Search results for: multiple distribution supply chain network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16189

Search results for: multiple distribution supply chain network

14929 Comparison with Two Clinical Cases of Plasma Cell Neoplasm by Using the Method of Capillary Electrophoresis

Authors: Kai Pai Huang

Abstract:

Background: There are several types of plasma cell neoplasms including multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are found in our lab. Today, we want to compare with two cases using the method of capillary electrophoresis. Method: Serum is prepared and electrophoresis is performed at alkaline PH in a capillary using the Sebia® Capillary 2. Albumin and globulins are detected by the detector which is located in the cathode of the capillary and the signals are transformed to peaks. Serum was treated with beta-mercaptoethanol which reducing the polymerized immunoglobulin to monomer immunoglobulin to clarify two M-protein are secreted from the same plasma cell clone in bone marrow. Result: Case 1: A 78-year-old female presenting dysuria, oliguria and leg edema for several months. Laboratory data showed proteinuria, leukocytosis, results of high serum IgA and lambda light chain. A renal biopsy found amyloid fibrils in the glomerular mesangial area. Serum protein electrophoresis shows a major monoclonal peak in the β region and minor small peak in gamma region, and the immunotyping studies for serum showed two IgA/λ type. Case 2: A 55-year-old male presenting abdominal distension and low back pain for more than one month. Laboratory data showed T12 T8 compression fracture, results of high serum IgM and kappa light chain. Bone marrow aspiration showed the cells from the bone marrow are B cells with monotypic kappa chain expression. Bone marrow biopsy found this is lymphoplasmacytic lymphoma (Waldenstrom macroglobulin). Serum protein electrophoresis shows a monoclonal peak in the β region and the immunotyping studies for serum showed IgM/κ type. Conclusion: Plasma cell neoplasm can be diagnosed by many examinations. Among them, using capillary electrophoresis by a lab can separate several types of gammopathy and the quantification of a monoclonal peak can be used to evaluate the patients’ prognosis or treatment.

Keywords: plasma cell neoplasm, capillary electrophoresis, serum protein electrophoresis, immunotyping

Procedia PDF Downloads 146
14928 Supplier Carbon Footprint Methodology Development for Automotive Original Equipment Manufacturers

Authors: Nur A. Özdemir, Sude Erkin, Hatice K. Güney, Cemre S. Atılgan, Enes Huylu, Hüseyin Y. Altıntaş, Aysemin Top, Özak Durmuş

Abstract:

Carbon emissions produced during a product’s life cycle, from extraction of raw materials up to waste disposal and market consumption activities are the major contributors to global warming. In the light of the science-based targets (SBT) leading the way to a zero-carbon economy for sustainable growth of the companies, carbon footprint reporting of the purchased goods has become critical for identifying hotspots and best practices for emission reduction opportunities. In line with Ford Otosan's corporate sustainability strategy, research was conducted to evaluate the carbon footprint of purchased products in accordance with Scope 3 of the Greenhouse Gas Protocol (GHG). The purpose of this paper is to develop a systematic and transparent methodology to calculate carbon footprint of the products produced by automotive OEMs (Original Equipment Manufacturers) within the context of automobile supply chain management. To begin with, primary material data were collected through IMDS (International Material Database System) corresponds to company’s three distinct types of vehicles including Light Commercial Vehicle (Courier), Medium Commercial Vehicle (Transit and Transit Custom), Heavy Commercial Vehicle (F-MAX). Obtained material data was classified as metals, plastics, liquids, electronics, and others to get insights about the overall material distribution of produced vehicles and matched to the SimaPro Ecoinvent 3 database which is one of the most extent versions for modelling material data related to the product life cycle. Product life cycle analysis was calculated within the framework of ISO 14040 – 14044 standards by addressing the requirements and procedures. A comprehensive literature review and cooperation with suppliers were undertaken to identify the production methods of parts used in vehicles and to find out the amount of scrap generated during part production. Cumulative weight and material information with related production process belonging the components were listed by multiplying with current sales figures. The results of the study show a key modelling on carbon footprint of products and processes based on a scientific approach to drive sustainable growth by setting straightforward, science-based emission reduction targets. Hence, this study targets to identify the hotspots and correspondingly provide broad ideas about our understanding of how to integrate carbon footprint estimates into our company's supply chain management by defining convenient actions in line with climate science. According to emission values arising from the production phase including raw material extraction and material processing for Ford OTOSAN vehicles subjected in this study, GHG emissions from the production of metals used for HCV, MCV and LCV account for more than half of the carbon footprint of the vehicle's production. Correspondingly, aluminum and steel have the largest share among all material types and achieving carbon neutrality in the steel and aluminum industry is of great significance to the world, which will also present an immense impact on the automobile industry. Strategic product sustainability plan which includes the use of secondary materials, conversion to green energy and low-energy process design is required to reduce emissions of steel, aluminum, and plastics due to the projected increase in total volume by 2030.

