Search results for: fdtd simulation
3723 Magnetic Navigation of Nanoparticles inside a 3D Carotid Model
Authors: E. G. Karvelas, C. Liosis, A. Theodorakakos, T. E. Karakasidis
Abstract:
Magnetic navigation of the drug inside the human vessels is a very important concept since the drug is delivered to the desired area. Consequently, the quantity of the drug required to reach therapeutic levels is being reduced while the drug concentration at targeted sites is increased. Magnetic navigation of drug agents can be achieved with the use of magnetic nanoparticles where anti-tumor agents are loaded on the surface of the nanoparticles. The magnetic field that is required to navigate the particles inside the human arteries is produced by a magnetic resonance imaging (MRI) device. The main factors which influence the efficiency of the usage of magnetic nanoparticles for biomedical applications in magnetic driving are the size and the magnetization of the biocompatible nanoparticles. In this study, a computational platform for the simulation of the optimal gradient magnetic fields for the navigation of magnetic nanoparticles inside a carotid artery is presented. For the propulsion model of the particles, seven major forces are considered, i.e., the magnetic force from MRIs main magnet static field as well as the magnetic field gradient force from the special propulsion gradient coils. The static field is responsible for the aggregation of nanoparticles, while the magnetic gradient contributes to the navigation of the agglomerates that are formed. Moreover, the contact forces among the aggregated nanoparticles and the wall and the Stokes drag force for each particle are considered, while only spherical particles are used in this study. In addition, gravitational forces due to gravity and the force due to buoyancy are included. Finally, Van der Walls force and Brownian motion are taken into account in the simulation. The OpenFoam platform is used for the calculation of the flow field and the uncoupled equations of particles' motion. To verify the optimal gradient magnetic fields, a covariance matrix adaptation evolution strategy (CMAES) is used in order to navigate the particles into the desired area. A desired trajectory is inserted into the computational geometry, which the particles are going to be navigated in. Initially, the CMAES optimization strategy provides the OpenFOAM program with random values of the gradient magnetic field. At the end of each simulation, the computational platform evaluates the distance between the particles and the desired trajectory. The present model can simulate the motion of particles when they are navigated by the magnetic field that is produced by the MRI device. Under the influence of fluid flow, the model investigates the effect of different gradient magnetic fields in order to minimize the distance of particles from the desired trajectory. In addition, the platform can navigate the particles into the desired trajectory with an efficiency between 80-90%. On the other hand, a small number of particles are stuck to the walls and remains there for the rest of the simulation.Keywords: artery, drug, nanoparticles, navigation
Procedia PDF Downloads 1053722 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 3743721 Set-point Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electro-Hydraulic Servo System
Authors: Maria Ahmadnezhad, Seyedgharani Ghoreishi
Abstract:
Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this thesis, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the set-point performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired set-point performance and has robustness to the disturbances and system uncertainties of EHS systems.Keywords: electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign
Procedia PDF Downloads 10023720 Model Based Design of Fly-by-Wire Flight Controls System of a Fighter Aircraft
Authors: Nauman Idrees
Abstract:
Modeling and simulation during the conceptual design phase are the most effective means of system testing resulting in time and cost savings as compared to the testing of hardware prototypes, which are mostly not available during the conceptual design phase. This paper uses the model-based design (MBD) method in designing the fly-by-wire flight controls system of a fighter aircraft using Simulink. The process begins with system definition and layout where modeling requirements and system components were identified, followed by hierarchical system layout to identify the sequence of operation and interfaces of system with external environment as well as the internal interface between the components. In the second step, each component within the system architecture was modeled along with its physical and functional behavior. Finally, all modeled components were combined to form the fly-by-wire flight controls system of a fighter aircraft as per system architecture developed. The system model developed using this method can be simulated using any simulation software to ensure that desired requirements are met even without the development of a physical prototype resulting in time and cost savings.Keywords: fly-by-wire, flight controls system, model based design, Simulink
