizing gains of the controllers to maximize the convergence rate to steady state in the presence of uncertainties. The uncertainties of the system are described as the potential variation range of the inductance and resistance in the LC-filter.

Keywords: single-phase inverter, linear matrix inequality, robust control, all-pass filter

Procedia PDF Downloads 140
1099 Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering

Authors: S. S. Salehi, A. Shamloo

Abstract:

Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.

Keywords: cartilage tissue engineering, hydrogel, mechanical strength, mesenchymal stem cell

Procedia PDF Downloads 300
1098 Improved K-Means Clustering Algorithm Using RHadoop with Combiner

Authors: Ji Eun Shin, Dong Hoon Lim

Abstract:

Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.

Keywords: big data, combiner, K-means clustering, RHadoop

Procedia PDF Downloads 438
1097 Evaluation of Neuroprotective Potential of Olea europaea and Malus domestica in Experimentally Induced Stroke Rat Model

Authors: Humaira M. Khan, Kanwal Asif

Abstract:

Ischemic stroke is a neurological disorder with a complex pathophysiology associated with motor, sensory and cognitive deficits. Major approaches developed to treat acute ischemic stroke fall into two categories, thrombolysis and neuroprotection. The objectives of this study were to evaluate the neuroprotective and anti-thrombolytic effects of Olea europaea (olive oil) and Malus domestica (apple cider vinegar) and their combination in rat stroke model. Furthermore, histopathological analysis was also performed to assess the severity of ischemia among treated and reference groups. Male albino rats (12 months age) weighing 300- 350gm were acclimatized and subjected to middle cerebral artery occlusion method for stroke induction. Olea europaea and Malus domestica was administered orally in dose of 0.75ml/kg and 3ml/kg and combination was administered at dose of 0.375ml/kg and 1.5ml/kg prophylactically for consecutive 21 days. Negative control group was dosed with normal saline whereas piracetam (250mg/kg) was administered as reference. Neuroprotective activity of standard piracetam, Olea europaea, Malus domestica and their combination was evaluated by performing functional outcome tests i.e. Cylinder, pasta, ladder run, pole and water maize tests. Rats were subjected to surgery after 21 days of treatment for analysis from stroke recovery. Olea europaea and Malus domestica in individual doses of 0.75ml/kg and 3ml/kg respectively showed neuroprotection by significant improvement in ladder run test (121.6± 0.92;128.2 ± 0.73) as compare to reference (125.4 ± 0.74). Both test doses showed significant neuroprotection as compare to reference (9.60 ± 0.50) in pasta test (8.40 ± 0.24;9.80 ± 0.37) whereas with cylinder test, experimental groups showed significant increase in movements (6.60 ± 0.24; 8.40 ± 0.24) in contrast to reference (7.80 ± 0.37).There was a decrease in percentage time taken f to reach the hidden maize in water maize test (56.80 ± 0.58;61.80 ± 0.66) at doses 0.75ml/kg and 3ml/kg respectively as compare to piracetam (59.40 ± 1.07). Olea europaea and Malus domestica individually showed significant reduction in duration of mobility (127.0 ± 0.44; 123.0 ± 0.44) in pole test as compare to piracetam (124.0 ± 0.70). Histopathological analysis revealed the significant extent of protection from ischemia after prophylactic treatments. Hence it is concluded that Olea europaea and Malus domestica are effective neuroprotective agents alone as compare to their combination.

Keywords: ischemia, Malus domestica, neuroprotection, Olea europaea

Procedia PDF Downloads 126
1096 Nature, Elixir of Architecture: A Contemplation on Human, Nature and Architecture in Islam

Authors: A. Kabiri-Samani, M. J. Seddighi

Abstract:

There is no doubt that a key factor in the manifestation of architecture is the interaction of human and nature. Explaining the type of relationship defined by “the architect” between architecture and nature opens a window towards understanding the theoretical conceptions of the architect as the creator of “architecture”. Now, if these theoretical foundations are put under scrutiny from the viewpoint of Islam, and an architect considers the relationship of human and nature within the context of Islam, he would let nature to manifest itself in architecture. The reasons for such a relationship is explicable in terms of the degree and nature of knowledge of the architect about nature; while the way it comes to existence is explained by defining the force of nature – ruling the entire nature – and its acts. It is by the scientific command of the architect and his mastery in the hermetic force of nature that the material bodies of buildings evolve from artificial to natural. Additionally, the presence of nature creates hermetic architectural spaces for the spiritual development of humans while serving for living at different levels.

Keywords: nature, Islam, cognition, science, presence, elixir

Procedia PDF Downloads 489