Search results for: irrigationaxial flux machines
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1305

Search results for: irrigationaxial flux machines

45 Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress

Authors: Faheema Khan

Abstract:

To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism.

Keywords: glycine max, salt stress, RAPD, genomic and proteomic variability

Procedia PDF Downloads 423
44 Leveraging the HDAC Inhibitory Pharmacophore to Construct Deoxyvasicinone Based Tractable Anti-Lung Cancer Agent and pH-Responsive Nanocarrier

Authors: Ram Sharma, Esha Chatterjee, Santosh Kumar Guru, Kunal Nepali

Abstract:

A tractable anti-lung cancer agent was identified via the installation of a Ring C expanded synthetic analogue of the alkaloid vasicinone [7,8,9,10-tetrahydroazepino[2,1-b] quinazolin-12(6H)-one (TAZQ)] as a surface recognition part in the HDAC inhibitory three-component model. Noteworthy to mention that the candidature of TAZQ was deemed suitable for accommodation in HDAC inhibitory pharmacophore as per the results of the fragment recruitment process conducted by our laboratory. TAZQ was pinpointed through the fragment screening program as a synthetically flexible fragment endowed with some moderate cell growth inhibitory activity against the lung cancer cell lines, and it was anticipated that the use of the aforementioned fragment to generate hydroxamic acid functionality (zinc-binding motif) bearing HDAC inhibitors would boost the antitumor efficacy of TAZQ. Consistent with our aim of applying epigenetic targets to the treatment of lung cancer, a strikingly potent anti-lung cancer scaffold (compound 6) was pinpointed through a series of in-vitro experiments. Notably, the compounds manifested a magnificent activity profile against KRAS and EGFR mutant lung cancer cell lines (IC50 = 0.80 - 0.96 µM), and the effects were found to be mediated through preferential HDAC6 inhibition (IC50 = 12.9 nM). In addition to HDAC6 inhibition, the compounds also elicited HDAC1 and HDAC3 inhibitory activity with an IC50 value of 49.9 nM and 68.5 nM, respectively. The HDAC inhibitory ability of compound 6 was also confirmed from the results of the western blot experiment that revealed its potential to decrease the expression levels of HDAC isoforms (HDAC1, HDAC3, and HDAC6). Noteworthy to mention that complete downregulation of the HDAC6 isoform was exerted by compound 6 at 0.5 and 1 µM. Moreover, in another western blot experiment, treatment with hydroxamic acid 6 led to upregulation of H3 acK9 and α-Tubulin acK40 levels, ascertaining its inhibitory activity toward both the class I HDACs and Class II B HDACs. The results of other assays were also encouraging as treatment with compound 6 led to the suppression of the colony formation ability of A549 cells, induction of apoptosis, and increase in autophagic flux. In silico studies led us to rationalize the results of the experimental assay, and some key interactions of compound 6 with the amino acid residues of HDAC isoforms were identified. In light of the impressive activity spectrum of compound 6, a pH-responsive nanocarrier (hyaluronic acid-compound 6 nanoparticles) was prepared. The dialysis bag approach was used for the assessment of the nanoparticles under both normal and acidic circumstances, and the pH-sensitive nature of hyaluronic acid-compound 6 nanoparticles was confirmed. Delightfully, the nanoformulation was devoid of cytotoxicity against the L929 mouse fibroblast cells (normal settings) and exhibited selective cytotoxicity towards the A549 lung cancer cell lines. In a nutshell, compound 6 appears to be a promising adduct, and a detailed investigation of this compound might yield a therapeutic for the treatment of lung cancer.

Keywords: HDAC inhibitors, lung cancer, scaffold, hyaluronic acid, nanoparticles

Procedia PDF Downloads 95
43 Assessing the High Rate of Deforestation Caused by the Operations of Timber Industries in Ghana

Authors: Obed Asamoah

Abstract:

Forests are very vital for human survival and our well-being. During the past years, the world has taken an increasingly significant role in the modification of the global environment. The high rate of deforestation in Ghana is of primary national concern as the forests provide many ecosystem services and functions that support the country’s predominantly agrarian economy and foreign earnings. Ghana forest is currently major source of carbon sink that helps to mitigate climate change. Ghana forests, both the reserves and off-reserves, are under pressure of deforestation. The causes of deforestation are varied but can broadly be categorized into anthropogenic and natural factors. For the anthropogenic factors, increased wood fuel collection, clearing of forests for agriculture, illegal and poorly regulated timber extraction, social and environmental conflicts, increasing urbanization and industrialization are the primary known causes for the loss of forests and woodlands. Mineral exploitation in the forest areas is considered as one of the major causes of deforestation in Ghana. Mining activities especially mining of gold by both the licensed mining companies and illegal mining groups who are locally known as "gallantly mining" also cause damage to the nation's forest reserves. Several works have been conducted regarding the causes of the high rate of deforestation in Ghana, major attention has been placed on illegal logging and using forest lands for illegal farming and mining activities. Less emphasis has been placed on the timber production companies on their harvesting methods in the forests in Ghana and other activities that are carried out in the forest. The main objective of the work is to find out the harvesting methods and the activities of the timber production companies and their effects on the forests in Ghana. Both qualitative and quantitative research methods were engaged in the research work. The study population comprised of 20 Timber industries (Sawmills) forest areas of Ghana. These companies were selected randomly. The cluster sampling technique was engaged in selecting the respondents. Both primary and secondary data were employed. In the study, it was observed that most of the timber production companies do not know the age, the weight, the distance covered from the harvesting to the loading site in the forest. It was also observed that old and heavy machines are used by timber production companies in their operations in the forest, which makes the soil compact prevents regeneration and enhances soil erosion. It was observed that timber production companies do not abide by the rules and regulations governing their operations in the forest. The high rate of corruption on the side of the officials of the Ghana forestry commission makes the officials relax and do not embark on proper monitoring on the operations of the timber production companies which makes the timber companies to cause more harm to the forest. In other to curb this situation the Ghana forestry commission with the ministry of lands and natural resources should monitor the activities of the timber production companies and sanction all the companies that make foul play in their activities in the forest. The commission should also pay more attention to the policy “fell one plant 10” to enhance regeneration in both reserves and off-reserves forest.

