Search results for: personalized interactive medical information
13124 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data
Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill
Abstract:
Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function
Procedia PDF Downloads 27913123 The Use Management of the Knowledge Management and the Information Technologies in the Competitive Strategy of a Self-Propelling Industry
Authors: Guerrero Ramírez Sandra, Ramos Salinas Norma Maricela, Muriel Amezcua Vanesa
Abstract:
This article presents the beginning of a wider study that intends to demonstrate how within organizations of the automotive industry from the city of Querétaro. Knowledge management and technological management are required, as well as people’s initiative and the interaction embedded at the interior of it, with the appropriate environment that facilitates information conversion with wide information technologies management (ITM) range. A company was identified for the pilot study of this research, where descriptive and inferential research information was obtained. The results of the pilot suggest that some respondents did noted entity the knowledge management topic, even if staffs have access to information technology (IT) that serve to enhance access to knowledge (through internet, email, databases, external and internal company personnel, suppliers, customers and competitors) data, this implicates that there are Knowledge Management (KM) problems. The data shows that academically well-prepared organizations normally do not recognize the importance of knowledge in the business, nor in the implementation of it, which at the end is a great influence on how to manage it, so that it should guide the company to greater in sight towards a competitive strategy search, given that the company has an excellent technological infrastructure and KM was not exploited. Cultural diversity is another factor that was observed by the staff.Keywords: Knowledge Management (KM), Technological Knowledge Management (TKM), Technology Information Management (TI), access to knowledge
Procedia PDF Downloads 50113122 The Ultimate Challenge of Teaching Nursing
Authors: Crin N. Marcean, Mihaela A. Alexandru, Eugenia S. Cristescu
Abstract:
By definition, nursing means caring. It is a profession within the health care sector focused on the care of individuals, families, and communities so they may attain, maintain or recover optimal health and quality of life. However, there is a subtle difference between the two: nursing is widely considered as an art and a science, wherein caring forms the theoretical framework of nursing. Nursing and caring are grounded in a relational understanding, unity, and connection between the professional nurse and the patient. Task-oriented approaches challenge nurses in keeping care in nursing. This challenge is on-going as professional nurses strive to maintain the concept, art, and act of caring as the moral centre of the nursing profession. Keeping the care in nursing involves the application of art and science through theoretical concepts, scientific research, conscious commitment to the art of caring as an identity of nursing, and purposeful efforts to include caring behaviours during each nurse-patient interaction. The competencies, abilities, as well as the psycho-motor, cognitive, and relational skills necessary for the nursing practice are conveyed and improved by the nursing teachers’ art of teaching. They must select and use the teaching methods which shape the personalities of the trainers or students, enabling them to provide individualized, personalized care in real-world context of health problems. They have the ultimate responsibility of shaping the future health care system by educating skilful nurses.Keywords: art of nursing, health care, teacher-student relationship, teaching innovations
Procedia PDF Downloads 49713121 A Location-Based Search Approach According to Users’ Application Scenario
Authors: Shih-Ting Yang, Chih-Yun Lin, Ming-Yu Li, Jhong-Ting Syue, Wei-Ming Huang
Abstract:
Global positioning system (GPS) has become increasing precise in recent years, and the location-based service (LBS) has developed rapidly. Take the example of finding a parking lot (such as Parking apps). The location-based service can offer immediate information about a nearby parking lot, including the information about remaining parking spaces. However, it cannot provide expected search results according to the requirement situations of users. For that reason, this paper develops a “Location-based Search Approach according to Users’ Application Scenario” according to the location-based search and demand determination to help users obtain the information consistent with their requirements. The “Location-based Search Approach based on Users’ Application Scenario” of this paper consists of one mechanism and three kernel modules. First, in the Information Pre-processing Mechanism (IPM), this paper uses the cosine theorem to categorize the locations of users. Then, in the Information Category Evaluation Module (ICEM), the kNN (k-Nearest Neighbor) is employed to classify the browsing records of users. After that, in the Information Volume Level Determination Module (IVLDM), this paper makes a comparison between the number of users’ clicking the information at different locations and the average number of users’ clicking the information at a specific location, so as to evaluate the urgency of demand; then, the two-dimensional space is used to estimate the application situations of users. For the last step, in the Location-based Search Module (LBSM), this paper compares all search results and the average number of characters of the search results, categorizes the search results with the Manhattan Distance, and selects the results according to the application scenario of users. Additionally, this paper develops a Web-based system according to the methodology to demonstrate practical application of this paper. The application scenario-based estimate and the location-based search are used to evaluate the type and abundance of the information expected by the public at specific location, so that information demanders can obtain the information consistent with their application situations at specific location.Keywords: data mining, knowledge management, location-based service, user application scenario
