Search results for: fiber optic deployment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1812

Search results for: fiber optic deployment

552 Structure and Properties of Meltblown Polyetherimide as High Temperature Filter Media

Authors: Gajanan Bhat, Vincent Kandagor, Daniel Prather, Ramesh Bhave

Abstract:

Polyetherimide (PEI), an engineering plastic with very high glass transition temperature and excellent chemical and thermal stability, has been processed into a controlled porosity filter media of varying pore size, performance, and surface characteristics. A special grade of the PEI was processed by melt blowing to produce microfiber nonwovens suitable as filter media. The resulting microfiber webs were characterized to evaluate their structure and properties. The fiber webs were further modified by hot pressing, a post processing technique, which reduces the pore size in order to improve the barrier properties of the resulting membranes. This ongoing research has shown that PEI can be a good candidate for filter media requiring high temperature and chemical resistance with good mechanical properties. Also, by selecting the appropriate processing conditions, it is possible to achieve desired filtration performance from this engineering plastic.

Keywords: nonwovens, melt blowing, polyehterimide, filter media, microfibers

Procedia PDF Downloads 309
551 Sustainability of Photovoltaic Recycling Planning

Authors: Jun-Ki Choi

Abstract:

The usage of valuable resources and the potential for waste generation at the end of the life cycle of photovoltaic (PV) technologies necessitate a proactive planning for a PV recycling infrastructure. To ensure the sustainability of PV in large scales of deployment, it is vital to develop and institute low-cost recycling technologies and infrastructure for the emerging PV industry in parallel with the rapid commercialization of these new technologies. There are various issues involved in the economics of PV recycling and this research examine those at macro and micro levels, developing a holistic interpretation of the economic viability of the PV recycling systems. This study developed mathematical models to analyze the profitability of recycling technologies and to guide tactical decisions for allocating optimal location of PV take-back centers (PVTBC), necessary for the collection of end of life products. The economic decision is usually based on the level of the marginal capital cost of each PVTBC, cost of reverse logistics, distance traveled, and the amount of PV waste collected from various locations. Results illustrated that the reverse logistics costs comprise a major portion of the cost of PVTBC; PV recycling centers can be constructed in the optimally selected locations to minimize the total reverse logistics cost for transporting the PV wastes from various collection facilities to the recycling center. In the micro- process level, automated recycling processes should be developed to handle the large amount of growing PV wastes economically. The market price of the reclaimed materials are important factors for deciding the profitability of the recycling process and this illustrates the importance of the recovering the glass and expensive metals from PV modules.

Keywords: photovoltaic, recycling, mathematical models, sustainability

Procedia PDF Downloads 251
550 Exploring the Biochemical and Therapeutic Properties of Aged Garlic

Authors: Farhan Saeed

Abstract:

The core objective of this work is to explicate the biochemical and therapeutic properties of aged garlic. For this purpose, two varieties of garlic were obtained from Ayub Agricultural Research Institute (AARI) Faisalabad-Pakistan. Additionally, fresh garlic was converted into aged garlic via fermentation method in the incubator at 70 to 80 % humidity level and 60C0 temperature for one month. Similarly, biochemical and antioxidant properties of fresh and aged garlic were also elucidated. Mean values showed that moisture content was decreased, whereas crude fat, crude protein, crude fiber, crude ash and total carbohydrates were enhanced after fermentation. Additionally, crude protein of fresh and aged garlic was 7.57±0.16 and 5.52±0.12%, respectively, whilst 9.68±0.41 and 8.78±0.29%, respectively, after the fermentation process. In addition, NFE contents were also enhanced up to 39% after the fermentation method. Moreover, Zn, S, Al, K, Fe, Na, Mg, and Cu contents were also increased. Furthermore, Total phenolic contents (TPC) of fresh and aged garlic were 2498.70 & 2188.50mg GAE/kg whilst 3008.59, & 2591.81mg GAE/kg for aged garlic. In conclusion, aged garlic explicated the better biochemical properties, mineral profile and antioxidant properties as compared to fresh garlic.