Keywords: companies, deforestation, forest, Ghana, timber

Procedia PDF Downloads 198
42 Investigating Role of Autophagy in Cispaltin Induced Stemness and Chemoresistance in Oral Squamous Cell Carcinoma

Authors: Prajna Paramita Naik, Sujit Kumar Bhutia

Abstract:

Background: Regardless of the development multimodal treatment strategies, oral squamous cell carcinoma (OSCC) is often associated with a high rate of recurrence, metastasis and chemo- and radio- resistance. The present study inspected the relevance of CD44, ABCB1 and ADAM17 expression as a putative stem cell compartment in oral squamous cell carcinoma (OSCC) and deciphered the role of autophagy in regulating the expression of aforementioned proteins, stemness and chemoresistance. Methods: A retrospective analysis of CD44, ABCB1 and ADAM17 expression with respect to the various clinicopathological factors of sixty OSCC patients were determined via immunohistochemistry. The correlation among CD44, ABCB1 and ADAM17 expression was established. Sphere formation assay, flow cytometry and fluorescence microscopy were conducted to elucidate the stemness and chemoresistance nature of established cisplatin-resistant oral cancer cells (FaDu). The pattern of expression of CD44, ABCB1 and ADAM17 in parental (FaDu-P) and resistant FaDu cells (FaDu-CDDP-R) were investigated through fluorescence microscopy. Western blot analysis of autophagy marker proteins was performed to compare the status of autophagy in parental and resistant FaDu cell. To investigate the role of autophagy in chemoresistance and stemness, sphere formation assay, immunofluorescence and Western blot analysis was performed post transfection with siATG14 and the level of expression of autophagic proteins, mitochondrial protein and stemness-associated proteins were analyzed. The statistical analysis was performed by GraphPad Prism 4.0 software. p-value was defined as follows: not significant (n.s.): p > 0.05;*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001 were considered statistically significant. Results: In OSCC, high CD44, ABCB1 and ADAM17 expression were significantly correlated with higher tumor grades and poor differentiation. However, the expression of these proteins was not related to the age and sex of OSCC patients. Moreover, the expression of CD44, ABCB1 and ADAM17 were positively correlated with each other. In vitro and OSCC tissue double labeling experiment data showed that CD44+ cells were highly associated with ABCB1 and ADAM17 expression. Further, FaDu-CDDP-R cells showed higher sphere forming capacity along with increased fraction of the CD44+ population and β-catenin expression FaDu-CDDP-R cells also showed accelerated expression of CD44, ABCB1 and ADAM17. A comparatively higher autophagic flux was observed in FaDu-CDDP-R against FaDu-P cells. The expression of mitochondrial proteins was noticeably reduced in resistant cells as compared to parental cells indicating the occurrence of autophagy-mediated mitochondrial degradation in oral cancer. Moreover, inhibition of autophagy was coupled with the decreased formation of orospheres suggesting autophagy-mediated stemness in oral cancer. Blockade of autophagy was also found to induce the restoration of mitochondrial proteins in FaDu-CDDP-R cells indicating the involvement of mitophagy in chemoresistance. Furthermore, a reduced expression of CD44, ABCB1 and ADAM17 was also observed in ATG14 deficient cells FaDu-P and FaDu-CDDP-R cells. Conclusion: The CD44+ ⁄ABCB1+ ⁄ADAM17+ expression in OSCC might be associated with chemoresistance and a putative CSC compartment. Further, the present study highlights the contribution of mitophagy in chemoresistance and confirms the potential involvement of autophagic regulation in acquisition of stem-like characteristics in OSCC.

Keywords: ABCB1, ADAM17, autophagy, CD44, chemoresistance, mitophagy, OSCC, stemness

Procedia PDF Downloads 194
41 Building Carbon Footprint Comparison between Building Permit, as Built, as Built with Circular Material Usage

Authors: Kadri-Ann Kertsmik, Martin Talvik, Kimmo Lylykangas, Simo Ilomets, Targo Kalamees

Abstract:

This study compares the building carbon footprint (CF) values for a case study of a private house located in a cold climate, using the Level(s) methodology. It provides a framework for measuring the environmental performance of buildings throughout their life cycle, taking into account various factors. The study presents the results of the three scenarios, comparing their carbon emissions and highlighting the benefits of circular material usage. The construction process was thoroughly documented, and all materials and components (including minuscule mechanical fasteners, each meter of cable, a kilogram of mortar, and the component of HVAC systems, among other things) delivered to the construction site were noted. Transportation distances of each delivery, the fuel consumption of construction machines, and electricity consumption for temporary heating and electrical tools were also monitored. Using the detailed data on material and energy resources, the CF was calculated for two scenarios: one where circular material usage was applied and another where virgin materials were used instead of reused ones. The results were compared with the CF calculated based on the building permit design model using the Level(s) methodology. To study the range of possible results in the early stage of CF assessment, the same building permit design was given to several experts. Results showed that embodied carbon values for a built scenario were significantly lower than the values predicted by the building permit stage as a result of more precise material quantities, as the calculation methodology is designed to overestimate the CF. Moreover, designers made an effort to reduce the building's CF by reusing certain materials such as ceramic tiles, lightweight concrete blocks, and timber during the construction process. However, in a cold climate context where operational energy (B6) continues to dominate, the total building CF value changes between the three scenarios were less significant. The calculation for the building permit project was performed by several experts, and CF results were in the same range. It alludes that, for the first estimation of preliminary building CF, using average values proves to be an appropriate method for the Estonian national carbon footprint estimation phase during building permit application. The study also identified several opportunities for reducing the carbon footprint of the building, such as reusing materials from other construction sites, preferring local material producers, and reducing wastage on site. The findings suggest that using circular materials can significantly reduce the carbon footprint of buildings. Overall, the study highlights the importance of using a comprehensive approach to measure the environmental performance of buildings, taking into account both the project and the actually built house. It also emphasises the need for ongoing monitoring for designing the building and construction site waste. The study also gives some examples of how to enable future circularity of building components and materials, e.g., building in layers, using wood as untreated, etc.

Keywords: carbon footprint, circular economy, sustainable construction, level(s) methodology

Procedia PDF Downloads 87
40 Assessing the Socio-Economic Problems and Environmental Implications of Green Revolution In Uttar Pradesh, India

Authors: Naima Umar

Abstract:

Mid-1960’s has been landmark in the history of Indian agriculture. It was in 1966-67 when a New Agricultural Strategy was put into practice to tide over chronic shortages of food grains in the country. This strategy adopted was the use High-Yielding Varieties (HYV) of seeds (wheat and rice), which was popularly known as the Green Revolution. This phase of agricultural development has saved us from hunger and starvation and made the peasants more confident than ever before, but it has also created a number of socio-economic and environmental implications such as the reduction in area under forest, salinization, waterlogging, soil erosion, lowering of underground water table, soil, water and air pollution, decline in soil fertility, silting of rivers and emergence of several diseases and health hazards. The state of Uttar Pradesh in the north is bounded by the country of Nepal, the states of Uttrakhand on the northwest, Haryana on the west, Rajasthan on the southwest, Madhya Pradesh on the south and southwest, and Bihar on the east. It is situated between 23052´N and 31028´N latitudes and 7703´ and 84039´E longitudes. It is the fifth largest state of the country in terms of area, and first in terms of population. Forming the part of Ganga plain the state is crossed by a number of rivers which originate from the snowy peaks of Himalayas. The fertile plain of the Ganga has led to a high concentration of population with high density and the dominance of agriculture as an economic activity. Present paper highlights the negative impact of new agricultural technology on health of the people and environment and will attempt to find out factors which are responsible for these implications. Karl Pearson’s Correlation coefficient technique has been applied by selecting 1 dependent variable (i.e. Productivity Index) and some independent variables which may impact crop productivity in the districts of the state. These variables have categorized as: X1 (Cropping Intensity), X2 (Net irrigated area), X3 (Canal Irrigated area), X4 (Tube-well Irrigated area), X5 (Irrigated area by other sources), X6 (Consumption of chemical fertilizers (NPK) Kg. /ha.), X7 (Number of wooden plough), X8 (Number of iron plough), X9 (Number of harrows and cultivators), X10 (Number of thresher machines), X11(Number of sprayers), X12 (Number of sowing instruments), X13 (Number of tractors) and X14 (Consumption of insecticides and pesticides (in Kg. /000 ha.). The entire data during 2001-2005 and 2006- 2010 have been taken and 5 years average value is taken into consideration, based on secondary sources obtained from various government, organizations, master plan report, economic abstracts, district census handbooks and village and town directories etc,. put on a standard computer programmed SPSS and the results obtained have been properly tabulated.