Procedia PDF Downloads 1153719 Near Shore Wave Manipulation for Electricity Generation
Authors: K. D. R. Jagath-Kumara, D. D. Dias
Abstract:
The sea waves carry thousands of GWs of power globally. Although there are a number of different approaches to harness offshore energy, they are likely to be expensive, practically challenging and vulnerable to storms. Therefore, this paper considers using the near shore waves for generating mechanical and electrical power. It introduces two new approaches, the wave manipulation and using a variable duct turbine, for intercepting very wide wave fronts and coping with the fluctuations of the wave height and the sea level, respectively. The first approach effectively allows capturing much more energy yet with a much narrower turbine rotor. The second approach allows using a rotor with a smaller radius but captures energy of higher wave fronts at higher sea levels yet preventing it from totally submerging. To illustrate the effectiveness of the approach, the paper contains a description and the simulation results of a scale model of a wave manipulator. Then, it includes the results of testing a physical model of the manipulator and a single duct, axial flow turbine, in a wave flume in the laboratory. The paper also includes comparisons of theoretical predictions, simulation results and wave flume tests with respect to the incident energy, loss in wave manipulation, minimal loss, brake torque and the angular velocity.Keywords: near-shore sea waves, renewable energy, wave energy conversion, wave manipulation
Procedia PDF Downloads 4793718 Progressive Type-I Interval Censoring with Binomial Removal-Estimation and Its Properties
Authors: Sonal Budhiraja, Biswabrata Pradhan
Abstract:
This work considers statistical inference based on progressive Type-I interval censored data with random removal. The scheme of progressive Type-I interval censoring with random removal can be described as follows. Suppose n identical items are placed on a test at time T0 = 0 under k pre-fixed inspection times at pre-specified times T1 < T2 < . . . < Tk, where Tk is the scheduled termination time of the experiment. At inspection time Ti, Ri of the remaining surviving units Si, are randomly removed from the experiment. The removal follows a binomial distribution with parameters Si and pi for i = 1, . . . , k, with pk = 1. In this censoring scheme, the number of failures in different inspection intervals and the number of randomly removed items at pre-specified inspection times are observed. Asymptotic properties of the maximum likelihood estimators (MLEs) are established under some regularity conditions. A β-content γ-level tolerance interval (TI) is determined for two parameters Weibull lifetime model using the asymptotic properties of MLEs. The minimum sample size required to achieve the desired β-content γ-level TI is determined. The performance of the MLEs and TI is studied via simulation.Keywords: asymptotic normality, consistency, regularity conditions, simulation study, tolerance interval
Procedia PDF Downloads 2463717 A Study on the False Alarm Rates of MEWMA and MCUSUM Control Charts When the Parameters Are Estimated
Authors: Umar Farouk Abbas, Danjuma Mustapha, Hamisu Idi
Abstract:
It is now a known fact that quality is an important issue in manufacturing industries. A control chart is an integrated and powerful tool in statistical process control (SPC). The mean µ and standard deviation σ parameters are estimated. In general, the multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) are used in the detection of small shifts in joint monitoring of several correlated variables; the charts used information from past data which makes them sensitive to small shifts. The aim of the paper is to compare the performance of Shewhart xbar, MEWMA, and MCUSUM control charts in terms of their false rates when parameters are estimated with autocorrelation. A simulation was conducted in R software to generate the average run length (ARL) values of each of the charts. After the analysis, the results show that a comparison of the false alarm rates of the charts shows that MEWMA chart has lower false alarm rates than the MCUSUM chart at various levels of parameter estimated to the number of ARL0 (in control) values. Also noticed was that the sample size has an advert effect on the false alarm of the control charts.Keywords: average run length, MCUSUM chart, MEWMA chart, false alarm rate, parameter estimation, simulation
Procedia PDF Downloads 2203716 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach
Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani
Abstract:
Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery
Procedia PDF Downloads 3053715 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting
Authors: Andres F. Ramirez, Carlos F. Valencia
Abstract:
The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation
Procedia PDF Downloads 3223714 NanoSat MO Framework: Simulating a Constellation of Satellites with Docker Containers
Authors: César Coelho, Nikolai Wiegand
Abstract:
The advancement of nanosatellite technology has opened new avenues for cost-effective and faster space missions. The NanoSat MO Framework (NMF) from the European Space Agency (ESA) provides a modular and simpler approach to the development of flight software and operations of small satellites. This paper presents a methodology using the NMF together with Docker for simulating constellations of satellites. By leveraging Docker containers, the software environment of individual satellites can be easily replicated within a simulated constellation. This containerized approach allows for rapid deployment, isolation, and management of satellite instances, facilitating comprehensive testing and development in a controlled setting. By integrating the NMF lightweight simulator in the container, a comprehensive simulation environment was achieved. A significant advantage of using Docker containers is their inherent scalability, enabling the simulation of hundreds or even thousands of satellites with minimal overhead. Docker's lightweight nature ensures efficient resource utilization, allowing for deployment on a single host or across a cluster of hosts. This capability is crucial for large-scale simulations, such as in the case of mega-constellations, where multiple traditional virtual machines would be impractical due to their higher resource demands. This ability for easy horizontal scaling based on the number of simulated satellites provides tremendous flexibility to different mission scenarios. Our results demonstrate that leveraging Docker containers with the NanoSat MO Framework provides a highly efficient and scalable solution for simulating satellite constellations, offering not only significant benefits in terms of resource utilization and operational flexibility but also enabling testing and validation of ground software for constellations. The findings underscore the importance of taking advantage of already existing technologies in computer science to create new solutions for future satellite constellations in space.Keywords: containerization, docker containers, NanoSat MO framework, satellite constellation simulation, scalability, small satellites
Procedia PDF Downloads 473713 Design and Simulation of Low Threshold Nanowire Photonic Crystal Surface Emitting Lasers
Authors: Balthazar Temu, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li
Abstract:
Nanowire based Photonic Crystal Surface Emitting Lasers (PCSELs) reported in the literature have been designed using a triangular, square or honeycomb patterns. The triangular and square pattern PCSELs have limited degrees of freedom in tuning the design parameters which hinders the ability to design high quality factor (Q-factor) devices. Nanowire based PCSELs designed using triangular and square patterns have been reported with the lasing thresholds of 130 kW/〖cm〗^2 and 7 kW/〖cm〗^2 respectively. On the other hand the honeycomb pattern gives more degrees of freedom in tuning the design parameters, which can allow one to design high Q-factor devices. A deformed honeycomb pattern device was reported with lasing threshold of 6.25 W/〖cm〗^2 corresponding to a simulated Q-factor of 5.84X〖10〗^5.Despite this achievement, the design principles which can lead to realization of even higher Q-factor honeycomb pattern PCSELs have not yet been investigated. In this work we show that through deforming the honeycomb pattern and tuning the heigh and lattice constants of the nanowires, it is possible to achieve even higher Q-factor devices. Considering three different band edge modes, we investigate how the resonance wavelength changes as the device is deformed, which is useful in designing high Q-factor devices in different wavelength bands. We eventually establish the design and simulation of honeycomb PCSELs operating around the wavelength of 960nm , in the O and the C band with Q-factors up to 7X〖10〗^7. We also investigate the Q-factors of undeformed device, and establish that the mode at the band edge close to 960nm can attain highest Q-factor of all the modes when the device is undeformed and the Q-factor degrades as the device is deformed. This work is a stepping stone towards the fabrication of very high Q-factor, nanowire based honey comb PCSELs, which are expected to have very low lasing threshold.Keywords: designing nanowire PCSEL, designing PCSEL on silicon substrates, low threshold nanowire laser, simulation of photonic crystal lasers
Procedia PDF Downloads 73712 Numerical Simulation of Production of Microspheres from Polymer Emulsion in Microfluidic Device toward Using in Drug Delivery Systems
Authors: Nizar Jawad Hadi, Sajad Abd Alabbas
Abstract:
Because of their ability to encapsulate and release drugs in a controlled manner, microspheres fabricated from polymer emulsions using microfluidic devices have shown promise for drug delivery applications. In this study, the effects of velocity, density, viscosity, and surface tension, as well as channel diameter, on microsphere generation were investigated using Fluent Ansys software. The software was programmed with the physical properties of the polymer emulsion such as density, viscosity and surface tension. Simulation will then be performed to predict fluid flow and microsphere production and improve the design of drug delivery applications based on changes in these parameters. The effects of capillary and Weber numbers are also studied. The results of the study showed that the size of the microspheres can be controlled by adjusting the speed and diameter of the channel. Narrower microspheres resulted from narrower channel widths and higher flow rates, which could improve drug delivery efficiency, while smaller microspheres resulted from lower interfacial surface tension. The viscosity and density of the polymer emulsion significantly affected the size of the microspheres, ith higher viscosities and densities producing smaller microspheres. The loading and drug release properties of the microspheres created with the microfluidic technique were also predicted. The results showed that the microspheres can efficiently encapsulate drugs and release them in a controlled manner over a period of time. This is due to the high surface area to volume ratio of the microspheres, which allows for efficient drug diffusion. The ability to tune the manufacturing process using factors such as speed, density, viscosity, channel diameter, and surface tension offers a potential opportunity to design drug delivery systems with greater efficiency and fewer side effects.Keywords: polymer emulsion, microspheres, numerical simulation, microfluidic device
Procedia PDF Downloads 633711 The Influence of Fiber Volume Fraction on Thermal Conductivity of Pultruded Profile
Authors: V. Lukášová, P. Peukert, V. Votrubec
Abstract:
Thermal conductivity in the x, y and z-directions was measured on a pultruded profile that was manufactured by the technology of pulling from glass fibers and a polyester matrix. The results of measurements of thermal conductivity showed considerable variability in different directions. The caused variability in thermal conductivity was expected due fraction variations. The cross-section of the pultruded profile was scanned. An image analysis illustrated an uneven distribution of the fibers and the matrix in the cross-section. The distribution of these inequalities was processed into a Voronoi diagram in the observed area of the pultruded profile cross-section. In order to verify whether the variation of the fiber volume fraction in the pultruded profile can affect its thermal conductivity, the numerical simulations in the ANSYS Fluent were performed. The simulation was based on the geometry reconstructed from image analysis. The aim is to quantify thermal conductivity numerically. Above all, images with different volume fractions were chosen. The results of the measured thermal conductivity were compared with the calculated thermal conductivity. The evaluated data proved a strong correlation between volume fraction and thermal conductivity of the pultruded profile. Based on presented results, a modification of production technology may be proposed.Keywords: pultrusion profile, volume fraction, thermal conductivity, numerical simulation
Procedia PDF Downloads 3443710 On the Cluster of the Families of Hybrid Polynomial Kernels in Kernel Density Estimation
Authors: Benson Ade Eniola Afere
Abstract:
Over the years, kernel density estimation has been extensively studied within the context of nonparametric density estimation. The fundamental components of kernel density estimation are the kernel function and the bandwidth. While the mathematical exploration of the kernel component has been relatively limited, its selection and development remain crucial. The Mean Integrated Squared Error (MISE), serving as a measure of discrepancy, provides a robust framework for assessing the effectiveness of any kernel function. A kernel function with a lower MISE is generally considered to perform better than one with a higher MISE. Hence, the primary aim of this article is to create kernels that exhibit significantly reduced MISE when compared to existing classical kernels. Consequently, this article introduces a cluster of hybrid polynomial kernel families. The construction of these proposed kernel functions is carried out heuristically by combining two kernels from the classical polynomial kernel family using probability axioms. We delve into the analysis of error propagation within these kernels. To assess their performance, simulation experiments, and real-life datasets are employed. The obtained results demonstrate that the proposed hybrid kernels surpass their classical kernel counterparts in terms of performance.Keywords: classical polynomial kernels, cluster of families, global error, hybrid Kernels, Kernel density estimation, Monte Carlo simulation
Procedia PDF Downloads 913709 FPGA Based Vector Control of PM Motor Using Sliding Mode Observer
Authors: Hanan Mikhael Dawood, Afaneen Anwer Abood Al-Khazraji
Abstract:
The paper presents an investigation of field oriented control strategy of Permanent Magnet Synchronous Motor (PMSM) based on hardware in the loop simulation (HIL) over a wide speed range. A sensorless rotor position estimation using sliding mode observer for permanent magnet synchronous motor is illustrated considering the effects of magnetic saturation between the d and q axes. The cross saturation between d and q axes has been calculated by finite-element analysis. Therefore, the inductance measurement regards the saturation and cross saturation which are used to obtain the suitable id-characteristics in base and flux weakening regions. Real time matrix multiplication in Field Programmable Gate Array (FPGA) using floating point number system is used utilizing Quartus-II environment to develop FPGA designs and then download these designs files into development kit. dSPACE DS1103 is utilized for Pulse Width Modulation (PWM) switching and the controller. The hardware in the loop results conducted to that from the Matlab simulation. Various dynamic conditions have been investigated.Keywords: magnetic saturation, rotor position estimation, sliding mode observer, hardware in the loop (HIL)
Procedia PDF Downloads 5253708 Optimizing the Passenger Throughput at an Airport Security Checkpoint
Authors: Kun Li, Yuzheng Liu, Xiuqi Fan
Abstract:
High-security standard and high efficiency of screening seem to be contradictory to each other in the airport security check process. Improving the efficiency as far as possible while maintaining the same security standard is significantly meaningful. This paper utilizes the knowledge of Operation Research and Stochastic Process to establish mathematical models to explore this problem. We analyze the current process of airport security check and use the M/G/1 and M/G/k models in queuing theory to describe the process. Then we find the least efficient part is the pre-check lane, the bottleneck of the queuing system. To improve passenger throughput and reduce the variance of passengers’ waiting time, we adjust our models and use Monte Carlo method, then put forward three modifications: adjust the ratio of Pre-Check lane to regular lane flexibly, determine the optimal number of security check screening lines based on cost analysis and adjust the distribution of arrival and service time based on Monte Carlo simulation results. We also analyze the impact of cultural differences as the sensitivity analysis. Finally, we give the recommendations for the current process of airport security check process.Keywords: queue theory, security check, stochatic process, Monte Carlo simulation
Procedia PDF Downloads 1993707 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electro-Hydraulic Servo System
Authors: Maria Ahmadnezhad, Mohammad Reza Soltanpour
Abstract:
Electrohydraulic servo systems have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this thesis, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.Keywords: electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign
Procedia PDF Downloads 2953706 Discrete Element Method Simulation of Crushable Pumice Sand
Authors: Sayed Hessam Bahmani, Rolsndo P. Orense
Abstract:
From an engineering point of view, pumice particles are problematic because of their crushability and compressibility due to their vesicular nature. Currently, information on the geotechnical characteristics of pumice sands is limited. While extensive empirical and laboratory tests can be implemented to characterize their behavior, these are generally time-consuming and expensive. These drawbacks have motivated attempts to study the effects of particle breakage of pumice sand through the Discrete Element Method (DEM). This method provides insights into the behavior of crushable granular material at both the micro and macro-level. In this paper, the results of single-particle crushing tests conducted in the laboratory are simulated using DEM through the open-source code YADE. This is done to better understand the parameters necessary to represent the pumice microstructure that governs its crushing features, and to examine how the resulting microstructure evolution affects a particle’s properties. The DEM particle model is then used to simulate the behavior of pumice sand during consolidated drained triaxial tests. The results indicate the importance of incorporating particle porosity and unique surface textures in the material characterization and show that interlocking between the crushed particles significantly influences the drained behavior of the pumice specimen.Keywords: pumice sand, triaxial compression, simulation, particle breakage
Procedia PDF Downloads 2423705 Interpretation of Sweep Frequency Response Analysis (SFRA) Traces for the Earth Fault Damage Practically Simulated on the Power Transformer Specially Developed for Performing Sweep Frequency Response Analysis for Various Transformers
Authors: Akshay A. Pandya, B. R. Parekh
Abstract:
This paper presents how earth fault damage in the transformer can be detected by Sweep Frequency Response Analysis (SFRA). The test methods used by the authors for presenting the results are described. The power transformer of rating 10 KVA, 11000 V/440 V, 3-phase, 50 Hz, Dyn11 has been specially developed in-house for carrying out SFRA testing by practically simulated various transformer damages on it. Earth fault has been practically simulated on HV “U” phase winding and LV “W” phase winding separately. The result of these simulated faults are presented and discussed. The motivation of this presented work is to extend the guideline approach; there are ideas to organize database containing collected measurement results. Since the SFRA interpretation is based on experience, such databases are thought to be of great importance when interpreting SFRA response. The evaluation of the SFRA responses against guidelines and experience have to be performed and conclusions regarding usefulness of each simulation has been drawn and at last overall conclusion has also been drawn.Keywords: earth fault damage, power transformer, practical simulation, SFRA traces, transformer damages
Procedia PDF Downloads 2813704 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces
Authors: Monika Rawat, Rahul Kumar
Abstract:
Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation
Procedia PDF Downloads 1953703 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study
Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu
Abstract:
With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray
Procedia PDF Downloads 7283702 Fetal Movement Study Using Biomimics of the Maternal March
Authors: V. Diaz, B. Pardo , D. Villegas
Abstract:
In premature births most babies have complications at birth, these complications can be reduced, if an atmosphere of relaxation is provided and is also similar to intrauterine life, for this, there are programs where their mothers lull and sway them; however, the conditions in which they do so and the way in they do it may not be the indicated. Here we describe an investigation based on the biomimics of the kinematics of human fetal movement, which consists of determining the movements that the fetus experiences and the deformations of the components that surround the fetus during a gentle walk at week 32 of the gestation stage. This research is based on a 3D model that has the anatomical structure of the pelvis, fetus, muscles, uterus and its most important supporting elements (ligaments). Normal load conditions are applied to this model according to the stage of gestation and the kinematics of a gentle walk of a pregnant mother, which focuses on the pelvic bone, this allows to receive a response from the other elements of the model. To accomplish this modeling and subsequent simulation Solidworks software was used. From this analysis, the curves that describe the movement of the fetus at three different points were obtained. Additionally, we could found the deformation of the uterus and the ligaments that support it, showing the characteristics that these tissues can have in the face of the support of the fetus. These data can be used for the construction of artifacts that help the normal development of premature infants.Keywords: simulation, biomimic, uterine model, fetal movement study
Procedia PDF Downloads 1643701 The Observable Method for the Regularization of Shock-Interface Interactions
Authors: Teng Li, Kamran Mohseni
Abstract:
This paper presents an inviscid regularization technique that is capable of regularizing the shocks and sharp interfaces simultaneously in the shock-interface interaction simulations. The direct numerical simulation of flows involving shocks has been investigated for many years and a lot of numerical methods were developed to capture the shocks. However, most of these methods rely on the numerical dissipation to regularize the shocks. Moreover, in high Reynolds number flows, the nonlinear terms in hyperbolic Partial Differential Equations (PDE) dominates, constantly generating small scale features. This makes direct numerical simulation of shocks even harder. The same difficulty happens in two-phase flow with sharp interfaces where the nonlinear terms in the governing equations keep sharpening the interfaces to discontinuities. The main idea of the proposed technique is to average out the small scales that is below the resolution (observable scale) of the computational grid by filtering the convective velocity in the nonlinear terms in the governing PDE. This technique is named “observable method” and it results in a set of hyperbolic equations called observable equations, namely, observable Navier-Stokes or Euler equations. The observable method has been applied to the flow simulations involving shocks, turbulence, and two-phase flows, and the results are promising. In the current paper, the observable method is examined on the performance of regularizing shocks and interfaces at the same time in shock-interface interaction problems. Bubble-shock interactions and Richtmyer-Meshkov instability are particularly chosen to be studied. Observable Euler equations will be numerically solved with pseudo-spectral discretization in space and third order Total Variation Diminishing (TVD) Runge Kutta method in time. Results are presented and compared with existing publications. The interface acceleration and deformation and shock reflection are particularly examined.Keywords: compressible flow simulation, inviscid regularization, Richtmyer-Meshkov instability, shock-bubble interactions.