Procedia PDF Downloads 12313120 SPARK: An Open-Source Knowledge Discovery Platform That Leverages Non-Relational Databases and Massively Parallel Computational Power for Heterogeneous Genomic Datasets
Authors: Thilina Ranaweera, Enes Makalic, John L. Hopper, Adrian Bickerstaffe
Abstract:
Data are the primary asset of biomedical researchers, and the engine for both discovery and research translation. As the volume and complexity of research datasets increase, especially with new technologies such as large single nucleotide polymorphism (SNP) chips, so too does the requirement for software to manage, process and analyze the data. Researchers often need to execute complicated queries and conduct complex analyzes of large-scale datasets. Existing tools to analyze such data, and other types of high-dimensional data, unfortunately suffer from one or more major problems. They typically require a high level of computing expertise, are too simplistic (i.e., do not fit realistic models that allow for complex interactions), are limited by computing power, do not exploit the computing power of large-scale parallel architectures (e.g. supercomputers, GPU clusters etc.), or are limited in the types of analysis available, compounded by the fact that integrating new analysis methods is not straightforward. Solutions to these problems, such as those developed and implemented on parallel architectures, are currently available to only a relatively small portion of medical researchers with access and know-how. The past decade has seen a rapid expansion of data management systems for the medical domain. Much attention has been given to systems that manage phenotype datasets generated by medical studies. The introduction of heterogeneous genomic data for research subjects that reside in these systems has highlighted the need for substantial improvements in software architecture. To address this problem, we have developed SPARK, an enabling and translational system for medical research, leveraging existing high performance computing resources, and analysis techniques currently available or being developed. It builds these into The Ark, an open-source web-based system designed to manage medical data. SPARK provides a next-generation biomedical data management solution that is based upon a novel Micro-Service architecture and Big Data technologies. The system serves to demonstrate the applicability of Micro-Service architectures for the development of high performance computing applications. When applied to high-dimensional medical datasets such as genomic data, relational data management approaches with normalized data structures suffer from unfeasibly high execution times for basic operations such as insert (i.e. importing a GWAS dataset) and the queries that are typical of the genomics research domain. SPARK resolves these problems by incorporating non-relational NoSQL databases that have been driven by the emergence of Big Data. SPARK provides researchers across the world with user-friendly access to state-of-the-art data management and analysis tools while eliminating the need for high-level informatics and programming skills. The system will benefit health and medical research by eliminating the burden of large-scale data management, querying, cleaning, and analysis. SPARK represents a major advancement in genome research technologies, vastly reducing the burden of working with genomic datasets, and enabling cutting edge analysis approaches that have previously been out of reach for many medical researchers.Keywords: biomedical research, genomics, information systems, software
Procedia PDF Downloads 27013119 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model
Procedia PDF Downloads 14713118 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 6213117 Continuance Intention to Use E-administration Information Portal by Non-teaching Staff in Selected Universities, Southwest, Nigeria
Authors: Adebayo Muritala Adegbore
Abstract:
The e-administration is increasingly being recognized as an important phenomenon in this 21st century and its place in society both at the public and private levels cannot be downplayed. Of close attention is how these platforms are adopted and used in academia due to academia’s role in shaping the overall development of the society, particularly the administrative activities of the non-teaching staff in universities since much has not been done to find out the continuance intention to use e-administration information portal by non-teaching staff in universities. This study, therefore, investigates the continuance intention to use e-administration of information portals of senior non-teaching staff in selected universities in southwest Nigeria. The study’s design was a correlational survey using simple random sampling to select three hundred and fifty-two (352) senior non-teaching staff in the selected universities. A standardized questionnaire was used for data capturing while data were analyzed using the descriptive statistics of frequency counts, percentages, means, and standard deviation for the research questions and the Pearson Product Moment Correlation was used for the hypothesis. Findings revealed that the continuance intention of senior non-teaching staff to use e-administration information portal is positive (x = 3.13), the university portal is one of the most utilized e-administration tools (83.4%), while there was an inversely significant relationship between continuance intention to use and use of e-administration information portal (r = -.254; p< 0.05; N = 320).Keywords: e-administration, e-portal, non-teaching staff, information systems, continuance intention, use of e-administration portals