Keywords: agricultural technology, environmental implications, health hazards, socio-economic problems

Procedia PDF Downloads 307
39 Robots for the Elderly at Home: For Men Only

Authors: Christa Fricke, Sibylle Meyer, Gert G. Wagner

Abstract:

Our research focuses on the question of whether assistive and social robotics could pose a promising strategy to support the independent living of elderly people and potentially relieve relatives of any anxieties. To answer the question of how elderly people perceive the potential of robotics, we analysed the data from the Berlin Aging Study BASE-II (https://www.base2.mpg.de/de) (N=1463) and data from the German SYMPARTNER study (http://www.sympartner.de) (N=120) and compared those to a control group made up of people younger than 30 years (BASE II: N=241; SYMPARTNER: N=30). BASE-II is a cohort study of people living in Berlin, Germany. The sample covers more than 2200 cases; a questionnaire on the use and acceptance of assistive and social robots was carried out with a sub-sample of 1463 respondents in 2015. The SYMPARTNER study was done by SIBIS institute of Social Research, Berlin and included a total of 120 persons between the ages of 60 and 87 in Berlin and the rural German federal state of Thuringia. Both studies included a control group of persons between the ages of 20 and 35 (BASE II: N=241; SYMPARTNER: N=30). Additional data, representative for the whole population in Germany, will be surveyed in fall 2017 (Survey “Technikradar” [technology radar] by the National Academy of Science and Engineering). Since this survey is including some identical questions as BASE-II/SYMPARTNER, comparative results can be presented at 20th International Conference on Social Robotics in New York 2018. The complexity of the data gathered in BASE-II and SYMPARTNER, encompassing detailed socio-economic background characteristics as well as personality traits such as the personal attitude to risk taking, locus of control and Big Five, proves highly valuable and beneficial. Results show that participants’ expressions of resentment against robots are comparatively low. Participants’ personality traits play a role, however the effect sizes are small. Only 15 percent of participants received domestic robots with great scepticism. Participants aged older than 70 years expressed greatest rejection of the robotic assistant. The effect sizes however account for only a few percentage points. Overall, participants were surprisingly open to the robot and its usefulness. The analysis also shows that men’s acceptance of the robot is generally greater than that of women (with odds ratios of about 0.6 to 0.7). This applies to both assistive robots in the private household and in care environments. Men expect greater benefits of the robot than women. Women tend to be more sceptical of their technical feasibility than men. Interview results prove our hypothesis that men, in particular of the age group 60+, are more accustomed to delegate household chores to women. A delegation to machines instead of humans, therefore, seems palpable. The answer to the title question of this planned presentation is: social and assistive robots at home robots are not only accepted by men – but by fewer women than men.

Keywords: acceptance, care, gender, household

Procedia PDF Downloads 197
38 Analysis of Short Counter-Flow Heat Exchanger (SCFHE) Using Non-Circular Micro-Tubes Operated on Water-CuO Nanofluid

Authors: Avdhesh K. Sharma

Abstract:

Key, in the development of energy-efficient micro-scale heat exchanger devices, is to select large heat transfer surface to volume ratio without much expanse on re-circulated pumps. The increased interest in short heat exchanger (SHE) is due to accessibility of advanced technologies for manufacturing of micro-tubes in range of 1 micron m - 1 mm. Such SHE using micro-tubes are highly effective for high flux heat transfer technologies. Nanofluids, are used to enhance the thermal conductivity of re-circulated coolant and thus enhances heat transfer rate further. Higher viscosity associated with nanofluid expands more pumping power. Thus, there is a trade-off between heat transfer rate and pressure drop with geometry of micro-tubes. Herein, a novel design of short counter flow heat exchanger (SCFHE) using non-circular micro-tubes flooded with CuO-water nanofluid is conceptualized by varying the ratio of surface area to cross-sectional area of micro-tubes. A framework for comparative analysis of SCFHE using micro-tubes non-circular shape flooded by CuO-water nanofluid is presented. In SCFHE concept, micro-tubes having various geometrical shapes (viz., triangular, rectangular and trapezoidal) has been arranged row-wise to facilitate two aspects: (1) allowing easy flow distribution for cold and hot stream, and (2) maximizing the thermal interactions with neighboring channels. Adequate distribution of rows for cold and hot flow streams enables above two aspects. For comparative analysis, a specific volume or cross-section area is assigned to each elemental cell (which includes flow area and area corresponds to half wall thickness). A specific volume or cross-section area is assumed to be constant for each elemental cell (which includes flow area and half wall thickness area) and variation in surface area is allowed by selecting different geometry of micro-tubes in SCFHE. Effective thermal conductivity model for CuO-water nanofluid has been adopted, while the viscosity values for water based nanofluids are obtained empirically. Correlations for Nusselt number (Nu) and Poiseuille number (Po) for micro-tubes have been derived or adopted. Entrance effect is accounted for. Thermal and hydrodynamic performances of SCFHE are defined in terms of effectiveness and pressure drop or pumping power, respectively. For defining the overall performance index of SCFHE, two links are employed. First one relates heat transfer between the fluid streams q and pumping power PP as (=qj/PPj); while another link relates effectiveness eff and pressure drop dP as (=effj/dPj). For analysis, the inlet temperatures of hot and cold streams are varied in usual range of 20dC-65dC. Fully turbulent regime is seldom encountered in micro-tubes and transition of flow regime occurs much early (i.e., ~Re=1000). Thus, Re is fixed at 900, however, the uncertainty in Re due to addition of nanoparticles in base fluid is quantified by averaging of Re. Moreover, for minimizing error, volumetric concentration is limited to range 0% to ≤4% only. Such framework may be helpful in utilizing maximum peripheral surface area of SCFHE without any serious severity on pumping power and towards developing advanced short heat exchangers.

