Search results for: radial energy distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13066

Search results for: radial energy distribution

11806 Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach

Authors: Isara Muangthai, Lin Sue Jane

Abstract:

Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation.

Keywords: co2 emission, decomposition analysis, electricity generation, energy consumption

Procedia PDF Downloads 485
11805 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines

Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky

Abstract:

Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.

Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods

Procedia PDF Downloads 114
11804 Windcatcher as Sustainable Solution for Natural Ventilation in Hot Arid Regions: A Case Study of Saudi Arabia

Authors: Payam Nejat, Fatemeh Jomehzadeh, Muhamad Zaimi Abd. Majid, Mohd.Badruddin Yusof, Hasrul Haidar Ismail

Abstract:

Currently, building energy consumption has become an international issue especially in developing countries such as Saudi Arabia. In Saudi Arabia 14% of total final energy consumption is utilized in the building sector. Due to hot arid climate, 60% of total building energy consumption in this country is associated with cooling systems. In addition in 2011, this country was one of top ten CO2 emitting countries which illustrate the significance of renewable resources to sustaining the energy consumption. Wind as an important renewable energy can play a prominent role to supply natural ventilation inside the building and windcatcher as a traditional technique can be implemented for this purpose. In this paper the different types of windcatchers, its performance and function was reviewed. It can be concluded due high temperature and low humidity in most area of Saudi Arabia this technique can be successfully be employed and help to reduce fossil energy consumption and related CO2 emissions.

Keywords: natural ventilation, windcatcher, wind, badgir

Procedia PDF Downloads 595
11803 Energy Retrofitting Application Research to Achieve Energy Efficiency in Hot-Arid Climates in Residential Buildings: A Case Study of Saudi Arabia

Authors: A. Felimban, A. Prieto, U. Knaack, T. Klein

Abstract:

This study aims to present an overview of recent research in building energy-retrofitting strategy applications and analyzing them within the context of hot arid climate regions which is in this case study represented by the Kingdom of Saudi Arabia. The main goal of this research is to do an analytical study of recent research approaches to show where the primary gap in knowledge exists and outline which possible strategies are available that can be applied in future research. Also, the paper focuses on energy retrofitting strategies at a building envelop level. The study is limited to specific measures within the hot arid climate region. Scientific articles were carefully chosen as they met the expression criteria, such as retrofitting, energy-retrofitting, hot-arid, energy efficiency, residential buildings, which helped narrow the research scope. Then the papers were explored through descriptive analysis and justified results within the Saudi context in order to draw an overview of future opportunities from the field of study for the last two decades. The conclusions of the analysis of the recent research confirmed that the field of study had a research shortage on investigating actual applications and testing of newly introduced energy efficiency applications, lack of energy cost feasibility studies and there was also a lack of public awareness. In terms of research methods, it was found that simulation software was a major instrument used in energy retrofitting application research. The main knowledge gaps that were identified included the need for certain research regarding actual application testing; energy retrofitting strategies application feasibility; the lack of research on the importance of how strategies apply first followed by the user acceptance of developed scenarios.

Keywords: energy efficiency, energy retrofitting, hot arid, Saudi Arabia

Procedia PDF Downloads 125
11802 Effect of Cap and Trade Policies for Carbon Emission Reduction on Delhi Households

Authors: Vikram Singh

Abstract:

This paper aims to take into account carbon tax or cap-and-trade legislation to manage Delhi carbon emissions after a post-Kyoto treaty. This report estimated the influence of the carbon taxes or rebate/compensation cost at the household level. Here, the three possible scenarios will help to comprehend the difference between a straightforward compensation/rebate, and two clearly denoting progressive formula. The straightforward compensation is basically minimizing the regressive applications that will bears on cost. On the other hand, both the progressive formula will generate extra revenue, which will help for feasibility of more efficient, vehicles, appliances and buildings in the low-income household. For the hypothetical case of carbon price $40/tonne, low-income household for both urban and rural region could experience price burden up to 5% and 9% on their income as compared to 3% and 7% for high-income household respectively. The survey report also shown that carbon emission due low-income household are primarily by the substantive requirement like housing and transportation whereas almost 40% emission due to high-income household are by luxurious and non-essential items. The equal distribution of revenue cum incentives will not completely overcome high-income household’s investment in inessential items. However, it will merely help in investing their income in energy efficient and less carbon intensive items. Therefore, the rebate distribution on per capita basis instead on per households will benefit more especially large families at low-income group.