Procedia PDF Downloads 19713116 Attitudes of Grade School and Kindergarten Teachers towards the Implementation of Mother-Tongue Based Language in Education
Authors: Irene Guatno Toribio
Abstract:
This study purported to determine and describe the attitudes of grade school and kindergarten teachers in District I, Division of City Schools in Parañaque towards the implementation of mother tongue-based multilingual education instruction. Employing a descriptive method of research, this study specifically looked into the attitudes of the participants towards the implementation of mother tongue-based language in terms of curricular content, teaching methods, instructional materials used, and administrative support. A total of nineteen teachers, eight (8) of which were kindergarten teachers and eleven (11) were grade one teachers. A self-made survey questionnaire was developed by the researcher and validated by the experts. This constituted the main instrument in gathering the needed data and information relative to the major concern of the study, which were analyzed and interpreted through the use of descriptive statistics. The findings of this study revealed that grade one and kindergarten teachers have a positive attitude towards the integration and inclusion of mother-tongue based language in the curriculum. In terms of suggested teaching methods, the kindergarten teacher’s attitude towards the use of storytelling and interactive activities is highly positive, while two groups of teachers both recommend the use of big books and painting kit as an instructional materials. While the kindergarten teachers would tend to cling on the use of big books, this was not the case for grade school teachers who would rather go for the use of painting kit which was not favored by the kindergarten teachers. Finally, in terms of administrative support, the grade one teacher is very satisfied when it comes to the support of their school administrator. While the kindergarten teachers has developed the feeling that the school administration has failed to give them enough materials in their activities, the grade school teachers, on the other hand, have developed the feeling that the same school administration might have failed to strictly evaluate the kindergarten teachers. Based on the findings of this study, it is recommended that the school administration must provide seminars to teachers to better equip them with the needed knowledge and competencies in implementing the Mother-Tongue Based, Multilingual Education (MTB-MLE).Keywords: attitude, grade school, kindergarten teachers, mother-tongue
Procedia PDF Downloads 32113115 Impact of Emergency Medicine Department Crowding on Mortality
Authors: Morteza Gharibi, Abdolghader Pakniat, Somayeh Bahrampouri
Abstract:
Introduction: Emergency department (E.R.) crowding is a serious widespread problem in hospitals that leads to irregularities, a slower rate of delivery of services to patients, and a long-term stay. In addition, the long-term stay in the E.D. reduces the possibility of providing services with appropriate quality to other patients who are undergoing medical emergencies, which leads to dissatisfaction among patients. This study aimed to determine the relationship between ED-crowding and the mortality rate of the patients referred to the E.D. In a retrospective cohort study, all patients who expired in first 24 hours of admission were enrolled in the study. Crowding index at the moment of admission was calculated using Edwin Score. The data including history and physical examination, time of arrival in the E.D., diagnosis (using ICD 10 code), time of death, cause of death, demographic information was recoded based on triage forms on admission and patients’ medical files. Data analysis was performed by using descriptive statistics and chi square test, ANOVA tests using SPSS ver. 19. The time of arrival in E.D. to death in crowded E.D. conditions, with an average of five hours and 25 minutes, was significantly higher than the average admission Time of arrival in E.D. to death in active and crowded E.D. conditions. More physicians and nurses can be employed during crowded times to reduce staff fatigue and improve their performance during these hours.Keywords: mortality, emergency, department, crowding
Procedia PDF Downloads 9413114 External Retinal Prosthesis Image Processing System Used One-Cue Saliency Map Based on DSP
Authors: Yili Chen, Jixiang Fu, Zhihua Liu, Zhicheng Zhang, Rongmao Li, Nan Fu, Yaoqin Xie
Abstract:
Retinal prothesis is designed to help the blind to get some sight.It is made up of internal part and external part.In external part ,there is made up of camera, image processing, and RF transmitter.In internal part, there is RF receiver, implant chip,micro-electrode.The image got from the camera should be processed by suitable stragies to corresponds to stimulus the electrode.Nowadays, the number of the micro-electrode is hundreds and we don’t know the mechanism how the elctrode stimulus the optic nerve, an easy way to the hypothesis is that the pixel in the image is correspondence to the electrode.So it is a question how to get the important information of the image captured from the picture.There are many strategies to experimented to get the most important information as soon as possible, due to the real time system.ROI is a useful algorithem to extract the region of the interest.Our paper will explain the details of the orinciples and functions of the ROI.And based on this, we simplified the ROI algrithem,and used it in outside image prcessing DSP system of the retinal prothesis.Results show that our image processing stratiges is suitable for real-time retinal prothesis and can cut redundant information and help useful information to express in the low-size image.Keywords: image processing, region of interest, saliency map, low-size image, useful information express, cut redundant information in image