Keywords: automotive, carbon footprint, IMDS, scope 3, SimaPro, sustainability

Procedia PDF Downloads 108
14927 Anonymous Gel-Fluid Transition of Solid Supported Lipids

Authors: Asma Poursoroush

Abstract:

Solid-supported lipid bilayers are often used as a simple model for studies of biological membranes. The presence of a solid substrate that interacts attractively with lipid head-groups is expected to affect the phase behavior of the supported bilayer. Molecular dynamics simulations of a coarse-grained model are thus performed to investigate the phase behavior of supported one-component lipid bilayer membranes. Our results show that the attraction of the lipid head groups to the substrate leads to a phase behavior that is different from that of a free standing lipid bilayer. In particular, we found that the phase behaviors of the two leaflets are decoupled in the presence of a substrate. The proximal leaflet undergoes a clear gel-to-fluid phase transition at a temperature lower than that of a free standing bilayer, and that decreases with increasing strength of the substrate-lipid attraction. The distal leaflet, however, undergoes a change from a homogeneous liquid phase at high temperatures to a heterogeneous state consisting of small liquid and gel domains, with the average size of the gel domains that increases with decreasing temperature. While the chain order parameter of the proximal leaflet clearly shows a gel-fluid phase transition, the chain order parameter of the distal leaflet does not exhibit a clear phase transition. The decoupling in the phase behavior of the two leaflets is due to a non-symmteric lipid distribution in the two leaflets resulting from the presence of the substrate.

Keywords: membrane, substrate, molecular dynamics, simulation

Procedia PDF Downloads 195
14926 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment

Authors: Danladi Ali

Abstract:

In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signal

Keywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model

Procedia PDF Downloads 382
14925 Estimation of Chronic Kidney Disease Using Artificial Neural Network

Authors: Ilker Ali Ozkan

Abstract:

In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.

Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis

Procedia PDF Downloads 447
14924 Interval Estimation for Rainfall Mean in Northeastern Thailand

Authors: Nitaya Buntao

Abstract:

This paper considers the problems of interval estimation for rainfall mean of the lognormal distribution and the delta-lognormal distribution in Northeastern Thailand. We present here the modified generalized pivotal approach (MGPA) compared to the modified method of variance estimates recovery (MMOVER). The performance of each method is examined in term of coverage probabilities and average lengths by Monte Carlo simulation. An extensive simulation study indicates that the MMOVER performs better than the MGPA approach in terms of the coverage probability; it results in highly accurate coverage probability.

Keywords: rainfall mean, interval estimation, lognormal distribution, delta-lognormal distribution

Procedia PDF Downloads 455
14923 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm

Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa

Abstract:

The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.

Keywords: tag cloud, font distribution algorithm, frequency-based, content-based, power law

Procedia PDF Downloads 505
14922 Research on Spatial Allocation Optimization of Urban Elderly Care Facilities Based on ArcGIS Technology

Authors: Qiao Qiao

Abstract:

With the development of The Times, the elderly demand for pension service facilities is increasing. Taking 26 street towns in Jiangjin District of Chongqing as examples, ArcGIS spatial analysis method was used to analyze the distribution status of the elderly population, the core density of the elderly population, and the spatial layout characteristics of institutional elderly care facilities in Jiangjin District of Chongqing. The results showed that there were differences in the structure and aging degree of the elderly population in each street town. There is a certain imbalance between the spatial distribution of the elderly population and the planning and construction of elderly care facilities. The accessibility of elderly care facilities is uneven. Therefore, a genetic algorithm is used to optimize the spatial layout of institutional elderly care facilities, improve the accessibility of facilities, strengthen the participation of multiple subjects, and provide a reference for the future construction planning of elderly care facilities.