Keywords: aged garlic, nutritional values, bioactive properties, fermentation

Procedia PDF Downloads 165
549 Investigate the Performance of SMA-FRP Composite Bars in Seismic Regions under Corrosion Conditions

Authors: Amirmozafar Benshams, Saman Shafeinejad, Mohammad Zaman Kabir, Farzad Hatami, Mohammadreza Khedmati, Mesbah Saybani

Abstract:

Steel bars has been used in concrete structures for more than one hundred years but lack of corrosion resistance of steel reinforcement has resulted in many structural failures. Fiber Reinforced Polymer (FRP) bar is an acceptable solution to replace steel to mitigate corrosion problem. Since FRP is a brittle material its use in seismic region has been a concern. FRP RC structures can be made ductile by employing a ductile material such as Shape Memory Alloy (SMA) at the plastic hinge region and FRP at the other regions on the other hand SMA is highly resistant to corrosion. Shape Memory Alloy has the unique ability to undergo large inelastic deformation and regain its initial shape through stress removal therefore utilizing composite SMA-FRP bars not only have good corrosion resistance but also have good performance in seismic region. The result show indicate that such composite SMA-FRP bars can substantially reduce the residual drift with adequate energy dissipation capacity during earthquake.

Keywords: steel bar, shape memory alloy, FRP, corrosion

Procedia PDF Downloads 382
548 Combination of Electrochemical Impedance Spectroscopy and Electromembrane Extraction for the Determination of Zolpidem Using Modified Screen-Printed Electrode

Authors: Ali Naeemy, Mir Ghasem Hoseini

Abstract:

In this study, for the first time, an analytical method developed and validated by combining electrochemical impedance spectroscopy and electromembrane extraction (EIS-EME) by Vulcan/poly pyrrole nanocomposite modified screen-printed electrode (PPY–VU/SPE) for accurately quantifying zolpidem. EME parameters optimized, including solvent composition, voltage, pH adjustments and extraction time. Zolpidem was transferred from a donor solution (pH 5) to an acceptor solution (pH 13) using a hollow fiber in 1-octanol as a membrane, driven by a 60 V voltage for 25 minutes, ensuring precise and selective extraction. In comparison with SPE, VU/SPE and PPY/SPE, the PPY–VU/SPE was much more efficient for ZP oxidation. Calibration curves with good linearity were obtained in the concentration range of 2-75 µmol L-1 using the EIS-EME with the detection limit of 0.5 µmol L-1 . Finally, the EIS-EME by using the PPY– VU/SPE was successfully used to determine ZP in tablet dosage form, urine and plasma samples. Keywords: Electrochemical impedance spectroscopy, Electromembrane extraction, Zolpidem, Vulcan, poly pyrrole, Screen printed electrode

Keywords: electrochemical impedance spectroscopy, electromembrane extraction, screen printed electrode, zolpidem

Procedia PDF Downloads 29
547 On the Hirota Bilinearization of Fokas-Lenells Equation to Obtain Bright N-Soliton Solution

Authors: Sagardeep Talukdar, Gautam Kumar Saharia, Riki Dutta, Sudipta Nandy

Abstract:

In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain bright soliton. We have obtained bright 1-soliton, 2-soliton solutions and propose the scheme for obtaining N-soliton solution. We have used an additional parameter which is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.

Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton

Procedia PDF Downloads 107
546 Microplastics in Two Bivalves of The Bay of Bengal Coast, Bangladesh

Authors: Showmitra Chowdhury, M. Shahadat Hossain, S. M. Sharifuzzaman, Sayedur Rahman Chowdhury, Subrata Sarker, M. Shah Nawaz Chowdhury

Abstract:

Microplastics were identified in mussel (Pernaviridis) and Oyster (Crassostrea madrasensis) from the south east coast of Bangladesh. Samples were collected from four sites of the coast based on their availability, and gastrointestinal tracts were assessed following isolation, floatation, filtration, microscopic observation, and polymer identification by micro-Fourier Transformed Infrared Spectroscope (μ-FTIR) for microplastics determination. A total of 1527 microplastics were identified from 130 samples. The amount of microplastics varied from 0.66 to 3.10 microplastics/g and from 3.20 to 27.60 items/individual. Crassostrea madrasensiscontained on average 1.64 items/g and exhibited the highest level of microplastics by weight. Fiber was the most dominant type, accounting for 72% of total microplastics. Polyethylene, polypropylene, polystyrene, polyester, and nylon were the major polymer types. In both species, transparent/ black color and filamentous shape was dominant. The most common size ranges from 0.005 to 0.25mm and accounted for 39% to 67%. The study revealed microplastics pollution is widespread and relatively high in the bivalves of Bangladesh.