Procedia PDF Downloads 28213113 Understanding Informal Settlements: The Role of Geo-Information Tools
Authors: Musyimi Mbathi
Abstract:
Information regarding social, political, demographic, economic and other attributes of human settlement is important for decision makers at all levels of planning, as they have to grapple with dynamic environments often associated with settlements. At the local level, it is particularly important for both communities and urban managers to have accurate and reliable information regarding all planning attributes. Settlement mapping, in particular, informal settlements mapping in Kenya, has over the past few years been carried out using modern tools like Geographic information systems (GIS) and remote sensing for spatial data analysis and planning. GIS tools offer a platform for integration of spatial and non-spatial data as well as visualisation of the settlements. The capabilities offered by these tools have enabled communities to participate especially in the planning and management of new infrastructure as well as settlement upgrading. Land tenure based projects within informal settlements have also relied on GIS and related tools with considerable success. Additionally, the adoption of participatory approaches and use of geo-information tools helped to provide a basis for all inclusive planning thus promoting accountability, transparency, legitimacy, and other dimensions of governance within human settlement planning. The paper examines the context and application of geo-information tools for planning within low-income settlements of Kenya. A case study of Kiambiu settlement will be used to demonstrate how the tools have been applied for planning and decision-making purposes.Keywords: informal settlements, GIS, governance, modern tools
Procedia PDF Downloads 50013112 LLM-Powered User-Centric Knowledge Graphs for Unified Enterprise Intelligence
Authors: Rajeev Kumar, Harishankar Kumar
Abstract:
Fragmented data silos within enterprises impede the extraction of meaningful insights and hinder efficiency in tasks such as product development, client understanding, and meeting preparation. To address this, we propose a system-agnostic framework that leverages large language models (LLMs) to unify diverse data sources into a cohesive, user-centered knowledge graph. By automating entity extraction, relationship inference, and semantic enrichment, the framework maps interactions, behaviors, and data around the user, enabling intelligent querying and reasoning across various data types, including emails, calendars, chats, documents, and logs. Its domain adaptability supports applications in contextual search, task prioritization, expertise identification, and personalized recommendations, all rooted in user-centric insights. Experimental results demonstrate its effectiveness in generating actionable insights, enhancing workflows such as trip planning, meeting preparation, and daily task management. This work advances the integration of knowledge graphs and LLMs, bridging the gap between fragmented data systems and intelligent, unified enterprise solutions focused on user interactions.Keywords: knowledge graph, entity extraction, relation extraction, LLM, activity graph, enterprise intelligence
Procedia PDF Downloads 213111 Regulation on the Protection of Personal Data Versus Quality Data Assurance in the Healthcare System Case Report
Authors: Elizabeta Krstić Vukelja
Abstract:
Digitization of personal data is a consequence of the development of information and communication technologies that create a new work environment with many advantages and challenges, but also potential threats to privacy and personal data protection. Regulation (EU) 2016/679 of the European Parliament and of the Council is becoming a law and obligation that should address the issues of personal data protection and information security. The existence of the Regulation leads to the conclusion that national legislation in the field of virtual environment, protection of the rights of EU citizens and processing of their personal data is insufficiently effective. In the health system, special emphasis is placed on the processing of special categories of personal data, such as health data. The healthcare industry is recognized as a particularly sensitive area in which a large amount of medical data is processed, the digitization of which enables quick access and quick identification of the health insured. The protection of the individual requires quality IT solutions that guarantee the technical protection of personal categories. However, the real problems are the technical and human nature and the spatial limitations of the application of the Regulation. Some conclusions will be drawn by analyzing the implementation of the basic principles of the Regulation on the example of the Croatian health care system and comparing it with similar activities in other EU member states.Keywords: regulation, healthcare system, personal dana protection, quality data assurance
Procedia PDF Downloads 3813110 Design and Modeling of Human Middle Ear for Harmonic Response Analysis
Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey
Abstract:
The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.Keywords: computed tomography (μCT), human middle ear (ME), harmonic response, pathologies, tympanic membrane (TM)
Procedia PDF Downloads 17513109 Modeling Food Popularity Dependencies Using Social Media Data
Authors: DEVASHISH KHULBE, MANU PATHAK
Abstract:
The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses
Procedia PDF Downloads 11613108 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies
Authors: Saiakhil Chilaka
Abstract:
Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.Keywords: juvenile, justice system, data analysis, SHAP
Procedia PDF Downloads 2213107 Perception and Attitudes of Medical Students towards Dermatology as a Future Specialty.