Keywords: household emission, carbon credit, carbon intensity, green house gas emission, carbon generation based insentives

Procedia PDF Downloads 436
11801 A Sustainable Energy Portfolio for Greater Kampala Metropolitan Area by the Mid-Century

Authors: Ismail Kimuli

Abstract:

With a steadfast economic development, the Greater Kampala metropolitan area (GKMA) faces increasing pressures to increasetheshare of low-carbon electricity in the energy balance, abate CO2 emissions and also restructure the transportation sector for a sustainable 2050. GKMA, is Uganda’s commercial, political, social, and industrial hub with a population of 4.1 million, contributing 60% tothe nation’s GDP and accounts for 80% of Uganda’s industrial sector.However, with the rampant anthropogenic interference that causes climate change, CO2 emissions in the metropolitan are contributing to global warming. Many economies across the globe are addressing this challengethrough development and analysis of sustainable energy portfolios.A sustainable energy portfolio is a low-carbon scenario. The study reviews the literature to establish the current energy management situation of GKMA and finds it wanting in addressing the immediate challenges associated with energy management of the metropolitan. Then, the study develops and examines a sustainable energy portfolio for GKMA using TIMES-VEDA and then presents it as an investigative low-carbon energy scenario that could propel the metropolitan sustainably towards 2050.Sustainability is plausible by optimizing the total primary energy supply, generating low-carbon electricity from hydropower and PV-solar renewables, improving heating technologies for residential & commercial sectors, and switching 90% of land passengers from road to a Kampala metro for a sustainable mid-century.

Keywords: GKMA, sustainability, TIMES-VEDA, low-carbon scenario

Procedia PDF Downloads 110
11800 Sustainable Building Design for Energy Efficiency and Healthier Electromagnetic Environment

Authors: Riadh Habash, Kristina Djukic, Gandhi Habash

Abstract:

Sustainable design is one of the emerging milestones in building construction. This concept is defined as buildings that on a yearly average consume as much energy as they generate using renewable energy sources. Realization of sustainable buildings requires a wide range of technologies, systems and solutions with varying degrees of complexity and sophistication, depending upon the location and surrounding environmental conditions. This paper will address not only the role of the above technologies and solutions but will provide solutions to reduce the electromagnetic fields (EMFs) in the building as much as possible so that the occupiers can recover from electro-hyper-sensitivity, if any. The objective is to maximize energy efficiency, optimize occupant comfort, reduce dependency on the grid and provide safer and healthier EMF environment especially for hypersensitive people. Creative architectural and engineering solutions that capitalize on the design of energy efficient technologies; combined cooling, heating and power (CCHP) microgrid (MG); and EMF mitigation will be presented.

Keywords: sustainable buildings, energy efficiency, thermal simulation, electromagnetic environment

Procedia PDF Downloads 303
11799 Species Composition of Alticinae Newman, 1834 (Coleoptera, Chrysomelidae): Distribution and Host Plants in Eastern Upper Plains (Setif, Algeria)

Authors: M. Bounechada, M. Fenni, S. Bouharati, S. E. Doumandji

Abstract:

The study was taken in Setif region (36° 11' 29 N and 5° 24' 34 E) located at the north-eastern of Algeria. This paper recorded and discusses zoogeography and host plant relationships of Setifian species Alticinae subfamily. A total of 50 species belonging to Alticinae subfamily of Chrysomelidae which is the economically important familty, were recorded from differentes localities of Setif region. They are included in 10 genera. Genera Longitarsus Berthold, 1827 is less species-rich than the other Alticinae genera captured. It represens about 38% of the all species collected. Cruciferae and Compositae were the mostly prefered host plant families representing Alticinae species. For each species we mentioned the collecting sites, geographical distribution and the host plants.