Keywords: institutional pension facilities, spatial layout, accessibility, ArcGIS

Procedia PDF Downloads 9
14921 Statistical Characteristics of Distribution of Radiation-Induced Defects under Random Generation

Authors: P. Selyshchev

Abstract:

We consider fluctuations of defects density taking into account their interaction. Stochastic field of displacement generation rate gives random defect distribution. We determinate statistical characteristics (mean and dispersion) of random field of point defect distribution as function of defect generation parameters, temperature and properties of irradiated crystal.

Keywords: irradiation, primary defects, interaction, fluctuations

Procedia PDF Downloads 343
14920 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor

Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta

Abstract:

In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.

Keywords: modular robotics, terrain detection, terrain classification, neural network

Procedia PDF Downloads 145
14919 The Effects of Inulin on the Stabilization and Stevioside as Sugar-Replacer of Sourcherry Juice-Milk Mixture

Authors: S. Teimouri, S. Abbasi

Abstract:

Milk-fruit juice mixture is a type of soft drinks, which can be produced by mixing milk with pieces of fruits, fruit juices, or fruit juices concentrates. The major problem of these products, mainly the acidic ones, is phase separation which occurs during formulation and storage due to the aggregation of caseins at low pH Short-chain inulin (CLR), long-chain inulin (TEX), native inulin (IQ) and Long-chain inulin (TEX) and short-chain inulin (CLR) combined in different proportions (2o:80, 50:50, and 80:20) were added (2-10 %) to sourcherry juice-milk mixture and their stabilization mechanisms were studied with using rheological and microstructural observations. Stevioside as a bio-sweetener and sugar-replacer was added at last step. Finally, sensory analyses were taken place on stabilized samples. According to the findings, TEX stabilized the mixture at concentration of 8%. MIX and IQ reduced phase separation at high concentration but had not complete effect on stabilization. CLR did not effect on stabilization. Rheological changes and inulin aggregates formation were not observed in CLR samples during the one month storage period. However TEX, MIX and IQ samples formed inulin aggregates and became more thixotropic, elastic and increased the viscosity of mixture. The rate of the inulin aggregates formation and viscosity increasing was in the following order TEX > MIX > IQ. Consequently the mixture which stabilized with inulin and sweetened with stevioside had the prebiotic properties which may suggest to diabetic patients and children.

Keywords: prebiotic, inulin, casein, stabilization, stevioside

Procedia PDF Downloads 274
14918 Assessment of Ecosystem Readiness for Adoption of Circularity: A Multi-Case Study Analysis of Textile Supply Chain in Pakistan

Authors: Azhar Naila, Steuer Benjamin

Abstract:

Over-exploitation of resources and the burden on natural systems have provoked worldwide concerns about the potential resource as well as supply risks in the future. It has been estimated that the consumption of materials and resources will double by 2060, substantially mounting the amount of waste and emissions produced by individuals, organizations, and businesses, which necessitates sustainable technological innovations to address the problem. Therefore, there is a need to design products and services purposefully for material resource efficiency. This directs us toward the conceptualization and implementation of the ‘Circular Economy (CE),’ which has gained considerable attention among policymakers, researchers, and businesses in the past decade. A large amount of literature focuses on the concept of CE. However, contextual empirical research on the need to embrace CE in an emerging economy like Pakistan is still scarce, where the traditional economic model of take-make-dispose is quite common. Textile exports account for approximately 61% of Pakistan's total exports, and the industry provides employment for about 40% of the country's total industrial workforce. The industry provides job opportunities to above 10 million farmers, with cotton as the main crop of Pakistan. Consumers, companies, as well as the government have explored very limited CE potential in the country. This gap has motivated us to carry out the present study. The study is based on a mixed method approach, for which key informant interviews have been conducted to get insight into the present situation of the ecosystem readiness for the adoption of CE in 20 textile manufacturing industries. The subject study has been conducted on the following areas i) the level of understanding of the CE concept among key stakeholders in the textile manufacturing industry ii) Companies are pushing boundaries to invest in circularity-based initiatives, exploring the depths of risk-taking iii) the current national policy framework support the adoption of CE. Qualitative assessment has been undertaken using MAXQDA to analyze the data received after the key informant interviews. The data has been transcribed and coded for further analysis. The results show that most of the key stakeholders have a clear understanding of the concept, whereas few consider it to be only relevant to the end-of-life treatment of waste generated from the industry. Non-governmental organizations have been observed to be key players in creating awareness among the manufacturing industries. Maximum companies have shown their consent to invest in initiatives related to the adoption of CE. Whereas a few consider themselves far behind the race due to a lack of financial resources and support from responsible institutions. Mostly, the industries have an ambitious vision for integrating CE into the company’s policy but seem not to be ready to take any significant steps to nurture a culture for experimentation. However, the government is not playing any vital role in the transition towards CE; rather, they have been busy with the state’s uncertain political situation. Presently, Pakistan does not have any policy framework that supports the transition towards CE. Acknowledging the present landscape a well-informed CE transition is immediately required.