Keywords: CuO-water nanofluid, non-circular micro-tubes, performance index, short counter flow heat exchanger

Procedia PDF Downloads 213
37 Effects of AI-driven Applications on Bank Performance in West Africa

Authors: Ani Wilson Uchenna, Ogbonna Chikodi

Abstract:

This study examined the impact of artificial intelligence driven applications on banks’ performance in West Africa using Nigeria and Ghana as case studies. Specifically, the study examined the extent to which deployment of smart automated teller machine impacts the banks’ net worth within the reference period in Nigeria and Ghana. It ascertained the impact of point of sale on banks’ net worth within the reference period in Nigeria and Ghana. Thirdly, it verified the extent to which webpay services can influence banks’ performance in Nigeria and Ghana and finally, determined the impact of mobile pay services on banks’ performance in Nigeria and Ghana. The study used automated teller machine (ATM), Point of sale services (POS), Mobile pay services (MOP) and Web pay services (WBP) as proxies for explanatory variables while Bank net worth was used as explained variable for the study. The data for this study were sourced from central bank of Nigeria (CBN) Statistical Bulletin as well as Bank of Ghana (BoGH) Statistical Bulletin, Ghana payment systems oversight annual report and world development indicator (WDI). Furthermore, the mixed order of integration observed from the panel unit test result justified the use of autoregressive distributed lag (ARDL) approach to data analysis which the study adopted. While the cointegration test showed the existence of cointegration among the studied variables, bound test result justified the presence of long-run relationship among the series. Again, ARDL error correction estimate established satisfactory (13.92%) speed of adjustment from long run disequilibrium back to short run dynamic relationship. The study found that while Automated teller machine (ATM) had statistically significant impact on bank net worth (BNW) of Nigeria and Ghana, point of sale services application (POS) statistically and significantly impact on bank net worth within the study period, mobile pay services application was statistically significant in impacting the changes in the bank net worth of the countries of study while web pay services (WBP) had no statistically significant impact on bank net worth of the countries of reference. The study concluded that artificial intelligence driven application have significant an positive impact on bank performance with exception of web pay which had negative impact on bank net worth. The study recommended that management of banks both in Nigerian and Ghanaian should encourage more investments in AI-powered smart ATMs aimed towards delivering more secured banking services in order to increase revenue, discourage excessive queuing in the banking hall, reduced fraud and minimize error in processing transaction. Banks within the scope of this study should leverage on modern technologies to checkmate the excesses of the private operators POS in order to build more confidence on potential customers. Government should convert mobile pay services to a counter terrorism tool by ensuring that restrictions on over-the-counter withdrawals to a minimum amount is maintained and place sanctions on withdrawals above that limit.

Keywords: artificial intelligence (ai), bank performance, automated teller machines (atm), point of sale (pos)

Procedia PDF Downloads 7
36 Microplastic Concentrations and Fluxes in Urban Compartments: A Systemic Approach at the Scale of the Paris Megacity

Authors: Rachid Dris, Robin Treilles, Max Beaurepaire, Minh Trang Nguyen, Sam Azimi, Vincent Rocher, Johnny Gasperi, Bruno Tassin

Abstract:

Microplastic sources and fluxes in urban catchments are only poorly studied. Most often, the approaches taken focus on a single source and only carry out a description of the contamination levels and type (shape, size, polymers). In order to gain an improved knowledge of microplastic inputs at urban scales, estimating and comparing various fluxes is necessary. The Laboratoire Eau, Environnement et Systèmes Urbains (LEESU), the Laboratoire Eau Environnement (LEE) and the SIAAP (Service public de l’assainissement francilien) initiated several projects to investigate different urban sources and flows of microplastics. A systemic approach is undertaken at the scale of Paris Megacity, and several compartments are considered, including atmospheric fallout, wastewater treatments plants, runoff and combined sewer overflows. These investigations are carried out within the Limnoplast and OPUR projects. Atmospheric fallout was sampled during consecutive periods ranging from 2 to 3 weeks with a stainless-steel funnel. Both wet and dry periods were considered. Different treatment steps were sampled in 2 wastewater treatment plants (Seine-Amont for activated sludge and Seine-Centre for biofiltration) of the SIAAP, including sludge samples. Microplastics were also investigated in combined sewer overflows as well as in stormwater at the outlet suburban catchment (Sucy-en-Brie, France) during four rain events. Samples are treated using hydroperoxide digestion (H₂O₂ 30 %) in order to reduce organic material. Microplastics are then extracted from the samples with a density separation step using NaI (d=1.6 g.cm⁻³). Samples are filtered on metallic filters with a porosity of 14 µm between steps to separate them from the solutions (H₂O₂ and NaI). The last filtration was carried out on alumina filters. Infrared mapping analysis (using a micro-FTIR with an MCT detector) is performed on each alumina filter. The resulting maps are analyzed using a microplastic analysis software simple, developed by Aalborg University, Denmark and Alfred Wegener Institute, Germany. Blanks were systematically carried out to consider sample contamination. This presentation aims at synthesizing the data found in the various projects. In order to carry out a systemic approach and compare the various inputs, all the data were converted into annual microplastic fluxes (number of microplastics per year), and extrapolated to the Parisian agglomeration. PP, PE and alkyd are the most prevalent polymers found in storm water samples. Rain intensity and microplastic concentrations did not show any clear correlation. Considering the runoff volumes and the impervious surface area of the studied catchment, a flux of 4*107–9*107 MPs.yr⁻¹.ha⁻¹ was estimated. Samples of wastewater treatment plants and atmospheric fallout are currently being analyzed in order to finalize this assessment. The representativeness of such samplings and uncertainties related to the extrapolations will be discussed and gaps in knowledge will be identified. The data provided by such an approach will help to prioritize future research as well as policy efforts.

Keywords: microplastics, atmosphere, wastewater, urban runoff, Paris megacity, urban waters

Procedia PDF Downloads 180
35 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 31
34 Contextual Factors of Innovation for Improving Commercial Banks' Performance in Nigeria

Authors: Tomola Obamuyi

Abstract:

The banking system in Nigeria adopted innovative banking, with the aim of enhancing financial inclusion, and making financial services readily and cheaply available to majority of the people, and to contribute to the efficiency of the financial system. Some of the innovative services include: Automatic Teller Machines (ATMs), National Electronic Fund Transfer (NEFT), Point of Sale (PoS), internet (Web) banking, Mobile Money payment (MMO), Real-Time Gross Settlement (RTGS), agent banking, among others. The introduction of these payment systems is expected to increase bank efficiency and customers' satisfaction, culminating in better performance for the commercial banks. However, opinions differ on the possible effects of the various innovative payment systems on the performance of commercial banks in the country. Thus, this study empirically determines how commercial banks use innovation to gain competitive advantage in the specific context of Nigeria's finance and business. The study also analyses the effects of financial innovation on the performance of commercial banks, when different periods of analysis are considered. The study employed secondary data from 2009 to 2018, the period that witnessed aggressive innovation in the financial sector of the country. The Vector Autoregression (VAR) estimation technique forecasts the relative variance of each random innovation to the variables in the VAR, examine the effect of standard deviation shock to one of the innovations on current and future values of the impulse response and determine the causal relationship between the variables (VAR granger causality test). The study also employed the Multi-Criteria Decision Making (MCDM) to rank the innovations and the performance criteria of Return on Assets (ROA) and Return on Equity (ROE). The entropy method of MCDM was used to determine which of the performance criteria better reflect the contributions of the various innovations in the banking sector. On the other hand, the Range of Values (ROV) method was used to rank the contributions of the seven innovations to performance. The analysis was done based on medium term (five years) and long run (ten years) of innovations in the sector. The impulse response function derived from the VAR system indicated that the response of ROA to the values of cheques transaction, values of NEFT transactions, values of POS transactions was positive and significant in the periods of analysis. The paper also confirmed with entropy and range of value that, in the long run, both the CHEQUE and MMO performed best while NEFT was next in performance. The paper concluded that commercial banks would enhance their performance by continuously improving on the services provided through Cheques, National Electronic Fund Transfer and Point of Sale since these instruments have long run effects on their performance. This will increase the confidence of the populace and encourage more usage/patronage of these services. The banking sector will in turn experience better performance which will improve the economy of the country. Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression,

Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression

Procedia PDF Downloads 120
33 Adaptation Measures as a Response to Climate Change Impacts and Associated Financial Implications for Construction Businesses by the Application of a Mixed Methods Approach

Authors: Luisa Kynast

Abstract:

It is obvious that buildings and infrastructure are highly impacted by climate change (CC). Both, design and material of buildings need to be resilient to weather events in order to shelter humans, animals, or goods. As well as buildings and infrastructure are exposed to weather events, the construction process itself is generally carried out outdoors without being protected from extreme temperatures, heavy rain, or storms. The production process is restricted by technical limitations for processing materials with machines and physical limitations due to human beings (“outdoor-worker”). In future due to CC, average weather patterns are expected to change as well as extreme weather events are expected to occur more frequently and more intense and therefore have a greater impact on production processes and on the construction businesses itself. This research aims to examine this impact by analyzing an association between responses to CC and financial performance of businesses within the construction industry. After having embedded the above depicted field of research into the resource dependency theory, a literature review was conducted to expound the state of research concerning a contingent relation between climate change adaptation measures (CCAM) and corporate financial performance for construction businesses. The examined studies prove that this field is rarely investigated, especially for construction businesses. Therefore, reports of the Carbon Disclosure Project (CDP) were analyzed by applying content analysis using the software tool MAXQDA. 58 construction companies – located worldwide – could be examined. To proceed even more systematically a coding scheme analogous to findings in literature was adopted. Out of qualitative analysis, data was quantified and a regression analysis containing corporate financial data was conducted. The results gained stress adaptation measures as a response to CC as a crucial proxy to handle climate change impacts (CCI) by mitigating risks and exploiting opportunities. In CDP reports the majority of answers stated increasing costs/expenses as a result of implemented measures. A link to sales/revenue was rarely drawn. Though, CCAM were connected to increasing sales/revenues. Nevertheless, this presumption is supported by the results of the regression analysis where a positive effect of implemented CCAM on construction businesses´ financial performance in the short-run was ascertained. These findings do refer to appropriate responses in terms of the implemented number of CCAM. Anyhow, still businesses show a reluctant attitude for implementing CCAM, which was confirmed by findings in literature as well as by findings in CDP reports. Businesses mainly associate CCAM with costs and expenses rather than with an effect on their corporate financial performance. Mostly companies underrate the effect of CCI and overrate the costs and expenditures for the implementation of CCAM and completely neglect the pay-off. Therefore, this research shall create a basis for bringing CC to the (financial) attention of corporate decision-makers, especially within the construction industry.

Keywords: climate change adaptation measures, construction businesses, financial implication, resource dependency theory

Procedia PDF Downloads 143
32 Corrosion Protective Coatings in Machines Design

Authors: Cristina Diaz, Lucia Perez, Simone Visigalli, Giuseppe Di Florio, Gonzalo Fuentes, Roberto Canziani, Paolo Gronchi

Abstract:

During the last 50 years, the selection of materials is one of the main decisions in machine design for different industrial applications. It is due to numerous physical, chemical, mechanical and technological factors to consider in it. Corrosion effects are related with all of these factors and impact in the life cycle, machine incidences and the costs for the life of the machine. Corrosion affects the deterioration or destruction of metals due to the reaction with the environment, generally wet. In food industry, dewatering industry, concrete industry, paper industry, etc. corrosion is an unsolved problem and it might introduce some alterations of some characteristics in the final product. Nowadays, depending on the selected metal, its surface and its environment of work, corrosion prevention might be a change of metal, use a coating, cathodic protection, use of corrosion inhibitors, etc. In the vast majority of the situations, use of a corrosion resistant material or in its defect, a corrosion protection coating is the solution. Stainless steels are widely used in machine design, because of their strength, easily cleaned capacity, corrosion resistance and appearance. Typical used are AISI 304 and AISI 316. However, their benefits don’t fit every application, and some coatings are required against corrosion such as some paintings, galvanizing, chrome plating, SiO₂, TiO₂ or ZrO₂ coatings, etc. In this work, some coatings based in a bilayer made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium or Titanium-Zirconium, have been developed used magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology, for trying to reduce corrosion effects on AISI 304, AISI 316 and comparing it with Titanium alloy substrates. Ti alloy display exceptional corrosion resistance to chlorides, sour and oxidising acidic media and seawater. In this study, Ti alloy (99%) has been included for comparison with coated AISI 304 and AISI 316 stainless steel. Corrosion tests were conducted by a Gamry Instrument under ASTM G5-94 standard, using different electrolytes such as tomato salsa, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl for testing corrosion in different industrial environments. In general, in all tested environments, the results showed an improvement of corrosion resistance of all coated AISI 304 and AISI 316 stainless steel substrates when they were compared to uncoated stainless steel substrates. After that, comparing these results with corrosion studies on uncoated Ti alloy substrate, it was observed that in some cases, coated stainless steel substrates, reached similar current density that uncoated Ti alloy. Moreover, Titanium-Zirconium and Titanium-Tantalum coatings showed for all substrates in study including coated Ti alloy substrates, a reduction in current density more than two order in magnitude. As conclusion, Ti-Ta, Ti-Zr, Ti-Nb and Ti-Hf coatings have been developed for improving corrosion resistance of AISI 304 and AISI 316 materials. After corrosion tests in several industry environments, substrates have shown improvements on corrosion resistance. Similar processes have been carried out in Ti alloy (99%) substrates. Coated AISI 304 and AISI 316 stainless steel, might reach similar corrosion protection on the surface than uncoated Ti alloy (99%). Moreover, coated Ti Alloy (99%) might increase its corrosion resistance using these coatings.