Keywords: Algeria, Alticinae, Chrysomelidae, Coleoptera, distribution, host plants, species composition, Setif

Procedia PDF Downloads 236
11798 Embodied Energy in Concrete and Structural Masonry on Typical Brazilian Buildings

Authors: Marco A. S. González, Marlova P. Kulakowski, Luciano G. Breitenbach, Felipe Kirch

Abstract:

The AEC sector has an expressive environmental responsibility. Actually, most building materials have severe environmental impacts along their production cycle. Professionals enrolled in building design may choice the materials and techniques with less impact among the viable options. This work presents a study about embodied energy in materials of two typical Brazilian constructive alternatives. The construction options considered are reinforced concrete structure and structural masonry. The study was developed for the region of São Leopoldo, southern Brazil. Results indicated that the energy embodied in these two constructive systems is approximately 1.72 GJ•m-2 and 1.26 GJ•m-2, respectively. It may be concluded that the embodied energy is lower in the structural masonry system, with a reduction around to 1/4 in relation to the traditional option. The results can be used to help design decisions.

Keywords: civil construction, sustainability, embodied energy, Brazil

Procedia PDF Downloads 441
11797 A Phenomenological Expression for Self-Attractive Energy of Singlelayer Graphene Sheets

Authors: Bingjie Wu, C. Q. Ru

Abstract:

The present work studies several reasonably expected candidate integral forms for self-attractive potential energy of a free monolayer graphene sheet. The admissibility of a specific integral form for ripple formation is verified, while all others most of the candidate integral forms are rejected based on the non-existence of stable periodic ripples. Based on the selected integral form of self-attractive potential energy, some mechanical behavior, including ripple formation and buckling, of a free monolayer grapheme sheet are discussed in details

Keywords: graphene, monolayer, ripples, van der Waals energy

Procedia PDF Downloads 393
11796 Co-Alignment of Comfort and Energy Saving Objectives for U.S. Office Buildings and Restaurants

Authors: Lourdes Gutierrez, Eric Williams

Abstract:

Post-occupancy research shows that only 11% of commercial buildings met the ASHRAE thermal comfort standard. Many buildings are too warm in winter and/or too cool in summer, wasting energy and not providing comfort. In this paper, potential energy savings in U.S. offices and restaurants if thermostat settings are calculated according the updated ASHRAE 55-2013 comfort model that accounts for outdoor temperature and clothing choice for different climate zones. eQUEST building models are calibrated to reproduce aggregate energy consumption as reported in the U.S. Commercial Building Energy Consumption Survey. Changes in energy consumption due to the new settings are analyzed for 14 cities in different climate zones and then the results are extrapolated to estimate potential national savings. It is found that, depending on the climate zone, each degree increase in the summer saves 0.6 to 1.0% of total building electricity consumption. Each degree the winter setting is lowered saves 1.2% to 8.7% of total building natural gas consumption. With new thermostat settings, national savings are 2.5% of the total consumed in all office buildings and restaurants, summing up to national savings of 69.6 million GJ annually, comparable to all 2015 total solar PV generation in US. The goals of improved comfort and energy/economic savings are thus co-aligned, raising the importance of thermostat management as an energy efficiency strategy.

Keywords: energy savings quantifications, commercial building stocks, dynamic clothing insulation model, operation-focused interventions, energy management, thermal comfort, thermostat settings

Procedia PDF Downloads 303
11795 Dissection of the Impact of Diabetes Type on Heart Failure across Age Groups: A Systematic Review of Publication Patterns on PubMed

Authors: Nazanin Ahmadi Daryakenari

Abstract:

Background: Diabetes significantly influences the risk of heart failure. The interplay between distinct types of diabetes, heart failure, and their distribution across various age groups remains an area of active exploration. This study endeavors to scrutinize the age group distribution in publications addressing Type 1 and Type 2 diabetes and heart failure on PubMed while also examining the evolving publication trends. Methods: We leveraged E-utilities and RegEx to search and extract publication data from PubMed using various mesh terms. Subsequently, we conducted descriptive statistics and t-tests to discern the differences between the two diabetes types and the distribution across age groups. Finally, we analyzed the temporal trends of publications concerning both types of diabetes and heart failure. Results: Our findings revealed a divergence in the age group distribution between Type 1 and Type 2 diabetes within heart failure publications. Publications discussing Type 2 diabetes and heart failure were more predominant among older age groups, whereas those addressing Type 1 diabetes and heart failure displayed a more balanced distribution across all age groups. The t-test revealed no significant difference in the means between the two diabetes types. However, the number of publications exploring the relationship between Type 2 diabetes and heart failure has seen a steady increase over time, suggesting an escalating interest in this area. Conclusion: The dissection of publication patterns on PubMed uncovers a pronounced association between Type 2 diabetes and heart failure within older age groups. This highlights the critical need to comprehend the distinct age group differences when examining diabetes and heart failure to inform and refine targeted prevention and treatment strategies.