Authors: Rakan Alajmi, Rahaf Alnazzawi, Yara Aljefri, Abdullah Alafif, Ali Alraddadi, Awadh Alamri
Abstract:
Background: The distribution of physicians in different specialties across Saudi Arabia is determined by the career choices of medical students. Dermatology residency program is one of the highly competitive programs here in Saudi Arabia. Assessing and understanding the factors perceived to be attractive in choosing dermatology will aid the directors of the specialty programs to plan for a more balanced workforce distribution to better suit the needs of the specialties. Aim: The aim of our study is to determine and assess the factors perceived to be significantly attractive when choosing dermatology as a future specialty. Methods: The study is a cross-sectional study conducted in King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia. A validated questionnaire was sent electronically to clinical year medical students. In addition to the questionnaire, gender, grade point average, preferred specialty, and other socio-demographic data were assessed. Results: A total of 121 clinical years medical students completed the questionnaire, 8 (6.6%) preferred dermatology as a specialty. 76 (62.8%) of the participants score a grade point average of more than 4.5 and 83 students (68.6%) chose their specialty during clinical years. The appeal of being a dermatologist (P= 0.047), the portrayal of different specialities in the media (P= 0.005), and the likelihood that dermatologists can influence patients’ lives (P=0.010) were shown to be significantly attractive factors. Conclusion: There are many factors that are affecting students’ choices when choosing a medical specialty. The appeal of being a dermatologist, the portrayal of different specialities in the media, and the likelihood that dermatologists can influence patients’ lives were shown to be significantly attractive factors when choosing dermatology as a future specialty. Recognizing medical students’ specialty perception will lead them to a proper specialty tailored to their needs.Keywords: dermatology, career choice, medical specialties, student's perception
Procedia PDF Downloads 15313106 Video Games Technologies Approach for Their Use in the Classroom
Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a set of educational materials based on video games technologies. Essentially these materials correspond to projects developed and under development as bachelor thesis of some Computer Engineering students of the Engineering School. All materials are based on the Unity SDK; integrating some devices such as kinect, leap motion, oculus rift, data gloves and Google cardboard. In detail, we present a virtual reality application for neurosciences students (suitable for neural rehabilitation), and virtual scenes for the Google cardboard, which will be used by the psychology students for phobias treatment. The objective is these materials will be located at a server to be available for all students, in the classroom or in the cloud, considering the use of smartphones has been widely extended between students.Keywords: virtual reality, interactive technologies, video games, educational materials
Procedia PDF Downloads 65713105 Parametric Template-Based 3D Reconstruction of the Human Body
Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo, Linhang Zhu
Abstract:
This study proposed a 3D human body reconstruction method, which integrates multi-view joint information into a set of joints and processes it with a parametric human body template. Firstly, we obtained human body image information captured from multiple perspectives. The multi-view information can avoid self-occlusion and occlusion problems during the reconstruction process. Then, we used the MvP algorithm to integrate multi-view joint information into a set of joints. Next, we used the parametric human body template SMPL-X to obtain more accurate three-dimensional human body reconstruction results. Compared with the traditional single-view parametric human body template reconstruction, this method significantly improved the accuracy and stability of the reconstruction.Keywords: parametric human body templates, reconstruction of the human body, multi-view, joint
Procedia PDF Downloads 7913104 Classroom Incivility Behaviours among Medical Students: A Comparative Study in Pakistan
Authors: Manal Rauf
Abstract:
Trained medical practitioners are produced from medical colleges serving in public and private sectors. Prime responsibility of teaching faculty is to inculcate required work ethic among the students by serving as role models for them. It is an observed fact that classroom incivility behaviours are providing a friction in achieving these targets. Present study aimed at identification of classroom incivility behaviours observed by teachers and students of public and private medical colleges as per Glasser’s Choice Theory, making a comparison and investigating the strategies being adopted by teachers of both sectors to control undesired class room behaviours. Findings revealed that a significant difference occurs between teacher and student incivility behaviours. Public sector teacher focussed on survival as a strong factor behind in civil behaviours whereas private sector teachers considered power as the precedent for incivility. Teachers of both sectors are required to use verbal as well as non-verbal immediacy to reach a healthy leaning environment.Keywords: classroom incivility behaviour, glasser choice theory, Mehrabian immediacy theory