Keywords: coatings, corrosion, PVD, stainless steel

Procedia PDF Downloads 158
31 From Over-Tourism to Over-Mobility: Understanting the Mobility of Incoming City Users in Barcelona

Authors: José Antonio Donaire Benito, Konstantina Zerva

Abstract:

Historically, cities have been places where people from many nations and cultures have met and settled together, while population flows and density have had a significant impact on urban dynamics. Cities' high density of social, cultural, business offerings, everyday services, and other amenities not intended for tourists draw not only tourists but a wide range of city users as well. With the coordination of city rhythms and the porosity of the community, city users order and frame their urban experience. From one side, recent literature focuses on the shift in urban tourist experience from 'having' a holiday through 'doing' activities to 'becoming' a local by experiencing a part of daily life. On the other hand, there is a debate on the 'touristification of everyday life', where middle and upper class urban dwellers display attitudes and behaviors that are virtually undistinguishable from those of visitors. With the advent of globalization and technological advances, modern society has undergone a radical transformation that has altered mobility patterns within it, blurring the boundaries between tourism and everyday life, work and leisure, and "hosts" and "guests". Additionally, the presence of other 'temporary city' users, such as commuters, digital nomads, second home owners, and migrants, contributes to a more complex transformation of tourist cities. Moving away from this traditional clear distinction between 'hosts' and 'guests', which represents a more static view of tourism, and moving towards a more liquid narrative of mobility, academics on tourism development are embracing the New Mobilities Paradigm. The latter moves beyond the static structures of the modern world and focuses on the ways in which social entities are made up of people, machines, information, and images in a moving system. In light of this fluid interdependence between tourists and guests, a question arises as to whether overtourism, which is considered as the underlying cause of citizens' perception of a lower urban quality of life, is a fair representation of perceived mobility excessiveness, place consumption disruptiveness, and residents displacement. As a representative example of an overtourism narrative, Barcelona was chosen as a study area for this purpose, focusing on the incoming city users to reflect in depth the variety of people who contribute to mobility flows beyond those residents already have. Several statistical data have been analyzed to determine the number of national and international visitors to Barcelona at some point during the day in 2019. Specifically, tracking data gathered from mobile phone users within the city are combined with tourist surveys, urban mobility data, zenithal data capture, and information about the city's attractions. The paper shows that tourists are only a small part of the different incoming city users that daily enter Barcelona; excursionists, commuters, and metropolitans also contribute to a high mobility flow. Based on the diversity of incoming city users and their place consumption, it seems that the city's urban experience is more likely to be impacted by over-mobility tan over-tourism.

Keywords: city users, density, new mobilities paradigm, over-tourism.

Procedia PDF Downloads 79
30 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 131
29 An Efficient Process Analysis and Control Method for Tire Mixing Operation

Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park

Abstract:

Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.

Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process

Procedia PDF Downloads 265
28 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology

Authors: Amarendar Reddy Addula

Abstract:

Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.

Keywords: artificial intelligence, ethics & human rights issues, laws, international laws

Procedia PDF Downloads 94
27 Finite Element Analysis of Human Tarsals, Meta Tarsals and Phalanges for Predicting probable location of Fractures

Authors: Irfan Anjum Manarvi, Fawzi Aljassir

Abstract:

Human bones have been a keen area of research over a long time in the field of biomechanical engineering. Medical professionals, as well as engineering academics and researchers, have investigated various bones by using medical, mechanical, and materials approaches to discover the available body of knowledge. Their major focus has been to establish properties of these and ultimately develop processes and tools either to prevent fracture or recover its damage. Literature shows that mechanical professionals conducted a variety of tests for hardness, deformation, and strain field measurement to arrive at their findings. However, they considered these results accuracy to be insufficient due to various limitations of tools, test equipment, difficulties in the availability of human bones. They proposed the need for further studies to first overcome inaccuracies in measurement methods, testing machines, and experimental errors and then carry out experimental or theoretical studies. Finite Element analysis is a technique which was developed for the aerospace industry due to the complexity of design and materials. But over a period of time, it has found its applications in many other industries due to accuracy and flexibility in selection of materials and types of loading that could be theoretically applied to an object under study. In the past few decades, the field of biomechanical engineering has also started to see its applicability. However, the work done in the area of Tarsals, metatarsals and phalanges using this technique is very limited. Therefore, present research has been focused on using this technique for analysis of these critical bones of the human body. This technique requires a 3-dimensional geometric computer model of the object to be analyzed. In the present research, a 3d laser scanner was used for accurate geometric scans of individual tarsals, metatarsals, and phalanges from a typical human foot to make these computer geometric models. These were then imported into a Finite Element Analysis software and a length refining process was carried out prior to analysis to ensure the computer models were true representatives of actual bone. This was followed by analysis of each bone individually. A number of constraints and load conditions were applied to observe the stress and strain distributions in these bones under the conditions of compression and tensile loads or their combination. Results were collected for deformations in various axis, and stress and strain distributions were observed to identify critical locations where fracture could occur. A comparative analysis of failure properties of all the three types of bones was carried out to establish which of these could fail earlier which is presented in this research. Results of this investigation could be used for further experimental studies by the academics and researchers, as well as industrial engineers, for development of various foot protection devices or tools for surgical operations and recovery treatment of these bones. Researchers could build up on these models to carryout analysis of a complete human foot through Finite Element analysis under various loading conditions such as walking, marching, running, and landing after a jump etc.

Keywords: tarsals, metatarsals, phalanges, 3D scanning, finite element analysis

Procedia PDF Downloads 329
26 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design

Authors: H. K. Esfahani, B. Datta

Abstract:

Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.

Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site

Procedia PDF Downloads 231
25 A Compact Standing-Wave Thermoacoustic Refrigerator Driven by a Rotary Drive Mechanism

Authors: Kareem Abdelwahed, Ahmed Salama, Ahmed Rabie, Ahmed Hamdy, Waleed Abdelfattah, Ahmed Abd El-Rahman

Abstract:

Conventional vapor-compression refrigeration systems rely on typical refrigerants, such as CFC, HCFC and ammonia. Despite of their suitable thermodynamic properties and their stability in the atmosphere, their corresponding global warming potential and ozone depletion potential raise concerns about their usage. Thus, the need for new refrigeration systems, which are environment-friendly, inexpensive and simple in construction, has strongly motivated the development of thermoacoustic energy conversion systems. A thermoacoustic refrigerator (TAR) is a device that is mainly consisting of a resonator, a stack and two heat exchangers. Typically, the resonator is a long circular tube, made of copper or steel and filled with Helium as a the working gas, while the stack has short and relatively low thermal conductivity ceramic parallel plates aligned with the direction of the prevailing resonant wave. Typically, the resonator of a standing-wave refrigerator has one end closed and is bounded by the acoustic driver at the other end enabling the propagation of half-wavelength acoustic excitation. The hot and cold heat exchangers are made of copper to allow for efficient heat transfer between the working gas and the external heat source and sink respectively. TARs are interesting because they have no moving parts, unlike conventional refrigerators, and almost no environmental impact exists as they rely on the conversion of acoustic and heat energies. Their fabrication process is rather simpler and sizes span wide variety of length scales. The viscous and thermal interactions between the stack plates, heat exchangers' plates and the working gas significantly affect the flow field within the plates' channels, and the energy flux density at the plates' surfaces, respectively. Here, the design, the manufacture and the testing of a compact refrigeration system that is based on the thermoacoustic energy-conversion technology is reported. A 1-D linear acoustic model is carefully and specifically developed, which is followed by building the hardware and testing procedures. The system consists of two harmonically-oscillating pistons driven by a simple 1-HP rotary drive mechanism operating at a frequency of 42Hz -hereby, replacing typical expensive linear motors and loudspeakers-, and a thermoacoustic stack within which the energy conversion of sound into heat is taken place. Air at ambient conditions is used as the working gas while the amplitude of the driver's displacement reaches 19 mm. The 30-cm-long stack is a simple porous ceramic material having 100 square channels per square inch. During operation, both oscillating-gas pressure and solid-stack temperature are recorded for further analysis. Measurements show a maximum temperature difference of about 27 degrees between the stack hot and cold ends with a Carnot coefficient of performance of 11 and estimated cooling capacity of five Watts, when operating at ambient conditions. A dynamic pressure of 7-kPa-amplitude is recorded, yielding a drive ratio of 7% approximately, and found in a good agreement with theoretical prediction. The system behavior is clearly non-linear and significant non-linear loss mechanisms are evident. This work helps understanding the operation principles of thermoacoustic refrigerators and presents a keystone towards developing commercial thermoacoustic refrigerator units.