Keywords: Type 1 diabetes, Type 2 diabetes, heart failure, age groups, publication patterns, PubMed

Procedia PDF Downloads 97
11794 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 88
11793 Study of Energy Efficient and Quality of Service Based Routing Protocols in Wireless Sensor Networking

Authors: Sachin Sharma

Abstract:

A wireless sensor network (WSN) consists of a large number of sensor nodes which are deployed over an area to perform local computations based on information gathered from the surroundings. With the increasing demand for real-time applications in WSN, real-time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Hence, maximizing the lifetime of the network through minimizing the energy is an important challenge in WSN; sensors cannot be easily replaced or recharged due to their ad-hoc deployment in a hazardous environment. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. The main focus of this article is primarily on periodical cycling schemes which represent the most compatible technique for energy saving and we also focus on the data-driven approaches that can be used to improve the energy efficiency. Finally, we will make a review on some communication protocols proposed for sensor networks.

Keywords: energy efficient, quality of service, wireless sensor networks, MAC

Procedia PDF Downloads 349
11792 Energy Harvesting with Zinc Oxide Based Nanogenerator: Design and Simulation Using Comsol-4.3 Software

Authors: Akanksha Rohit, Ujjwala Godavarthi, Anshua Mukherjee

Abstract:

Nanotechnology is one of the promising sustainable solutions in the era of miniaturization due to its multidisciplinary nature. The most interesting aspect about nanotechnology is its wide ranging applications from electronics to military and biomedical. It tries to connect individuals more closely to the environment. In this paper, concept of parasitic energy harvesting is used in designing nanogenerators using COMSOL 4.3 software. The output of the nanogenerator is optimized using following constraints: ease of availability of the material, fabrication process and cost of the material. The nanogenerator is optimized using ZnO based nanowires, PMMA as insulator and aluminum and silicon as metal electrodes. The energy harvested from the model can be used to power nanobots, several other biomedical sensors and eventually to replace batteries. Thus, advancements in this field can be very challenging but it is the future of the nano era.

Keywords: zinc oxide, piezoelectric, PMMA, parasitic energy harvesting, renewable energy engineering

Procedia PDF Downloads 365
11791 [Keynote Talk]: Quest for Sustainability in the Midst of Conflict Between Climate and Energy Security

Authors: Deepak L. Waikar

Abstract:

Unprecedented natural as well as human made disasters have been responsible for loss of hundreds of thousands of lives, injury & displacement of millions of people and damages in billions of dollars in various parts of the world. Scientists, experts, associations and united nation have been warning about colossal disregard for human safety and environment in exploiting natural resources for insatiable greed for economic growth and rising lavish life style of the rich. Usual blame game is routinely played at international forums & summits by vested interests in developing and developed nations, while billions of people continue to suffer in abject energy poverty. Energy security, on the other hand, is becoming illusive with the dominance of few players in the market, poor energy governance mechanisms, volatile prices and geopolitical conflicts in supply chain. Conflicting scenarios have been cited as one of the major barriers for transformation to a low carbon economy. Policy makers, researchers, academics, businesses, industries and communities have been evaluating sustainable alternatives, albeit at snail’s pace. This presentation focuses on technologies, energy governance, policies & practices, economics and public concerns about safe, prudent & sustainable harnessing of energy resources. Current trends and potential research & development projects in power & energy sectors which students can undertake will be discussed. Speaker will highlight on how youths can be engaged in meaningful, safe, enriching, inspiring and value added self-development programmes in our quest for sustainability in the midst of conflict between climate and energy security.

Keywords: clean energy, energy policy, energy security, sustainable energy

Procedia PDF Downloads 488
11790 Simulation the Stress Distribution of Wheel/Rail at Contact Region

Authors: Norie A. Akeel, Z. Sajuri, A. K. Ariffin

Abstract:

This paper discusses the effect of different loading analysis on crack initiation life of wheel/rail in the contact region. A simulated three dimensional (3D) elasto plastic model of a wheel/rail contact is modeled using the fine mesh technique in the contact region by using Finite Element Method FEM code ANSYS 11.0 software. Different loads of approximately from 70 to 140 KN was applied on the wheel tread through the running surface on the railhead surface to simulate stress distribution (Von Mises) and a life prediction of the crack initiation under rolling contact motion. Stress analysis is achieved and the fatigue life to the rail head surface is calculated numerically by using a multi-axial fatigue life of crack initiation model. All results obtained from the previous researches are compared with this research.