Procedia PDF Downloads 23913103 The Role of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Adham Al Yaari, Aayah Al Yaari, Montaha Al Yaari, Ayman Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four months, while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.Keywords: smart aids, attention, listening, problems
Procedia PDF Downloads 4213102 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach
Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy
Abstract:
In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.Keywords: interaction, machine learning, predictive modeling, virtual reality
Procedia PDF Downloads 14313101 Strategies for Student Recruitment in Civil Engineering
Authors: Diogo Ribeiro, Teresa Neto, Ricardo Santos, Maria Portela, Alexandra Trincão
Abstract:
This article describes a set of innovating student recruitment strategies in a 1st cycle course of Civil Engineering, in particular the Civil Engineering Degree from the School of Engineering - Polytechnic of Porto (ISEP-PP). The strategies described were two-fold, targeting, for one, the increment on the number of admissions for the degree’s first year and two, promoting the re-entry of students who, for whatever reason, interrupted their studies. For the first objective, teacher-student binomials were set, whilst for the second, personalized contacts and assistance were provided. The main initiatives were promoted by the team of degree directors and were upheld with the participation and in consonance with the School’s external relations office. These initiatives were put forward as an attempt to minimize the impact of a national and international crisis on the AEC industry when the sustainability of the course was at risk. The implementation of these strategies was assessed on basis of a statistical analysis of the data collected from official sources and by surveys promoted. The results showed that the re-entry boost of former students, attending classes scattered on the three curricular years, secured registrations on some Curricular Units (UC’s) which more than doubled their numbers. Accompanied by a still incipient but regained interest on Civil Engineering it was possible in the short span of three years to reset the number of new students from less than 10 to the currently maximum allowed of 75, and so invert the tendency of an abrupt decline on the total number of students enrolled on the degree.Keywords: civil engineering, monitoring, performance indicators, strategies, student recruitment
Procedia PDF Downloads 21413100 Multi-Agent TeleRobotic Security Control System: Requirements Definitions of Multi-Agent System Using The Behavioral Patterns Analysis (BPA) Approach
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent TeleRobotic Security Control System (MTSCS). The event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, multi-agent, TeleRobotics control, security, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 43813099 Heat Transfer Characteristics of Film Condensation
Authors: M. Mosaad, J. H. Almutairi, A. S. Almutairi
Abstract:
In this paper, saturated-vapour film condensation on a vertical wall with the backside cooled by forced convection is analyzed as a conjugate problem. In the analysis, the temperature and heat flux at the wall sides are assumed unknown and determined from the solution. The model is presented in a dimensionless form to take a broad view of the solution. The dimensionless variables controlling this coupled heat transfer process are discovered from the analysis. These variables explain the relative impact of the interactive heat transfer mechanisms of forced convection and film condensation. The study shows that the conjugate treatment of film condensation process yields results different from that predicted by a non-conjugate Nusselt-type solution, wherein the effect of the cooling fluid is neglected.Keywords: film condensation, forced convection, coupled heat transfer, analytical modelling
Procedia PDF Downloads 32113098 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education
Authors: Yoko Yamada, Chizumi Yamada
Abstract:
Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.Keywords: illness narrative, mediation, psychology, model, medical education
Procedia PDF Downloads 40913097 Data Acquisition System for Automotive Testing According to the European Directive 2004/104/EC
Authors: Herminio Martínez-García, Juan Gámiz, Yolanda Bolea, Antoni Grau
Abstract:
This article presents an interactive system for data acquisition in vehicle testing according to the test process defined in automotive directive 2004/104/EC. The project has been designed and developed by authors for the Spanish company Applus-LGAI. The developed project will result in a new process, which will involve the creation of braking cycle test defined in the aforementioned automotive directive. It will also allow the analysis of new vehicle features that was not feasible, allowing an increasing interaction with the vehicle. Potential users of this system in the short term will be vehicle manufacturers and in a medium term the system can be extended to testing other automotive components and EMC tests.Keywords: automotive process, data acquisition system, electromagnetic compatibility (EMC) testing, European Directive 2004/104/EC