Keywords: microplastics, bivalves, mussel, oyster, bay of bengal, Bangladesh

Procedia PDF Downloads 103
545 Flexural Behavior of Voided Slabs Reinforced With Basalt Bars

Authors: Jazlah Majeed Sulaiman, Lakshmi P.

Abstract:

Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally.

Keywords: concrete slabs, openings, BFRP, sustainable, corrosion resistant, non-linear static analysis, ANSYS

Procedia PDF Downloads 99
544 Evaluating the Methods of Retrofitting and Renovating of the Masonry Schools

Authors: Navid Khayat

Abstract:

This study investigates the retrofitting of schools in Ahvaz City. Three schools, namely, Enghelab, Sherafat, and Golchehreh, in Ahvaz City are initially examined through Schmidt hammer and ultrasonic tests. Given the tests and controls on the structures of these schools, the methods are presented for their reconstruction. The plan is presented for each school by estimating the cost and generally the feasibility and estimated the duration of project reconstruction. After reconstruction, the mentioned tests are re-performed for rebuilt parts and the results indicate a significant improvement in performance of structure because of reconstruction. According to the results, despite the fact that the use of fiber reinforced polymers (FRP) for structure retrofitting is costly, due to the low executive costs and also other benefits of FRP, it is generally considered as one of the most effective ways of retrofitting. Building the concrete coating on walls is another effective method in retrofitting the buildings. According to this method, a grid of horizontal and vertical bars is installed on the wall and then the concrete is poured on it. The use of concrete coating on the concrete and brick structures leads to the useful results and the experience indicates that the poured concrete filled the joints well and provides the appropriate binding and adhesion.

Keywords: renovation, retrofitting, masonry structures, old school

Procedia PDF Downloads 276
543 An Easy-Applicable Method for In situ Silver Nanoparticles Preparation into Wool Fibers

Authors: Salwa Mowafi, Mohamed Rehan, Hany Kafafy

Abstract:

In this study, three different systems including room temperature, conventional water bath heating and microwave irradiation technique will be employed in the fabrication of silver nanoparticle-wool fibers. The silver nanoparticles will be synthesized in-situ incorporated into wool fibers under redox active bio-template of wool protein which facilitates the reduction of Ag+ to nanoparticulate Ag0. Silver NPs incorporated wool fiber will be characterized by scanning electron microscopy, energy dispersive X-ray, FTIR, TGA, silver content and X-ray photoelectron spectroscopy. The mechanism of binding Ag NPs in-situ incorporated wool fibers matrix will be discussed. The effect of silver nanoparticles on the coloration, antimicrobial, UV-protection and catalytic properties of the wool fibers will be evaluated. The overall results of this study indicate that the Ag NPs in-situ incorporated wool fibers will be applied as colorants for wool fibers with improving in its multi-functionality properties. So, this study provides a simple approach for innovative protein fibers design by applying the optical properties of Plasmonic noble metal nanoparticles.

Keywords: microwave irradiation technique, multi-functionality properties, silver nanoparticles, wool fibers

Procedia PDF Downloads 202
542 Utilization of Mustard Leaves (Brassica juncea) Powder for the Development of Cereal Based Extruded Snacks

Authors: Maya S. Rathod, Bahadur Singh Hathan

Abstract:

Mustard leaves are rich in folates, vitamin A, K and B-complex. Mustard greens are low in calories and fats and rich in dietary fiber. They are rich in potassium, manganese, iron, copper, calcium, magnesium and low in sodium. It is very rich in antioxidants and Phytonutrients. For the optimization of process variables (moisture content and mustard leave powder), the experiments were conducted according to central composite Face Centered Composite design of RSM. The mustard leaves powder was replaced with composite flour (a combination of rice, chickpea and corn in the ratio of 70:15:15). The extrudate was extruded in a twin screw extruder at a barrel temperature of 120°C. The independent variables were mustard leaves powder (2-10 %) and moisture content (12-20 %). Responses analyzed were bulk density, water solubility index, water absorption index, lateral expansion, hardness, antioxidant activity, total phenolic content and overall acceptability. The optimum conditions obtained were 7.19 g mustard leaves powder in 100 g premix having 16.8 % moisture content (w.b).