Keywords: FEM, rolling contact, rail track, stress distribution, fatigue life

Procedia PDF Downloads 556
11789 Addressing Coastal Community Vulnerabilities with Alternative Marine Energy Projects

Authors: Danielle Preziuso, Kamila Kazimierczuk, Annalise Stein, Bethel Tarekegne

Abstract:

Coastal communities experience a variety of distinct socioeconomic, technical, and environmental vulnerabilities, all of which accrue heightened risk with increasingly frequent and severe climate change impacts. Marine renewable energy (MRE) offers a potential solution for mitigating coastal community vulnerabilities, especially water-energy dependencies while delivering promising co-benefits such as increased resilience and more sustainable energy outcomes. This paper explores coastal community vulnerabilities and service dependencies based on the local drivers that create them, with attention to climate change impacts and how they catalyze water-energy unmet needs in these communities. We examine the vulnerabilities through the lens of coastal Tribal communities (i.e., the Makah Tribe, the Kenaitze Tribe, Quinault Nation), as indigenous communities often face compounded impacts of technical, economic, and environmental vulnerabilities due to their underlying socio-demographic inequalities. We offer an environmental and energy justice indicators framework to understand how these vulnerabilities disproportionately manifest and impact the most vulnerable community members, and we subsequently utilize the framework to inform a weighted decision matrix tool that compares the viability of MRE-based alternative energy futures in addressing these vulnerabilities. The framework and complementary tool highlight opportunities for future MRE research and pilot demonstrations that directly respond to the vulnerabilities of coastal communities.

Keywords: coastal communities, decision matrix, energy equity, energy vulnerability, marine energy, service dependency

Procedia PDF Downloads 79
11788 Useful Effects of Silica Nanoparticles in Ionic Liquid Electrolyte for Energy Storage

Authors: Dong Won Kim, Hye Ji Kim, Hyun Young Jung

Abstract:

Improved energy storage is inevitably needed to improve energy efficiency and to be environmentally friendly to chemical processes. Ionic liquids (ILs) can play a crucial role in addressing these needs due to inherent adjustable properties including low volatility, low flammability, inherent conductivity, wide liquid range, broad electrochemical window, high thermal stability, and recyclability. Here, binary mixtures of ILs were prepared with fumed silica nanoparticles and characterized to obtain ILs with conductivity and electrochemical properties optimized for use in energy storage devices. The solutes were prepared by varying the size and the weight percent concentration of the nanoparticles and made up 10 % of the binary mixture by weight. We report on the physical and electrochemical properties of the individual ILs and their binary mixtures.

Keywords: ionic liquid, silica nanoparticle, energy storage, electrochemical properties

Procedia PDF Downloads 220
11787 Electric Power Generation by Thermoelectric Cells and Parabolic Solar Concentrators

Authors: A. Kianifar, M. Afzali, I. Pishbin

Abstract:

In this paper, design details, theoretical analysis and thermal performance analysis of a solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The thermoelectric device is attached to the absorber plate to convert concentrated solar energy directly into electric energy at the focus of the concentrator. A cooling channel (water cooled heat sink) is fitted to the cold side of the thermoelectric device to remove the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency.

Keywords: concentrator thermoelectric generator, CTEG, solar energy, thermoelectric cells

Procedia PDF Downloads 306
11786 Bayesian Hidden Markov Modelling of Blood Type Distribution for COVID-19 Cases Using Poisson Distribution

Authors: Johnson Joseph Kwabina Arhinful, Owusu-Ansah Emmanuel Degraft Johnson, Okyere Gabrial Asare, Adebanji Atinuke Olusola

Abstract:

This paper proposes a model to describe the blood types distribution of new Coronavirus (COVID-19) cases using the Bayesian Poisson - Hidden Markov Model (BP-HMM). With the help of the Gibbs sampler algorithm, using OpenBugs, the study first identifies the number of hidden states fitting European (EU) and African (AF) data sets of COVID-19 cases by blood type frequency. The study then compares the state-dependent mean of infection within and across the two geographical areas. The study findings show that the number of hidden states and infection rates within and across the two geographical areas differ according to blood type.