Keywords: circular economy, textile supply chain, textile manufacturing industries, resource efficiency, ecosystem readiness, multi-case study analysis

Procedia PDF Downloads 52
14917 Tackling Food Waste Challenge with Nanotechnology: Controllable Ripening via Metal Organic Framework

Authors: Boce Zhang, Yaguang Luo

Abstract:

Ripening of climacteric fruits, such as bananas and avocados, are usually initiated days prior to the retail marketing. However, upon the onset of irreversible ripening, they undergo rapid spoilage if not consumed within a narrow climacteric time window. Controlled ripening of climacteric fruits is a critical step to provide consumers with high-quality products while reducing postharvest losses and food waste. There is a high demand for technologies that can retard the ripening process or enable accelerated ripening immediately before consumption. In this work, metal−organic framework (MOF) was developed as a solid porous matrix to encapsulate gaseous hormone, including ethylene, for subsequent application. The feasibility of the on-demand stimulated ripening of bananas and avocados is also evaluated. MOF was synthesized and loaded with ethylene gas. The MOF−ethylene was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The fruits were treated for 24-48 hours, and evaluated for ripening progress. Results indicate that MOF−ethylene treatment significantly accelerated the ripening-related changes of color and textural properties in treated bananas and avocados. The average ripening period for both avocados and bananas were reduced in half by using this method. No significant differences of quality characteristics at respective ripening stages were observed between produce ripened via MOF-ethylene versus exogenously supplied ethylene gas or endogenously produced ethylene. Solid MOF matrices could have multiple advantages compared to existing systems, including easy to transport and safe to use by minimally trained produce handlers and consumers. We envision that this technology can help tackle food waste challenges at the critical retail and consumer stages in the food supply chain.

Keywords: climacteric produce, controllable ripening, food waste challenge, metal organic framework

Procedia PDF Downloads 247
14916 Distributed Energy Storage as a Potential Solution to Electrical Network Variance

Authors: V. Rao, A. Bedford

Abstract:

As the efficient performance of national grid becomes increasingly important to maintain the electrical network stability, the balance between the generation and the demand must be effectively maintained. To do this, any losses that occur in the power network must be reduced by compensating for it. In this paper, one of the main cause for the losses in the network is identified as the variance, which hinders the grid’s power carrying capacity. The reason for the variance in the grid is investigated and identified as the rise in the integration of renewable energy sources (RES) such as wind and solar power. The intermittent nature of these RES along with fluctuating demands gives rise to variance in the electrical network. The losses that occur during this process is estimated by analyzing the network’s power profiles. Whilst researchers have identified different ways to tackle this problem, little consideration is given to energy storage. This paper seeks to redress this by considering the role of energy storage systems as potential solutions to reduce variance in the network. The implementation of suitable energy storage systems based on different applications is presented in this paper as part of variance reduction method and thus contribute towards maintaining a stable and efficient grid operation.

Keywords: energy storage, electrical losses, national grid, renewable energy, variance

Procedia PDF Downloads 317
14915 Economic Stability in a Small Open Economy with Income Effect on Leisure Demand

Authors: Yu-Shan Hsu

Abstract:

This paper studies a two-sector growth model with a technology of social constant returns and with a utility that features either a zero or a positive income effect on the demand for leisure. The purpose is to investigate how the existence of aggregate instability or equilibrium indeterminacy depends on both the intensity of the income effect on the demand for leisure and the value of the labor supply elasticity. The main finding is that when there is a factor intensity reversal between the private perspective and the social perspective, indeterminacy arises even if the utility has a positive income effect on leisure demand. Moreover, we find that a smaller value of the labor supply elasticity increases the range of the income effect on leisure demand and thus increases the possibility of equilibrium indeterminacy. JEL classification: E3; O41