Keywords: refrigeration system, rotary drive mechanism, standing-wave, thermoacoustic refrigerator

Procedia PDF Downloads 368
24 Theoretical Study of the Photophysical Properties and Potential Use of Pseudo-Hemi-Indigo Derivatives as Molecular Logic Gates

Authors: Christina Eleftheria Tzeliou, Demeter Tzeli

Abstract:

Introduction: Molecular Logic Gates (MLGs) are molecular machines that can perform complex work, such as solving logic operations. Molecular switches, which are molecules that can experience chemical changes are examples of successful types of MLGs. Recently, Quintana-Romero and Ariza-Castolo studied experimentally six stable pseudo-hemi-indigo-derived MLGs capable of solving complex logic operations. The MLG design relies on a molecular switch that experiences Z and E isomerism, thus the molecular switch's axis has to be a double bond. The hemi-indigo structure was preferred for the assembly of molecular switches due to its interaction with visible light. Z and E pseudo-hemi-indigo isomers can also be utilized for selective isomerization as they have distinct absorption spectra. Methodology: Here, the photophysical properties of pseudo-hemi-indigo derivatives are examined, i.e., derivatives of molecule 1 with anthracene, naphthalene, phenanthrene, pyrene, and pyrrole. In conjunction with some trials that were conducted, the level of theory mentioned subsequently was determined. The structures under study were optimized in both cis and trans conformations at the PBE0/6-31G(d,p) level of theory. The absorption spectra of the structures were calculated at PBE0/DEF2TZVP. In all cases, the absorption spectra of the studied systems were calculated including up to 50 singlet- and triplet-spin excited electronic states. Transition states (cis → cis, cis → trans, and trans → trans) were obtained in cases where it was possible, with PBE0/6-31G(d,p) for the optimization of the transition states and PBE0/DEF2TZVP for the respective absorption spectra. Emission spectra were obtained for the first singlet state of each molecule in cis both and trans conformations in PBE0/DEF2TZVP as well. All studies were performed in chloroform solvent that was added as a dielectric constant and the polarizable continuum model was also employed. Findings: Shifts of up to 25 nm are observed in the absorption spectra due to cis-trans isomerization, while the transition state is shifted up to about 150 nm. The electron density distribution is also examined, where charge transfer and electron transfer phenomena are observed regarding the three excitations of interest, i.e., H-1 → L, H → L and H → L+1. Emission spectra calculations were also carried out at PBE0/DEF2TZVP for the complete investigation of these molecules. Using protonation as input, selected molecules act as MLGs. Conclusion: Theoretical data so far indicate that both cis-trans isomerization, and cis-cis and trans-trans conformer isomerization affect the UV-visible absorption and emission spectra. Specifically, shifts of up to 30 nm are observed, while the transition state is shifted up to about 150 nm in cis-cis isomerization. The computational data obtained are in agreement with available experimental data, which have predicted that the pyrrole derivative is a MLG at 445 nm and 400 nm using protonation as input, while the anthracene derivative is a MLG that operates at 445 nm using protonation as input. Finally, it was found that selected molecules are candidates as MLG using protonation and light as inputs. These MLGs could be used as chemical sensors or as particular intracellular indicators, among several other applications. Acknowledgements: The author acknowledges the Hellenic Foundation for Research and Innovation for the financial support of this project (Fellowship Number: 21006).

Keywords: absorption spectra, DFT calculations, isomerization, molecular logic gates

Procedia PDF Downloads 21
23 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 386
22 Bacterial Exposure and Microbial Activity in Dental Clinics during Cleaning Procedures

Authors: Atin Adhikari, Sushma Kurella, Pratik Banerjee, Nabanita Mukherjee, Yamini M. Chandana Gollapudi, Bushra Shah

Abstract:

Different sharp instruments, drilling machines, and high speed rotary instruments are routinely used in dental clinics during dental cleaning. Therefore, these cleaning procedures release a lot of oral microorganisms including bacteria in clinic air and may cause significant occupational bioaerosol exposure risks for dentists, dental hygienists, patients, and dental clinic employees. Two major goals of this study were to quantify volumetric airborne concentrations of bacteria and to assess overall microbial activity in this type of occupational environment. The study was conducted in several dental clinics of southern Georgia and 15 dental cleaning procedures were targeted for sampling of airborne bacteria and testing of overall microbial activity in settled dusts over clinic floors. For air sampling, a Biostage viable cascade impactor was utilized, which comprises an inlet cone, precision-drilled 400-hole impactor stage, and a base that holds an agar plate (Tryptic soy agar). A high-flow Quick-Take-30 pump connected to this impactor pulls microorganisms in air at 28.3 L/min flow rate through the holes (jets) where they are collected on the agar surface for approx. five minutes. After sampling, agar plates containing the samples were placed in an ice chest with blue ice and plates were incubated at 30±2°C for 24 to 72 h. Colonies were counted and converted to airborne concentrations (CFU/m3) followed by positive hole corrections. Most abundant bacterial colonies (selected by visual screening) were identified by PCR amplicon sequencing of 16S rRNA genes. For understanding overall microbial activity in clinic floors and estimating a general cleanliness of the clinic surfaces during or after dental cleaning procedures, ATP levels were determined in swabbed dust samples collected from 10 cm2 floor surfaces. Concentration of ATP may indicate both the cell viability and the metabolic status of settled microorganisms in this situation. An ATP measuring kit was used, which utilized standard luciferin-luciferase fluorescence reaction and a luminometer, which quantified ATP levels as relative light units (RLU). Three air and dust samples were collected during each cleaning procedure (at the beginning, during cleaning, and immediately after the procedure was completed (n = 45). Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels. The concentrations of bacteria were significantly higher than typical indoor residential environments. Although an increasing trend for airborne bacteria was observed during cleaning, the data collected at three different time points were not significantly different (ANOVA: p = 0.38) probably due to high standard deviations of data. The ATP levels, however, demonstrated a significant difference (ANOVA: p <0.05) in this scenario indicating significant change in microbial activity on floor surfaces during dental cleaning. The most common bacterial genera identified were: Neisseria sp., Streptococcus sp., Chryseobacterium sp., Paenisporosarcina sp., and Vibrio sp. in terms of frequencies of occurrences, respectively. The study concluded that bacterial exposure in dental clinics could be a notable occupational biohazard, and appropriate respiratory protections for the employees are urgently needed.