Keywords: BP-HMM, COVID-19, blood types, GIBBS sampler

Procedia PDF Downloads 132
11785 Spatial and Temporal Evaluations of Disinfection By-Products Formation in Coastal City Distribution Systems of Turkey

Authors: Vedat Uyak

Abstract:

Seasonal variations of trihalomethanes (THMs) and haloacetic acids (HAAs) concentrations were investigated within three distribution systems of a coastal city of Istanbul, Turkey. Moreover, total trihalomethanes and other organics concentration were also analyzed. The investigation was based on an intensive 16 month (2009-2010) sampling program, undertaken during the spring, summer, fall and winter seasons. Four THM (chloroform, dichlorobromomethane, chlorodibromomethane, bromoform), and nine HAA (the most commonly occurring one being dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA); other compounds are monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), dibromoacetic acid (DBAA), tribromoacetic acid (TBAA), bromochloroacetic acid (BCAA), bromodichloroacetic acid (BDCAA) and chlorodibromoacetic acid (CDBAA)) species and other water quality and operational parameters were monitored at points along the distribution system between the treatment plant and the system’s extremity. The effects of coastal water sources, seasonal variation and spatial variation were examined. The results showed that THMs and HAAs concentrations vary significantly between treated waters and water at the distribution networks. When water temperature exceeds 26°C in summer, the THMs and HAAs levels are 0.8 – 1.1, and 0.4 – 0.9 times higher than treated water, respectively. While when water temperature is below 12°C in the winter, the measured THMs and HAAs concentrations at the system’s extremity were very rarely higher than 100 μg/L, and 60 μg/L, respectively. The highest THM concentrations occurred in the Buyukcekmece distribution system, with an average total HAA concentration of 92 μg/L. Moreover, the lowest THM levels were observed in the Omerli distribution network, with a mean concentration of 7 μg/L. For HAA levels, the maximum concentrations again were observed in the Buyukcekmece distribution system, with an average total HAA concentration of 57 μg/l. High spatial and seasonal variation of disinfection by-products in the drinking water of Istanbul was attributed of illegal wastewater discharges to water supplies of Istanbul city.

Keywords: disinfection byproducts, drinking water, trihalomethanes, haloacetic acids, seasonal variation

Procedia PDF Downloads 153
11784 Optimal Scheduling of Load and Operational Strategy of a Load Aggregator to Maximize Profit with PEVs

Authors: Md. Shafiullah, Ali T. Al-Awami

Abstract:

This project proposes optimal scheduling of imported power of a load aggregator with the utilization of EVs to maximize its profit. As with the increase of renewable energy resources, electricity price in competitive market becomes more uncertain and, on the other hand, with the penetration of renewable distributed generators in the distribution network the predicted load of a load aggregator also becomes uncertain in real time. Though there is uncertainties in both load and price, the use of EVs storage capacity can make the operation of load aggregator flexible. LA submits its offer to day-ahead market based on predicted loads and optimized use of its EVs to maximize its profit, as well as in real time operation it uses its energy storage capacity in such a way that it can maximize its profit. In this project, load aggregators profit maximization algorithm is formulated and the optimization problem is solved with the help of CVX. As in real time operation the forecasted loads differ from actual load, the mismatches are settled in real time balancing market. Simulation results compare the profit of a load aggregator with a hypothetical group of 1000 EVs and without EVs.

Keywords: CVX, electricity market, load aggregator, load and price uncertainties, profit maximization, real time balancing operation

Procedia PDF Downloads 418
11783 Piezoelectric Approach on Harvesting Acoustic Energy

Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap

Abstract:

An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.