Keywords: extrusion, mustard leaves powder, optimization, response surface methodology

Procedia PDF Downloads 533
541 Evaluation of the Effect of Magnetic Field on Fibroblast Attachment in Contact with PHB/Iron Oxide Nanocomposite

Authors: Shokooh Moghadam, Mohammad Taghi Khorasani, Sajjad Seifi Mofarah, M. Daliri

Abstract:

Through the recent two decades, the use of magnetic-property materials with the aim of target cell’s separation and eventually cancer treatment has incredibly increased. Numerous factors can alter the efficacy of this method on curing. In this project, the effect of magnetic field on adhesion of PDL and L929 cells on nanocomposite of iron oxide/PHB with different density of iron oxides (1%, 2.5%, 5%) has been studied. The nanocamposite mentioned includes a polymeric film of poly hydroxyl butyrate and γ-Fe2O3 particles with the average size of 25 nanometer dispersed in it and during this process, poly vinyl alcohol with 98% hydrolyzed and 78000 molecular weight was used as an emulsion to achieve uniform distribution. In order to get the homogenous film, the solution of PHB and iron oxide nanoparticles were put in a dry freezer and in liquid nitrogen, which resulted in a uniform porous scaffold and for removing porosities a 100◦C press was used. After the synthesis of a desirable nanocomposite film, many different tests were performed, First, the particles size and their distribution in the film were evaluated by transmission electron microscopy (TEM) and even FTIR analysis and DMTA test were run in order to observe and accredit the chemical connections and mechanical properties of nanocomposites respectively. By comparing the graphs of case and control samples, it was established that adding nano particles caused an increase in crystallization temperature and the more density of γ-Fe2O3 lead to more Tg (glass temperature). Furthermore, its dispersion range and dumping property of samples were raised up. Moreover, the toxicity, morphologic changes and adhesion of fibroblast and cancer cells were evaluated by a variety of tests. All samples were grown in different density and in contact with cells for 24 and 48 hours within the magnetic fields of 2×10^-3 Tesla. After 48 hours, the samples were photographed with an optic and SEM and no sign of toxicity was traced. The number of cancer cells in the case of sample group was fairly more than the control group. However, there are many gaps and unclear aspects to use magnetic field and their effects in cancer and all diseases treatments yet to be discovered, not to neglect that there have been prominent step on this way in these recent years and we hope this project can be at least a minimum movement in this issue.

Keywords: nanocomposite, cell attachment, magnetic field, cytotoxicity

Procedia PDF Downloads 251
540 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application

Authors: Jeff Moussodji, Dominique Drouin

Abstract:

The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.

Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling

Procedia PDF Downloads 202
539 Finite Element Assessment on Bond Behaviour of FRP-to-Concrete Joints under Cyclic Loading

Authors: F. Atheer, Al-Saoudi, Robin Kalfat, Riadh Al-Mahaidi

Abstract:

Over the last two decades, externally bonded fiber reinforced polymer (FRP) composites bonded to concrete substrates has become a popular method for strengthening reinforced concrete (RC) highway and railway bridges. Such structures are exposed to severe cyclic loading throughout their lifetime often resulting in fatigue damage to structural components and a reduction in the service life of the structure. Since experimental and numerical results on the fatigue performance of FRP-to-concrete joints are still limited, the current research focuses on assessing the fatigue performance of externally bonded FRP-to-concrete joints using a direct shear test. Some early results indicate that the stress ratio and the applied cyclic stress level have a direct influence on the fatigue life of the externally bonded FRP. In addition, a calibrated finite element model is developed to provide further insight into the influence of certain parameters such as: concrete strength, FRP thickness, number of cycles, frequency and stiffness on the fatigue life of the FRP-to-concrete joints.

Keywords: FRP, concrete bond, control, fatigue, finite element model

Procedia PDF Downloads 441
538 Flirting with Ephemerality and the Daily Production of the Fleeting City

Authors: Rafael Martinez

Abstract:

Our view of cities is dominated by the built environment. Buildings, streets, avenues, bridges, flyovers, and so on virtually exclude anything not fixed, permanently alterable or indefinitely temporal. Yet, city environments can also be shaped by temporally produced structures which, regardless of their transience, act as thresholds separating or segregating people and spaces. Academic works on cities conceptualize them, whether temporary or permanent, as tangible environments. This paper considers the idea of the ephemeral city, a city purposely produced and lived in as an impermanent, fluid and transitional environment resulting from an alignment of different forces. In particular, the paper proposes to observe how certain performative practices inform the emergence of ephemeral spaces in the city’s daily life. With Singapore as its backdrop and focusing foreign workers, the paper aims at documenting how everyday life practices, such as flirting, result in production of transitional space, informed by semiotic blurs, and yet material, perceptible, human and tangible for some. In this paper, it is argued that flirting for Singapore's foreign workers entails skillful understanding of what is proposed as the 'flirting cartography.' Thus, spatially, flirtation becomes not only a matter to be taken for granted but also a form of producing a fleeting space that requires deployment of various techniques drawn upon a particular knowledge. The paper is based upon a performative methodology which seeks to understand the praxis and rationale of the ephemerality of some spaces produced by foreign workers within this cosmopolitan city. By resorting to this methodological approach, the paper aims to establish the connection between the visibility gained by usually marginalized populations through their ephemeral reclamation of public spaces in the city.

Keywords: ephemeral, flirting, Singapore, space

Procedia PDF Downloads 98
537 Development of Mobile Application for Internship Program Management Using the Concept of Model View Controller (MVC) Pattern

Authors: Shutchapol Chopvitayakun

Abstract:

Nowadays, especially for the last 5 years, mobile devices, mobile applications and mobile users, through the deployment of wireless communication and mobile phone cellular network, all these components are growing significantly bigger and stronger. They are being integrated into each other to create multiple purposes and pervasive deployments into every business and non-business sector such as education, medicine, traveling, finance, real estate and many more. Objective of this study was to develop a mobile application for seniors or last-year students who enroll the internship program at each tertiary school (undergraduate school) and do onsite practice at real field sties, real organizations and real workspaces. During the internship session, all students as the interns are required to exercise, drilling and training onsite with specific locations and specific tasks or may be some assignments from their supervisor. Their work spaces are both private and government corporates and enterprises. This mobile application is developed under schema of a transactional processing system that enables users to keep daily work or practice log, monitor true working locations and ability to follow daily tasks of each trainee. Moreover, it provides useful guidance from each intern’s advisor, in case of emergency. Finally, it can summarize all transactional data then calculate each internship cumulated hours from the field practice session for each individual intern.

Keywords: internship, mobile application, Android OS, smart phone devices, mobile transactional processing system, guidance and monitoring, tertiary education, senior students, model view controller (MVC)

Procedia PDF Downloads 306
536 Novel CFRP Adhesive Joints and Structures for Offshore Application

Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa

Abstract:

Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: One is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.

Keywords: adhesive joints, CFRP, VARTM, resin transfer molding

Procedia PDF Downloads 432
535 Study of Mechanical Behavior of Unidirectional Composite Laminates According

Authors: Deliou Adel, Saadalah Younes, Belkaid Khmissi, Dehbi Meriem

Abstract:

Composite materials, in the most common sense of the term, are a set of synthetic materials designed and used mainly for structural applications; the mechanical function is dominant. The mechanical behaviors of the composite, as well as the degradation mechanisms leading to its rupture, depend on the nature of the constituents and on the architecture of the fiber preform. The profile is required because it guides the engineer in designing structures with precise properties in relation to the needs. This work is about studying the mechanical behavior of unidirectional composite laminates according to different failure criteria. Varying strength parameter values make it possible to compare the ultimate mechanical characteristics obtained by the criteria of Tsai-Hill, Fisher and maximum stress. The laminate is subjected to uniaxial tensile membrane forces. Estimates of their ultimate strengths and the plotting of the failure envelope constitute the principal axis of this study. Using the theory of maximum stress, we can determine the various modes of damage of the composite. The different components of the deformation are presented for different orientations of fibers.

Keywords: unidirectional kevlar/epoxy composite, failure criterion, membrane stress, deformations, failure envelope

Procedia PDF Downloads 81
534 Simulation, Optimization, and Analysis Approach of Microgrid Systems

Authors: Saqib Ali

Abstract:

Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.

Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management

Procedia PDF Downloads 93
533 Effect of Bulk Density and Fiber Blend Content of Nonwoven Textiles on Flammability Properties

Authors: Klara Masnicova, Jiri Chaloupek

Abstract:

Flammability plays an important role in applications such as thermal and acoustic insulation and other technical nonwoven textiles. The study was conducted in an attempt to investigate the flammability behavior of nonwoven textiles in relation to their structural and material characteristics, with emphasis given to the blending ratios of flammable and non-flammable fibers or fibers with reduced flammability. Nonwoven structures made of blends of viscose/oxidized polyacrylonitrile (VS/oxidized PAN fibers and polyethylene terephthalate/oxidized polyacrylonitrile (PET/oxidized PAN) fibers in several bulk densities are evaluated. The VS/oxidized PAN blend is model material. The flammability was studied using a cone calorimeter. Reaction to fire was observed using the small flame test method. Interestingly, the results show some of the blending ratios do not react to the heat in linear response to bulk density. This outcome can have a huge impact on future product development in fire safety and for the general understanding of flammability behavior of nonwovens made of staple fibers.

Keywords: bulk density, cone calorimetry, flammability, nonwoven textiles

Procedia PDF Downloads 302
532 Global Healthcare Village Based on Mobile Cloud Computing

Authors: Laleh Boroumand, Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar

Abstract:

Cloud computing being the use of hardware and software that are delivered as a service over a network has its application in the area of health care. Due to the emergency cases reported in most of the medical centers, prompt for an efficient scheme to make health data available with less response time. To this end, we propose a mobile global healthcare village (MGHV) model that combines the components of three deployment model which include country, continent and global health cloud to help in solving the problem mentioned above. In the creation of continent model, two (2) data centers are created of which one is local and the other is global. The local replay the request of residence within the continent, whereas the global replay the requirements of others. With the methods adopted, there is an assurance of the availability of relevant medical data to patients, specialists, and emergency staffs regardless of locations and time. From our intensive experiment using the simulation approach, it was observed that, broker policy scheme with respect to optimized response time, yields a very good performance in terms of reduction in response time. Though, our results are comparable to others when there is an increase in the number of virtual machines (80-640 virtual machines). The proportionality in increase of response time is within 9%. The results gotten from our simulation experiments shows that utilizing MGHV leads to the reduction of health care expenditures and helps in solving the problems of unqualified medical staffs faced by both developed and developing countries.

Keywords: cloud computing (MCC), e-healthcare, availability, response time, service broker policy

Procedia PDF Downloads 372
531 A Novel Rapid Well Control Technique Modelled in Computational Fluid Dynamics Software

Authors: Michael Williams

Abstract:

The ability to control a flowing well is of the utmost important. During the kill phase, heavy weight kill mud is circulated around the well. While increasing bottom hole pressure near wellbore formation, the damage is increased. The addition of high density spherical objects has the potential to minimise this near wellbore damage, increase bottom hole pressure and reduce operational time to kill the well. This operational time saving is seen in the rapid deployment of high density spherical objects instead of building high density drilling fluid. The research aims to model the well kill process using a Computational Fluid Dynamics software. A model has been created as a proof of concept to analyse the flow of micron sized spherical objects in the drilling fluid. Initial results show that this new methodology of spherical objects in drilling fluid agrees with traditional stream lines seen in non-particle flow. Additional models have been created to demonstrate that areas of higher flow rate around the bit can lead to increased probability of wash out of formations but do not affect the flow of micron sized spherical objects. Interestingly, areas that experience dimensional changes such as tool joints and various BHA components do not appear at this initial stage to experience increased velocity or create areas of turbulent flow, which could lead to further borehole stability. In conclusion, the initial models of this novel well control methodology have not demonstrated any adverse flow patterns, which would conclude that this model may be viable under field conditions.

Keywords: well control, fluid mechanics, safety, environment

Procedia PDF Downloads 165
530 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 270
529 Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling

Authors: M. I. Aida Isma, Azni Idris, Rozita Omar, A. R. Putri Razreena

Abstract:

40L of hollow fiber membrane bioreactor with solids retention times (SRT) of 30, 15 and 4 days were setup for treating synthetic wastewater at hydraulic retention times (HRT) of 12, 8 and 4 hours. The objectives of the study were to investigate the effects of SRT and HRT on membrane fouling. A comparative analysis was carried out for physiochemical quality parameters (turbidity, suspended solids, COD, NH3-N and PO43-). Scanning electron microscopy (SEM), energy diffusive X-ray (EDX) analyzer and particle size distribution (PSD) were used to characterize the membrane fouling properties. The influence of SRT on the quality of effluent, activated sludge quality, and membrane fouling were also correlated. Lower membrane fouling and slower rise in trans-membrane pressure (TMP) were noticed at the longest SRT and HRT of 30d and 12h, respectively. Increasing SRT results in noticeable reduction of dissolved organic matters. The best removal efficiencies of COD, TSS, NH3-N and PO43- were 93%, 98%, 80% and 30% respectively. The high HRT with shorter SRT induced faster fouling rate. The main fouling resistance was cake layer. The most severe membrane fouling was observed at SRT and HRT of 4 and 12, respectively with thickness cake layer of 17 μm as reflected by higher TMP, lower effluent removal and thick sludge cake layer.