Keywords: bioaerosols, hospital hygiene, indoor air quality, occupational biohazards

Procedia PDF Downloads 311
21 Evaluation of the Suitability of a Microcapsule-Based System for the Manufacturing of Self-Healing Low-Density Polyethylene

Authors: Małgorzata Golonka, Jadwiga Laska

Abstract:

Among self-healing materials, the most unexplored group are thermoplastic polymers. These polymers are used not only to produce packaging with a relatively short life but also to obtain coatings, insulation, casings, or parts of machines and devices. Due to its exceptional resistance to weather conditions, hydrophobicity, sufficient mechanical strength, and ease of extrusion, polyethylene is used in the production of polymer pipelines and as an insulating layer for steel pipelines. Polyethylene or PE coated steel pipelines can be used in difficult conditions such as underground or underwater installations. Both installation and use under such conditions are associated with high stresses and consequently the formation of microdamages in the structure of the material, loss of its integrity and final applicability. The ideal solution would be to include a self-healing system in the polymer material. In the presented study the behavior of resin-coated microcapsules in the extrusion process of low-density polyethylene was examined. Microcapsules are a convenient element of the repair system because they can be filled with appropriate reactive substances to ensure the repair process, but the main problem is their durability under processing conditions. Rapeseed oil, which has a relatively high boiling point of 240⁰C and low volatility, was used as the core material that simulates the reactive agents. The capsule shell, which is a key element responsible for its mechanical strength, was obtained by in situ polymerising urea-formaldehyde, melamine-urea-formaldehyde or melamine-formaldehyde resin on the surface of oil droplets dispersed in water. The strength of the capsules was compared based on the shell material, and in addition, microcapsules with single- and multilayer shells were obtained using different combinations of the chemical composition of the resins. For example, the first layer of appropriate tightness and stiffness was made of melamine-urea-formaldehyde resin, and the second layer was a melamine-formaldehyde reinforcing layer. The size, shape, distribution of capsule diameters and shell thickness were determined using digital optical microscopy and electron microscopy. The efficiency of encapsulation (i.e., the presence of rapeseed oil as the core) and the tightness of the shell were determined by FTIR spectroscopic examination. The mechanical strength and distribution of microcapsules in polyethylene were tested by extruding samples of crushed low-density polyethylene mixed with microcapsules in a ratio of 1 and 2.5% by weight. The extrusion process was carried out in a mini extruder at a temperature of 150⁰C. The capsules obtained had a diameter range of 70-200 µm. FTIR analysis confirmed the presence of rapeseed oil in both single- and multilayer shell microcapsules. Microscopic observations of cross sections of the extrudates confirmed the presence of both intact and cracked microcapsules. However, the melamine-formaldehyde resin shells showed higher processing strength compared to that of the melamine-urea-formaldehyde coating and the urea-formaldehyde coating. Capsules with a urea-formaldehyde shell work very well in resin coating systems and cement composites, i.e., in pressureless processing and moulding conditions. The addition of another layer of melamine-formaldehyde coating to both the melamine-urea-formaldehyde and melamine-formaldehyde resin layers significantly increased the number of microcapsules undamaged during the extrusion process. The properties of multilayer coatings were also determined and compared with each other using computer modelling.

Keywords: self-healing polymers, polyethylene, microcapsules, extrusion

Procedia PDF Downloads 29
20 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.

Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 104
19 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics

Authors: Varun Kumar, Chandra Shakher

Abstract:

Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.

Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy

Procedia PDF Downloads 498
18 Scalable CI/CD and Scalable Automation: Assisting in Optimizing Productivity and Fostering Delivery Expansion

Authors: Solanki Ravirajsinh, Kudo Kuniaki, Sharma Ankit, Devi Sherine, Kuboshima Misaki, Tachi Shuntaro

Abstract:

In software development life cycles, the absence of scalable CI/CD significantly impacts organizations, leading to increased overall maintenance costs, prolonged release delivery times, heightened manual efforts, and difficulties in meeting tight deadlines. Implementing CI/CD with standard serverless technologies using cloud services overcomes all the above-mentioned issues and helps organizations improve efficiency and faster delivery without the need to manage server maintenance and capacity. By integrating scalable CI/CD with scalable automation testing, productivity, quality, and agility are enhanced while reducing the need for repetitive work and manual efforts. Implementing scalable CI/CD for development using cloud services like ECS (Container Management Service), AWS Fargate, ECR (to store Docker images with all dependencies), Serverless Computing (serverless virtual machines), Cloud Log (for monitoring errors and logs), Security Groups (for inside/outside access to the application), Docker Containerization (Docker-based images and container techniques), Jenkins (CI/CD build management tool), and code management tools (GitHub, Bitbucket, AWS CodeCommit) can efficiently handle the demands of diverse development environments and are capable of accommodating dynamic workloads, increasing efficiency for faster delivery with good quality. CI/CD pipelines encourage collaboration among development, operations, and quality assurance teams by providing a centralized platform for automated testing, deployment, and monitoring. Scalable CI/CD streamlines the development process by automatically fetching the latest code from the repository every time the process starts, building the application based on the branches, testing the application using a scalable automation testing framework, and deploying the builds. Developers can focus more on writing code and less on managing infrastructure as it scales based on the need. Serverless CI/CD eliminates the need to manage and maintain traditional CI/CD infrastructure, such as servers and build agents, reducing operational overhead and allowing teams to allocate resources more efficiently. Scalable CI/CD adjusts the application's scale according to usage, thereby alleviating concerns about scalability, maintenance costs, and resource needs. Creating scalable automation testing using cloud services (ECR, ECS Fargate, Docker, EFS, Serverless Computing) helps organizations run more than 500 test cases in parallel, aiding in the detection of race conditions, performance issues, and reducing execution time. Scalable CI/CD offers flexibility, dynamically adjusting to varying workloads and demands, allowing teams to scale resources up or down as needed. It optimizes costs by only paying for the resources as they are used and increases reliability. Scalable CI/CD pipelines employ automated testing and validation processes to detect and prevent errors early in the development cycle.

Keywords: achieve parallel execution, cloud services, scalable automation testing, scalable continuous integration and deployment

Procedia PDF Downloads 43
17 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning

Authors: Pinzhe Zhao

Abstract:

This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.

Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity

Procedia PDF Downloads 20
16 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.

Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor

Procedia PDF Downloads 124