Keywords: piezoelectric, acoustic, energy harvester

Procedia PDF Downloads 282
11782 Sizing Residential Solar Power Systems Based on Site-Specific Energy Statistics

Authors: Maria Arechavaleta, Mark Halpin

Abstract:

In the United States, costs of solar energy systems have declined to the point that they are viable options for most consumers. However, there are no consistent procedures for specifying sufficient systems. The factors that must be considered are energy consumption, potential solar energy production, and cost. The traditional method of specifying solar energy systems is based on assumed daily levels of available solar energy and average amounts of daily energy consumption. The mismatches between energy production and consumption are usually mitigated using battery energy storage systems, and energy use is curtailed when necessary. The main consumer decision question that drives the total system cost is how much unserved (or curtailed) energy is acceptable? Of course additional solar conversion equipment can be installed to provide greater peak energy production and extra energy storage capability can be added to mitigate longer lasting low solar energy production periods. Each option increases total cost and provides a benefit which is difficult to quantify accurately. An approach to quantify the cost-benefit of adding additional resources, either production or storage or both, based on the statistical concepts of loss-of-energy probability and expected unserved energy, is presented in this paper. Relatively simple calculations, based on site-specific energy availability and consumption data, can be used to show the value of each additional increment of production or storage. With this incremental benefit-cost information, consumers can select the best overall performance combination for their application at a cost they are comfortable paying. The approach is based on a statistical analysis of energy consumption and production characteristics over time. The characteristics are in the forms of curves with each point on the curve representing an energy consumption or production value over a period of time; a one-minute period is used for the work in this paper. These curves are measured at the consumer location under the conditions that exist at the site and the duration of the measurements is a minimum of one week. While greater accuracy could be obtained with longer recording periods, the examples in this paper are based on a single week for demonstration purposes. The weekly consumption and production curves are overlaid on each other and the mismatches are used to size the battery energy storage system. Loss-of-energy probability and expected unserved energy indices are calculated in addition to the total system cost. These indices allow the consumer to recognize and quantify the benefit (probably a reduction in energy consumption curtailment) available for a given increase in cost. Consumers can then make informed decisions that are accurate for their location and conditions and which are consistent with their available funds.

Keywords: battery energy storage systems, loss of load probability, residential renewable energy, solar energy systems

Procedia PDF Downloads 236
11781 Integrated Modeling of Transformation of Electricity and Transportation Sectors: A Case Study of Australia

Authors: T. Aboumahboub, R. Brecha, H. B. Shrestha, U. F. Hutfilter, A. Geiges, W. Hare, M. Schaeffer, L. Welder, M. Gidden

Abstract:

The proposed stringent mitigation targets require an immediate start for a drastic transformation of the whole energy system. The current Australian energy system is mainly centralized and fossil fuel-based in most states with coal and gas-fired plants dominating the total produced electricity over the recent past. On the other hand, the country is characterized by a huge, untapped renewable potential, where wind and solar energy could play a key role in the decarbonization of the Australia’s future energy system. However, integrating high shares of such variable renewable energy sources (VRES) challenges the power system considerably due to their temporal fluctuations and geographical dispersion. This raises the concerns about flexibility gap in the system to ensure the security of supply with increasing shares of such intermittent sources. One main flexibility dimension to facilitate system integration of high shares of VRES is to increase the cross-sectoral integration through coupling of electricity to other energy sectors alongside the decarbonization of the power sector and reinforcement of the transmission grid. This paper applies a multi-sectoral energy system optimization model for Australia. We investigate the cost-optimal configuration of a renewable-based Australian energy system and its transformation pathway in line with the ambitious range of proposed climate change mitigation targets. We particularly analyse the implications of linking the electricity and transport sectors in a prospective, highly renewable Australian energy system.

Keywords: decarbonization, energy system modelling, renewable energy, sector coupling

Procedia PDF Downloads 135
11780 Multi-Criteria Evaluation of Integrated Renewable Energy Systems for Community-Scale Applications

Authors: Kuanrong Qiu, Sebnem Madrali, Evgueniy Entchev

Abstract:

To achieve the satisfactory objectives in deploying integrated renewable energy systems, it is crucial to consider all the related parameters affecting the design and decision-making. The multi-criteria evaluation method is a reliable and efficient tool for achieving the most appropriate solution. The approach considers the influential factors and their relative importance in prioritizing the alternatives. In this paper, a multi-criteria decision framework, based on the criteria including technical, economic, environmental and reliability, is developed to evaluate and prioritize renewable energy technologies and configurations of their integrated systems for community applications, identify their viability, and thus support the adoption of the clean energy technologies and the decision-making regarding energy transitions and transition patterns. Case studies for communities in Canada show that resource availability and the configurations of the integrated systems significantly impact the economic performance and environmental performance.