Procedia PDF Downloads 33913096 Developing Model for Fuel Consumption Optimization in Aviation Industry
Authors: Somesh Kumar Sharma, Sunanad Gupta
Abstract:
The contribution of aviation to society and economy is undisputedly significant. The aviation industry drives economic and social progress by contributing prominently to tourism, commerce and improved quality of life. Identifying the amount of fuel consumed by an aircraft while moving in both airspace and ground networks is critical to air transport economics. Aviation fuel is a major operating cost parameter of the aviation industry and at the same time it is prone to various constraints. This article aims to develop a model for fuel consumption of aviation product. The paper tailors the information for the fuel consumption optimization in terms of information development, information evaluation and information refinement. The information is evaluated and refined using statistical package R and Factor Analysis which is further validated with neural networking. The study explores three primary dimensions which are finally summarized into 23 influencing variables in contrast to 96 variables available in literature. The 23 variables explored in this study should be considered as highly influencing variables for fuel consumption which will contribute significantly towards fuel optimization.Keywords: fuel consumption, civil aviation industry, neural networking, optimization
Procedia PDF Downloads 34013095 Starting the Hospitalization Procedure with a Medicine Combination in the Cardiovascular Department of the Imam Reza (AS) Mashhad Hospital
Authors: Maryamsadat Habibi
Abstract:
Objective: pharmaceutical errors are avoidable occurrences that can result in inappropriate pharmaceutical use, patient harm, treatment failure, increased hospital costs and length of stay, and other outcomes that affect both the individual receiving treatment and the healthcare provider. This study aimed to perform a reconciliation of medications in the cardiovascular ward of Imam Reza Hospital in Mashhad, Iran, and evaluate the prevalence of medication discrepancies between the best medication list created for the patient by the pharmacist and the medication order of the treating physician there. Materials & Methods: The 97 patients in the cardiovascular ward of the Imam Reza Hospital in Mashhad were the subject of a cross-sectional study from June to September of 2021. After giving their informed consent and being admitted to the ward, all patients with at least one underlying condition and at least two medications being taken at home were included in the study. A medical reconciliation form was used to record patient demographics and medical histories during the first 24 hours of admission, and the information was contrasted with the doctors' orders. The doctor then discovered medication inconsistencies between the two lists and double-checked them to separate the intentional from the accidental anomalies. Finally, using SPSS software version 22, it was determined how common medical discrepancies are and how different sorts of discrepancies relate to various variables. Results: The average age of the participants in this study was 57.6915.84 years, with 57.7% of men and 42.3% of women. 95.9% of the patients among these people encountered at least one medication discrepancy, and 58.9% of them suffered at least one unintentional drug cessation. Out of the 659 medications registered in the study, 399 cases (60.54%) had inconsistencies, of which 161 cases (40.35%) involved the intentional stopping of a medication, 123 cases (30.82%) involved the stopping of a medication unintentionally, and 115 cases (28.82%) involved the continued use of a medication by adjusting the dose. Additionally, the category of cardiovascular pharmaceuticals and the category of gastrointestinal medications were found to have the highest medical inconsistencies in the current study. Furthermore, there was no correlation between the frequency of medical discrepancies and the following variables: age, ward, date of visit, type, and number of underlying diseases (P=0.13), P=0.61, P=0.72, P=0.82, P=0.44, and so forth. On the other hand, there was a statistically significant correlation between the number of medications taken at home (P=0.037) and the prevalence of medical discrepancies with gender (P=0.029). The results of this study revealed that 96% of patients admitted to the cardiovascular unit at Imam Reza Hospital had at least one medication error, which was typically an intentional drug discontinuance. According to the study's findings, patients admitted to Imam Reza Hospital's cardiovascular ward have a great potential for identifying and correcting various medication discrepancies as well as for avoiding prescription errors when the medication reconciliation method is used. As a result, it is essential to carry out a precise assessment to achieve the best treatment outcomes and avoid unintended medication discontinuation, unwanted drug-related events, and drug interactions between the patient's home medications and those prescribed in the hospital.Keywords: drug combination, drug side effects, drug incompatibility, cardiovascular department
Procedia PDF Downloads 89