Keywords: indeterminacy, non-separable preferences, income effect, labor supply elasticity

Procedia PDF Downloads 177
14914 Comparison of Transforming Growth Factor-β1 Levels in the Human Gingival Sulcus during Canine Retraction Using Elastic Chain and Closed Coil Spring

Authors: Sri Suparwitri

Abstract:

When an orthodontic force is applied to a tooth, an inflammatory response is initiated then lead to bone remodeling process, and the process accommodates tooth movement. One of cytokine that plays a prominent role in bone remodeling process was transforming growth factor-beta 1 (TGF-β1). The purpose of this study was to identify and compare changes of TGF-β1 in human gingival crevicular fluid during canine retraction using elastic chain and closed coil spring. Ten patients (mean age 20.7 ± 2.9 years) participated. The patients were entering the space closure phase of fixed orthodontic treatment. An upper canine of each patient was retracted using elastic chain, and the contralateral canine was retracted using closed coil spring. Gingival crevicular fluid samples were collected from the canine teeth before and 7 days after the force was applied. Transforming growth factor-beta 1 was determined by enzyme-linked immunosorbent assay (ELISA). The concentrations of TGF-β1 at 7 days were significantly higher compared to before canine retraction in both groups. In the evaluation of between-group difference, before retraction, the difference was insignificant, whereas at 7 days significantly higher values were determined in the closed coil spring group compared to elastic chain group. The result suggests that TGF-β1 is associated with the bone remodeling that occurs during canine distalization movement. Closed coil spring gave higher TGF-β1 concentrations thus more bone remodeling occurred and may be considered the treatment of choice.

Keywords: closed coil spring, elastic chain, gingival crevicular fluid, TGF-β1

Procedia PDF Downloads 170
14913 Integrative Analysis of Urban Transportation Network and Land Use Using GIS: A Case Study of Siddipet City

Authors: P. Priya Madhuri, J. Kamini, S. C. Jayanthi

Abstract:

Assessment of land use and transportation networks is essential for sustainable urban growth, urban planning, efficient public transportation systems, and reducing traffic congestion. The study focuses on land use, population density, and their correlation with the road network for future development. The scope of the study covers inventory and assessment of the road network dataset (line) at the city, zonal, or ward level, which is extracted from very high-resolution satellite data (spatial resolution < 0.5 m) at 1:4000 map scale and ground truth verification. Road network assessment is carried out by computing various indices that measure road coverage and connectivity. In this study, an assessment of the road network is carried out for the study region at the municipal and ward levels. In order to identify gaps, road coverage and connectivity were associated with urban land use, built-up area, and population density in the study area. Ward-wise road connectivity and coverage maps have been prepared. To assess the relationship between road network metrics, correlation analysis is applied. The study's conclusions are extremely beneficial for effective road network planning and detecting gaps in the road network at the ward level in association with urban land use, existing built-up, and population.

Keywords: road connectivity, road coverage, road network, urban land use, transportation analysis

Procedia PDF Downloads 33
14912 Value Chain Based New Business Opportunity

Authors: Seonjae Lee, Sungjoo Lee

Abstract:

Excavation is necessary to remain competitive in the current business environment. The company survived the rapidly changing industry conditions by adapting new business strategy and reducing technology challenges. Traditionally, the two methods are conducted excavations for new businesses. The first method is, qualitative analysis of expert opinion, which is gathered through opportunities and secondly, new technologies are discovered through quantitative data analysis of method patents. The second method increases time and cost. Patent data is restricted for use and the purpose of discovering business opportunities. This study presents the company's characteristics (sector, size, etc.), of new business opportunities in customized form by reviewing the value chain perspective and to contributing to creating new business opportunities in the proposed model. It utilizes the trademark database of the Korean Intellectual Property Office (KIPO) and proprietary company information database of the Korea Enterprise Data (KED). This data is key to discovering new business opportunities with analysis of competitors and advanced business trademarks (Module 1) and trading analysis of competitors found in the KED (Module 2).