Procedia PDF Downloads 3483700 Imposing Speed Constraints on Arrival Flights: Case Study for Changi Airport
Authors: S. Aneeka, S.M. Phyoe, R. Guo, Z.W. Zhong
Abstract:
Arrival flights tend to spend long waiting times at holding stacks if the arrival airport is congested. However, the waiting time spent in the air in the vicinity of the arrival airport may be reduced if the delays are distributed to the cruising phase of the arrival flights by means of speed control. Here, a case study was conducted for the flights arriving at Changi Airport. The flights that were assigned holdings were simulated to fly at a reduced speed during the cruising phase. As the study involves a single airport and is limited to imposing speed constraints to arrivals within 200 NM from its location, the simulation setup in this study could be considered as an application of the Extended Arrival Management (E-AMAN) technique, which is proven to result in considerable fuel savings and more efficient management of delays. The objective of this experiment was to quantify the benefits of imposing cruise speed constraints to arrivals at Changi Airport and to assess the effects on controllers’ workload. The simulation results indicated considerable fuel savings, reduced aircraft emissions and reduced controller workload.Keywords: aircraft emissions, air traffic flow management, controller workload, fuel consumption
Procedia PDF Downloads 1433699 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control
Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba
Abstract:
This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.Keywords: electrical generator, induction motor drive, modeling, pitch angle control, real time control, renewable energy, wind turbine, wind turbine emulator
Procedia PDF Downloads 2323698 The Use of Electrical Resistivity Measurement, Cracking Test and Ansys Simulation to Predict Concrete Hydration Behavior and Crack Tendency
Authors: Samaila Bawa Muazu
Abstract:
Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50.Keywords: concrete hydration, electrical resistivity, restrained shrinkage crack, setting time, simulation
Procedia PDF Downloads 2083697 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate
Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh
Abstract:
Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM
Procedia PDF Downloads 2073696 Spillage Prediction Using Fluid-Structure Interaction Simulation with Coupled Eulerian-Lagrangian Technique
Authors: Ravi Soni, Irfan Pathan, Manish Pande
Abstract:
The current product development process needs simultaneous consideration of different physics. The performance of the product needs to be considered under both structural and fluid loads. Examples include ducts and valves where structural behavior affects fluid motion and vice versa. Simulation of fluid-structure interaction involves modeling interaction between moving components and the fluid flow. In these scenarios, it is difficult to calculate the damping provided by fluid flow because of dynamic motions of components and the transient nature of the flow. Abaqus Explicit offers general capabilities for modeling fluid-structure interaction with the Coupled Eulerian-Lagrangian (CEL) method. The Coupled Eulerian-Lagrangian technique has been used to simulate fluid spillage through fuel valves during dynamic closure events. The technique to simulate pressure drops across Eulerian domains has been developed using stagnation pressure. Also, the fluid flow is calculated considering material flow through elements at the outlet section of the valves. The methodology has been verified on Eaton products and shows a good correlation with the test results.Keywords: Coupled Eulerian-Lagrangian Technique, fluid structure interaction, spillage prediction, stagnation pressure
Procedia PDF Downloads 3763695 Analysis of Thermal Comfort in Educational Buildings Using Computer Simulation: A Case Study in Federal University of Parana, Brazil
Authors: Ana Julia C. Kfouri
Abstract:
A prerequisite of any building design is to provide security to the users, taking the climate and its physical and physical-geometrical variables into account. It is also important to highlight the relevance of the right material elements, which arise between the person and the agent, and must provide improved thermal comfort conditions and low environmental impact. Furthermore, technology is constantly advancing, as well as computational simulations for projects, and they should be used to develop sustainable building and to provide higher quality of life for its users. In relation to comfort, the more satisfied the building users are, the better their intellectual performance will be. Based on that, the study of thermal comfort in educational buildings is of relative relevance, since the thermal characteristics in these environments are of vital importance to all users. Moreover, educational buildings are large constructions and when they are poorly planned and executed they have negative impacts to the surrounding environment, as well as to the user satisfaction, throughout its whole life cycle. In this line of thought, to evaluate university classroom conditions, it was accomplished a detailed case study on the thermal comfort situation at Federal University of Parana (UFPR). The main goal of the study is to perform a thermal analysis in three classrooms at UFPR, in order to address the subjective and physical variables that influence thermal comfort inside the classroom. For the assessment of the subjective components, a questionnaire was applied in order to evaluate the reference for the local thermal conditions. Regarding the physical variables, it was carried out on-site measurements, which consist of performing measurements of air temperature and air humidity, both inside and outside the building, as well as meteorological variables, such as wind speed and direction, solar radiation and rainfall, collected from a weather station. Then, a computer simulation based on results from the EnergyPlus software to reproduce air temperature and air humidity values of the three classrooms studied was conducted. The EnergyPlus outputs were analyzed and compared with the on-site measurement results to be possible to come out with a conclusion related to the local thermal conditions. The methodological approach included in the study allowed a distinct perspective in an educational building to better understand the classroom thermal performance, as well as the reason of such behavior. Finally, the study induces a reflection about the importance of thermal comfort for educational buildings and propose thermal alternatives for future projects, as well as a discussion about the significant impact of using computer simulation on engineering solutions, in order to improve the thermal performance of UFPR’s buildings.Keywords: computer simulation, educational buildings, EnergyPlus, humidity, temperature, thermal comfort
Procedia PDF Downloads 3833694 FPGA Implementation of a Marginalized Particle Filter for Delineation of P and T Waves of ECG Signal
Authors: Jugal Bhandari, K. Hari Priya
Abstract:
The ECG signal provides important clinical information which could be used to pretend the diseases related to heart. Accordingly, delineation of ECG signal is an important task. Whereas delineation of P and T waves is a complex task. This paper deals with the Study of ECG signal and analysis of signal by means of Verilog Design of efficient filters and MATLAB tool effectively. It includes generation and simulation of ECG signal, by means of real time ECG data, ECG signal filtering and processing by analysis of different algorithms and techniques. In this paper, we design a basic particle filter which generates a dynamic model depending on the present and past input samples and then produces the desired output. Afterwards, the output will be processed by MATLAB to get the actual shape and accurate values of the ranges of P-wave and T-wave of ECG signal. In this paper, Questasim is a tool of mentor graphics which is being used for simulation and functional verification. The same design is again verified using Xilinx ISE which will be also used for synthesis, mapping and bit file generation. Xilinx FPGA board will be used for implementation of system. The final results of FPGA shall be verified with ChipScope Pro where the output data can be observed.Keywords: ECG, MATLAB, Bayesian filtering, particle filter, Verilog hardware descriptive language
Procedia PDF Downloads 366