Keywords: membrane bioreactor, SRT, HRT, fouling

Procedia PDF Downloads 516
528 Application of the Carboxylate Platform in the Consolidated Bioconversion of Agricultural Wastes to Biofuel Precursors

Authors: Sesethu G. Njokweni, Marelize Botes, Emile W. H. Van Zyl

Abstract:

An alternative strategy to the production of bioethanol is by examining the degradability of biomass in a natural system such as the rumen of mammals. This anaerobic microbial community has higher cellulolytic activities than microbial communities from other habitats and degrades cellulose to produce volatile fatty acids (VFA), methane and CO₂. VFAs have the potential to serve as intermediate products for electrochemical conversion to hydrocarbon fuels. In vitro mimicking of this process would be more cost-effective than bioethanol production as it does not require chemical pre-treatment of biomass, a sterile environment or added enzymes. The strategies of the carboxylate platform and the co-cultures of a bovine ruminal microbiota from cannulated cows were combined in order to investigate and optimize the bioconversion of agricultural biomass (apple and grape pomace, citrus pulp, sugarcane bagasse and triticale straw) to high value VFAs as intermediates for biofuel production in a consolidated bioprocess. Optimisation of reactor conditions was investigated using five different ruminal inoculum concentrations; 5,10,15,20 and 25% with fixed pH at 6.8 and temperature at 39 ˚C. The ANKOM 200/220 fiber analyser was used to analyse in vitro neutral detergent fiber (NDF) disappearance of the feedstuffs. Fresh and cryo-frozen (5% DMSO and 50% glycerol for 3 months) rumen cultures were tested for the retainment of fermentation capacity and durability in 72 h fermentations in 125 ml serum vials using a FURO medical solutions 6-valve gas manifold to induce anaerobic conditions. Fermentation of apple pomace, triticale straw, and grape pomace showed no significant difference (P > 0.05) in the effect of 15 and 20 % inoculum concentrations for the total VFA yield. However, high performance liquid chromatographic separation within the two inoculum concentrations showed a significant difference (P < 0.05) in acetic acid yield, with 20% inoculum concentration being the optimum at 4.67 g/l. NDF disappearance of 85% in 96 h and total VFA yield of 11.5 g/l in 72 h (A/P ratio = 2.04) for apple pomace entailed that it was the optimal feedstuff for this process. The NDF disappearance and VFA yield of DMSO (82% NDF disappearance and 10.6 g/l VFA) and glycerol (90% NDF disappearance and 11.6 g/l VFA) stored rumen also showed significantly similar degradability of apple pomace with lack of treatment effect differences compared to a fresh rumen control (P > 0.05). The lack of treatment effects was a positive sign in indicating that there was no difference between the stored samples and the fresh rumen control. Retaining of the fermentation capacity within the preserved cultures suggests that its metabolic characteristics were preserved due to resilience and redundancy of the rumen culture. The amount of degradability and VFA yield within a short span was similar to other carboxylate platforms that have longer run times. This study shows that by virtue of faster rates and high extent of degradability, small scale alternatives to bioethanol such as rumen microbiomes and other natural fermenting microbiomes can be employed to enhance the feasibility of biofuels large-scale implementation.

Keywords: agricultural wastes, carboxylate platform, rumen microbiome, volatile fatty acids

Procedia PDF Downloads 120
527 Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics

Authors: H. Loumi-Fergane, A. Belaidi

Abstract:

The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincaré-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used.  In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in qi, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system.