Keywords: value chain, trademark, trading analysis, new business opportunity

Procedia PDF Downloads 372
14911 Survey of Selected Pathogenic Bacteria in Chickens from Rural Households in Limpopo Province

Authors: M. Lizzy Madiwani, Ignatious Ncube, Evelyn Madoroba

Abstract:

This study was designed to determine the distribution of pathogenic bacteria in household raised chickens and study their virulence and antibiotic profiles. For this purpose, 40 chickens were purchased from families in the Capricorn district and sacrificed for sampling. Tissues were cultured on different bacteriological media followed by biotyping using Matrix-assisted Laser Desorption Ionization-time of Flight (MALDI-TOF). Disk diffusion test was performed to determine the antibiotic susceptibility profiles of these bacteria. Out of a total of 160 tissue samples evaluated, E. coli and Salmonella were detected in these tissues. Furthermore, determination of the pathogenic E. coli and Salmonella strains at species level using primer sets that target selected genes of interest in the polymerase chain reaction (PCR) assay was employed. The invA gene, a confirmatory gene of Salmonella was detected in all the Salmonella isolates. The study revealed that there is a high distribution of Salmonella and pathogenic E. coli in these chickens. Therefore, further studies on identification at the species level are highly recommended to provide management and sanitation practices to lower this prevalence. The antimicrobial susceptibly data generated from this study can be a valuable reference to veterinarians for treating bacterial diseases in poultry.

Keywords: antimicrobial, Escherichia coli, pathogens, Salmonella

Procedia PDF Downloads 128
14910 Survey of Corrosion and Scaling of Urban Drinking Water Supply Reservoirs (Case Study: Ilam City)

Authors: Ehsan Derikvand, Hamid Kaykha, Rooholah Mansoori Yekta, Taleb Javanmard, Mohsen Mehdi Zadeh

Abstract:

Corrosion and scaling are one of the most complicated and costly problems of drinking water supply. Corrosion has adverse effect on general health and public acceptance of water source and drinking water supply costs. The present study aimed to determine the potentials of corrosion and scaling of potable water supply reservoirs of Ilam city in June 2013 and August 2014 by Langelier Index (LI) and Reynar. The results of experiments and calculations show that the mean index of LSI in the first and second sampling stages is 0.34, 0.2, respectively and the mean index RSI in the first and second stages of sampling is 7.15 and 7.22, respectively. Based on LSI index of reservoirs water in the first phase, none of stations are corrosive and only one station in the second sampling phase has corrosive tendency. According to RSI index, there is no corrosive tendency in two phases. Based on the results, the water of drinking water reservoirs in Ilam city has no corrosion tendency and the analyses and results of Langelier Index (LI) and Ryznar are in relatively good condition.

Keywords: corrosion, scaling, water reservoirs, langelier and ryznar indices, Ilam city

Procedia PDF Downloads 409
14909 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.

Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization

Procedia PDF Downloads 418
14908 Structural Balance and Creative Tensions in New Product Development Teams

Authors: Shankaran Sitarama

Abstract:

New Product Development involves team members coming together and working in teams to come up with innovative solutions to problems, resulting in new products. Thus, a core attribute of a successful NPD team is their creativity and innovation. They need to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas, resulting in a POC (proof-of-concept) implementation or a prototype of the product. There are two distinctive traits that the teams need to have, one is ideational creativity, and the other is effective and efficient teamworking. There are multiple types of tensions that each of these traits cause in the teams, and these tensions reflect in the team dynamics. Ideational conflicts arising out of debates and deliberations increase the collective knowledge and affect the team creativity positively. However, the same trait of challenging each other’s viewpoints might lead the team members to be disruptive, resulting in interpersonal tensions, which in turn lead to less than efficient teamwork. Teams that foster and effectively manage these creative tensions are successful, and teams that are not able to manage these tensions show poor team performance. In this paper, it explore these tensions as they result in the team communication social network and propose a Creative Tension Balance index along the lines of Degree of Balance in social networks that has the potential to highlight the successful (and unsuccessful) NPD teams. Team communication reflects the team dynamics among team members and is the data set for analysis. The emails between the members of the NPD teams are processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. This social network is subjected to traditional social network analysis methods to arrive at some established metrics and structural balance analysis metrics. Traditional structural balance is extended to include team interaction pattern metrics to arrive at a creative tension balance metric that effectively captures the creative tensions and tension balance in teams. This CTB (Creative Tension Balance) metric truly captures the signatures of successful and unsuccessful (dissonant) NPD teams. The dataset for this research study includes 23 NPD teams spread out over multiple semesters and computes this CTB metric and uses it to identify the most successful and unsuccessful teams by classifying these teams into low, high and medium performing teams. The results are correlated to the team reflections (for team dynamics and interaction patterns), the team self-evaluation feedback surveys (for teamwork metrics) and team performance through a comprehensive team grade (for high and low performing team signatures).