Keywords: multi-criteria, renewables, integrated energy systems, decision-making, model

Procedia PDF Downloads 94
11779 Green Bonds as a Financing Mechanism for Energy Transition in Emerging Markets: The Case of Morocco

Authors: Abdelhamid Nechad, Ahmed Maghni, Khaoula Zahir

Abstract:

Energy transition is one of Morocco's key sustainable development issues and is at the heart of the 2030 National Sustainable Development Strategy. On the one hand, it reflects the Moroccan government's determination to reduce the negative impact of energy consumption on the environment, and on the other, its determination to rely essentially on renewable energies to meet its energy needs. With this in mind, several tools are being implemented, including green bonds designed to finance projects with a high environmental or climate impact. Thus, since 2015, several green bonds have been issued for a cumulative total of $0.4 Billion . This article aims to examine the impact of green bonds on Morocco's energy transition. Through the Granger causality and cointegration test, this article examines the existence of a short- and long-term causal relationship between green bond issuance and investment in renewable energy projects on the one hand, and between green bond issuance and CO₂ emission reductions on the other. The results suggest that there is no short-term causal relationship between green bond issuance and renewable energy investments on one hand and CO₂ emissions reduction on the other hand. However, in the long run, there is a relationship between green bond issuance and CO₂ emissions reduction in Morocco.

Keywords: climate impact, CO₂ emissions, energy transition, green bonds, Morocco

Procedia PDF Downloads 26
11778 Hydrothermal Synthesis of V₂O₅-Carbon Nanotube Composite for Supercapacitor Application

Authors: Mamta Bulla, Vinay Kumar

Abstract:

The transition to renewable energy sources is essential due to the finite limitations of conventional fossil fuels, which contribute significantly to environmental pollution and greenhouse gas emissions. Traditional energy storage solutions, such as batteries and capacitors, are also hindered by limitations, particularly in capacity, cycle life, and energy density. Conventional supercapacitors, while able to deliver high power, often suffer from low energy density, limiting their efficiency in storing and providing renewable energy consistently. Renewable energy sources, such as solar and wind, produce power intermittently, so efficient energy storage solutions are required to manage this variability. Advanced materials, particularly those with high capacity and long cycle life, are critical to developing supercapacitors capable of effectively storing renewable energy. Among various electrode materials, vanadium pentoxide (V₂O₅) offers high theoretical capacitance, but its poor conductivity and cycling stability limit practical applications. This study explores the hydrothermal synthesis of a V₂O₅-carbon nanotube (CNT) composite to overcome these drawbacks, combining the high capacitance of V₂O₅ with the exceptional conductivity and mechanical stability of CNTs. The resulting V₂O₅-CNT composite demonstrates enhanced electrochemical performance, showing high specific capacitance of 890 F g⁻¹ at 0.1 A g⁻¹ current density, excellent rate capability, and improved cycling stability, making it a promising candidate for next-generation supercapacitors, with significant improvements in energy storage efficiency and durability.

Keywords: cyclability, energy density, nanocomposite, renewable energy, supercapacitor

Procedia PDF Downloads 14
11777 A Metaheuristic Approach for Optimizing Perishable Goods Distribution

Authors: Bahare Askarian, Suchithra Rajendran

Abstract:

Maintaining the freshness and quality of perishable goods during distribution is a critical challenge for logistics companies. This study presents a comprehensive framework aimed at optimizing the distribution of perishable goods through a mathematical model of the Transportation Inventory Location Routing Problem (TILRP). The model incorporates the impact of product age on customer demand, addressing the complexities associated with inventory management and routing. To tackle this problem, we develop both simple and hybrid metaheuristic algorithms designed for small- and medium-scale scenarios. The hybrid algorithm combines Biogeographical Based Optimization (BBO) algorithms with local search techniques to enhance performance in small- and medium-scale scenarios, extending our approach to larger-scale challenges. Through extensive numerical simulations and sensitivity analyses across various scenarios, the performance of the proposed algorithms is evaluated, assessing their effectiveness in achieving optimal solutions. The results demonstrate that our algorithms significantly enhance distribution efficiency, offering valuable insights for logistics companies striving to improve their perishable goods supply chains.

Keywords: perishable goods, meta-heuristic algorithm, vehicle problem, inventory models

Procedia PDF Downloads 24