Keywords: conservation laws, field theories, multisymplectic geometry, relativistic mechanics

Procedia PDF Downloads 197
526 Russia’s Role in Resolving the Nagorno-Karabakh Conflict 1990-2020

Authors: Friba Haidari

Abstract:

The aim of the study is to identify Russia's role in managing the Nagorno-Karabakh conflict betweenArmenia and Azerbaijan during the years 1990 to 2020. The Nagorno-Karabakh crisis can not be considered a mere territorial conflict but also a crossroads of interests of foreign actors. Geopolitical rivalries and the access to energy by regional and trans-regional actors have complicated the crisis and created a security challenge in the region, which is likely to escalate into a full-blown war between the parties involved. The geopolitical situation of Nagorno-Karabakh and its current situation have affected all peripheral states in some way. Russia, as one of the main actors in this scene, has been actively involved since the beginning of the crisis. The Russians have always sought to strengthen their influence and presence in the Nagorno-Karabakh crisis. Russia's efforts to weaken the role of the Minsk Group, The presence of Western actors, and the deployment of Russian forces in the disputed area can be assessed in this context. However, this study seeks to answer the question of what role did Russia play in managing the Nagorno-Karabakh conflict between Armenia and Azerbaijan between 1990 and 2020? The study hypothesizes that Russia has prevented the escalation of the Nagorno-Karabakh conflict through mediation and some coercion. This study is divided into four parts, including conflict management as a theoretical framework; Examining the competition and the role of actors in the Caucasus region, especially the role of the Minsk Group, and what approach or tools and methods Russia has used in its foreign policy in managing the conflict, and finally what are the relations between the countries involved and what will be Russia's role in the future? Was discussed. This study examines the analysis and transfer of ideas and information using authoritative international sources with an explanatory method and shares its results with everyone.

Keywords: Russia, conflict, nagorno-karabakh, management

Procedia PDF Downloads 81
525 Numerical Investigation for External Strengthening of Dapped-End Beams

Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah

Abstract:

The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.

Keywords: dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation

Procedia PDF Downloads 109
524 New Techniques to Decrease the Interfacial Stress in Steel Beams Strengthened With FRP Laminates

Authors: A. S. Bouchikhi, A. Megueni, S. Habibi

Abstract:

One major problem when using bonded Fiber Reinforced Polymer is the presence of high inter facial stresses near the end of the composite laminate which might govern the failure of the strengthening schedule. It is known that the decrease of FRP plate thickness and the fitness of adhesive reduce the stress concentration at plate ends. Another way is to use a plate with a non uniform section or tapered ends and softer adhesive at the edges. In this paper, a comprehensive finite element (FE) study has been conducted to investigate the effect of mixed adhesive joints (MAJ) and tapering plate on the inter facial stress distribution in the adhesive layer, this paper presents the results of a study of application of two adhesives with different stiffnesses (bi-adhesive) along the joint strength length between the CFRP-strengthened steel beam for tapered and untapered plate on the distribution of inter facial stresses. A stiff adhesive was applied in the middle portion of the joint strength, while a low modulus adhesive was applied towards the edges prone to stress concentrations.

Keywords: FRP, mixed adhesive joints, stresses, tapered plate, retrofitted beams bonded

Procedia PDF Downloads 489
523 Efficacy of Chia Seed Oil Supplemented Ice-Cream against Hypercholesterolemia

Authors: Naureen Naeem, M. S. Aslam

Abstract:

Chia seeds found to be a rich source of dietary fiber contain oil which is high in omega 6 and omega 3 fatty acids and helpful in the control of cardiovascular diseases. Owing to its spectacular significance, present research had been designed to explore its effect on cholesterol level of the individuals after consumption of chia seed oil supplemented ice cream. The project was designed in such a manner that fat of ice cream was replaced with chia seed oil in different proportions i.e., 25%, 50%, 75%, 100%. After physico-chemical and sensory evaluation of ice cream, best treatment was selected and used for efficacy trials. After baseline line study and thorough inclusion criteria 10 individuals were selected and divided into two groups. One group treated as control and the other was given chia seed oil supplemented l(50%) ice cream. Significant decrease in cholesterol level was observed in the treated group. 18% decrease in cholesterol level was observed at 40th day followed by 8% at 20th day. Similarly 20% decrease in LDL cholesterol with 14% increase in HDL cholesterol. It was recommended that further trials be conducted with sophisticated techniques to completely replace saturated fat in ice cream with unsaturated fats and to study its effect in hyperglycemia and oxidative stress.

Keywords: hypercholesterolemia, chia seed oil, HDL, triglycerides

Procedia PDF Downloads 298