Keywords: team dynamics, social network analysis, new product development teamwork, structural balance, NPD teams

Procedia PDF Downloads 79
14907 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections

Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu

Abstract:

In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.

Keywords: connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control

Procedia PDF Downloads 356
14906 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms

Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi

Abstract:

A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization

Procedia PDF Downloads 428
14905 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 471
14904 Research on the Spatial Organization and Collaborative Innovation of Innovation Corridors from the Perspective of Ecological Niche: A Case Study of Seven Municipal Districts in Jiangsu Province, China

Authors: Weikang Peng

Abstract:

The innovation corridor is an important spatial carrier to promote regional collaborative innovation, and its development process is the spatial re-organization process of regional innovation resources. This paper takes the Nanjing-Zhenjiang G312 Industrial Innovation Corridor, which involves seven municipal districts in Jiangsu Province, as empirical evidence. Based on multi-source spatial big data in 2010, 2016, and 2022, this paper applies triangulated irregular network (TIN), head/tail breaks, regional innovation ecosystem (RIE) niche fitness evaluation model, and social network analysis to carry out empirical research on the spatial organization and functional structural evolution characteristics of innovation corridors and their correlation with the structural evolution of collaborative innovation network. The results show, first, the development of innovation patches in the corridor has fractal characteristics in time and space and tends to be multi-center and cluster layout along the Nanjing Bypass Highway and National Highway G312. Second, there are large differences in the spatial distribution pattern of niche fitness in the corridor in various dimensions, and the niche fitness of innovation patches along the highway has increased significantly. Third, the scale of the collaborative innovation network in the corridor is expanding fast. The core of the network is shifting from the main urban area to the periphery of the city along the highway, with small-world and hierarchical levels, and the core-edge network structure is highlighted. With the development of the Innovation Corridor, the main collaborative mode in the corridor is changing from collaboration within innovation patches to collaboration between innovation patches, and innovation patches with high ecological suitability tend to be the active areas of collaborative innovation. Overall, polycentric spatial layout, graded functional structure, diversified innovation clusters, and differentiated environmental support play an important role in effectively constructing collaborative innovation linkages and the stable expansion of the scale of collaborative innovation within the innovation corridor.

Keywords: innovation corridor development, spatial structure, niche fitness evaluation model, head/tail breaks, innovation network

Procedia PDF Downloads 20
14903 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
14902 Accessibility Assessment of School Facilities Using Geospatial Technologies: A Case Study of District Sheikhupura

Authors: Hira Jabbar

Abstract:

Education is vital for inclusive growth of an economy and a critical contributor for investment in human capital. Like other developing countries, Pakistan is facing enormous challenges regarding the provision of public facilities, improper infrastructure planning, accelerating rate of population and poor accessibility. The influence of the rapid advancement and innovations in GIS and RS techniques have proved to be a useful tool for better planning and decision making to encounter these challenges. Therefore present study incorporates GIS and RS techniques to investigate the spatial distribution of school facilities, identifies settlements with served and unserved population, finds potential areas for new schools based on population and develops an accessibility index to evaluate the higher accessibility for schools. For this purpose high-resolution worldview imagery was used to develop road network, settlements and school facilities and to generate school accessibility for each level. Landsat 8 imagery was utilized to extract built-up area by applying pre and post-processing models and Landscan 2015 was used to analyze population statistics. Service area analysis was performed using network analyst extension in ArcGIS 10.3v and results were evaluated for served and underserved areas and population. An accessibility tool was used to evaluate a set of potential destinations to determine which is the most accessible with the given population distribution. Findings of the study may contribute to facilitating the town planners and education authorities for understanding the existing patterns of school facilities. It is concluded that GIS and remote sensing can be effectively used in urban transport and facility planning.

Keywords: accessibility, geographic information system, landscan, worldview

Procedia PDF Downloads 325
14901 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling

Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé

Abstract:

Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.

Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation

Procedia PDF Downloads 80
14900 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 501