Search results for: capacitive coupling coefficient
1708 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling
Authors: Vibha Devi, Shabina Khanam
Abstract:
Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation
Procedia PDF Downloads 1391707 Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank
Authors: Chargui Ridha, Agrebi Sameh
Abstract:
The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system.Keywords: phase change materials, storage tank, heat exchanger, flat plate collector
Procedia PDF Downloads 931706 Experimental Assessment of a Grid-Forming Inverter in Microgrid Islanding Operation Mode
Authors: Dalia Salem, Detlef Schulz
Abstract:
As Germany pursues its ambitious plan towards a power system based on renewable energy sources, the necessity to establish steady, robust microgrids becomes more evident. Inside the microgrid, there is at least one grid-forming inverter responsible for generating the coupling voltage and stabilizing the system frequency within the standardized accepted limits when the microgrid is forced to operate as a stand-alone power system. Grid-forming control for distributed inverters is required to enable steady control of a low-inertia power system. In this paper, a designed droop control technique is tested at the controller of an inverter as a component of a hardware test bed to understand the microgrid behavior in two modes of operation: i) grid-connected and ii) operating in islanding mode. This droop technique includes many current and voltage inner control loops, where the Q-V and P-f droop provide the required terminal output voltage and frequency. The technique is tested first in a simulation model of the inverter in MATLAB/SIMULINK, and the results are compared to the results of the hardware laboratory test. The results of this experiment illuminate the pivotal role of the grid-forming inverter in facilitating microgrid resilience during grid disconnection events and how microgrids could provide the functionality formerly provided by synchronous machinery, such as the black start process.Keywords: microgrid, grid-forming inverters, droop-control, islanding-operation
Procedia PDF Downloads 681705 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime
Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda
Abstract:
Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels
Procedia PDF Downloads 1211704 Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna
Authors: Chuanzhi Chen, Wenjing Yu
Abstract:
Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized.Keywords: multibody dynamics, expandable parabolic cylindrical antenna, stability, flexible deformation
Procedia PDF Downloads 1441703 Exergy Losses Relation with Driving Forces in Heat Transfer Process
Authors: S. Ali Ashrafizadeh, M. Amidpour, N. Hedayat
Abstract:
Driving forces along with transfer coefficient affect on heat transfer rate, on the other hand, with regard to the relation of these forces with irriversibilities they are effective on exergy losses. Therefore, the driving forces can be used as a relation between heat transfer rate, transfer coefficients and exergy losses. In this paper, first, the relation of the exergetic efficiency and resistant forces is obtained, next the relation between exergy efficiency, relative driving force, heat transfer rate and heat resistances is considered. In all cases, results are argued graphically. Finally, a case study inspected by obtained results.Keywords: heat transfer, exergy losses, exergetic efficiency, driving forces
Procedia PDF Downloads 6001702 Efficacy of Pooled Sera in Comparison with Commercially Acquired Quality Control Sample for Internal Quality Control at the Nkwen District Hospital Laboratory
Authors: Diom Loreen Ndum, Omarine Njimanted
Abstract:
With increasing automation in clinical laboratories, the requirements for quality control materials have greatly increased in order to monitor daily performance. The constant use of commercial control material is not economically feasible for many developing countries because of non-availability or the high-cost of the materials. Therefore, preparation and use of in-house quality control serum will be a very cost-effective measure with respect to laboratory needs.The objective of this study was to determine the efficacy of in-house prepared pooled sera with respect to commercially acquired control sample for routine internal quality control at the Nkwen District Hospital Laboratory. This was an analytical study, serum was taken from leftover serum samples of 5 healthy adult blood donors at the blood bank of Nkwen District Hospital, which had been screened negative for human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Hepatitis B antigens (HBsAg), and were pooled together in a sterile container. From the pooled sera, sixty aliquots of 150µL each were prepared. Forty aliquots of 150µL each of commercially acquired samples were prepared after reconstitution and stored in a deep freezer at − 20°C until it was required for analysis. This study started from the 9th June to 12th August 2022. Every day, alongside with commercial control sample, one aliquot of pooled sera was removed from the deep freezer and allowed to thaw before analyzed for the following parameters: blood urea, serum creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), potassium and sodium. After getting the first 20 values for each parameter of pooled sera, the mean, standard deviation and coefficient of variation were calculated, and a Levey-Jennings (L-J) chart established. The mean and standard deviation for commercially acquired control sample was provided by the manufacturer. The following results were observed; pooled sera had lesser standard deviation for creatinine, urea and AST than commercially acquired control samples. There was statistically significant difference (p<0.05) between the mean values of creatinine, urea and AST for in-house quality control when compared with commercial control. The coefficient of variation for the parameters for both commercial control and in-house control samples were less than 30%, which is an acceptable difference. The L-J charts revealed shifts and trends (warning signs), so troubleshooting and corrective measures were taken. In conclusion, in-house quality control sample prepared from pooled serum can be a good control sample for routine internal quality control.Keywords: internal quality control, levey-jennings chart, pooled sera, shifts, trends, westgard rules
Procedia PDF Downloads 761701 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase
Authors: Antoine Lauvray, Fabien Poulhaon, Pierre Michaud, Pierre Joyot, Emmanuel Duc
Abstract:
Additive Friction Stir Manufacturing (AFSM) is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. Unlike in Friction Stir Welding (FSW) where abundant literature exists and addresses many aspects going from process implementation to characterization and modeling, there are still few research works focusing on AFSM. Therefore, there is still a lack of understanding of the physical phenomena taking place during the process. This research work aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system composed of the tool, the filler material, and the substrate and due to pure friction. Analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes, through numerical modeling followed by experimental validation, to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque, and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.Keywords: numerical model, additive manufacturing, friction, process
Procedia PDF Downloads 1451700 Electroencephalography Activity during Sensory Organization Balance Test
Authors: Tariq Ali Gujar, Anita Hökelmann
Abstract:
Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.Keywords: balance, electroencephalography activity, somatosensory, visual, vestibular
Procedia PDF Downloads 5811699 Mathematics Teachers’ Background Characteristics as a Correlate of Secondary School Students’ Achievement in Mathematics in Gombe State, Nigeria
Authors: Ali Adamu
Abstract:
Teachers’ background characteristics as a correlate of students’ achievement in Mathematics were studied in Gombe State. Pearson Product Moment Correlation Coefficient was used for the analysis. Five Hundred and Twelve (512) students and 20 teachers from 12 schools in Gombe State of Nigeria were used for the study. Students’ Achievement Tests and Mathematics Teachers’ backgrounds were instruments for the study. The findings indicated that teachers’ qualifications, experience of the teacher, and teachers’ personalities had a positive correlation with students’ achievement. Recommendations are made, which include allowing the teachers to go for training as well as the government should ensure recruiting teachers that have experience in the teaching job.Keywords: achievement-test, teachers’ personality, teaching mathematics, teacher-background
Procedia PDF Downloads 1001698 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designing the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics
Procedia PDF Downloads 4761697 Multifunctional Polydopamine-Silver-Polydopamine Nanofilm With Applications in Digital Microfluidics and SERS
Authors: Yilei Xue, Yat-Hing Ham, Wenting Qiu, Wan Chan, Stefan Nagl
Abstract:
Polydopamine (PDA) is a popular material in biological and medical applications due to its excellent biocompatibility, outstanding physicochemical properties, and facile fabrication. In this project, a new sandwich-structured PDA and silver (Ag) hybrid material named PDA-Ag-PDA was synthesized and characterized layer-by-layer, where silver nanoparticles (Ag NPs) are wrapped in PDA coatings, using SEM, AFM, 3D surface metrology, and contact angle meter. The silver loading capacity is positively proportional to the roughness value of the initial PDA film. This designed film was subsequently integrated within a digital microfluidic (DMF) platform coupling with an oxygen sensor layer for on-chip antibacterial assay. The concentration of E. coli was quantified on DMF by real-time monitoring oxygen consumption during E. coli growth with the optical oxygen sensor layer. The PDA-Ag-PDA coating shows an 99.9% reduction in E. coli population under non-nutritive condition with 1-hour treatment and has a strong growth inhibition of E. coliin nutrient LB broth as well. Furthermore, PDA-Ag-PDA film maintaining a low cytotoxicity effect to human cells. After treating with PDA-Ag-PDA film for 24 hours, 82% HEK 293 and 86% HeLa cells were viable. The SERS enhancement factor of PDA-Ag-PDA is estimated to be 1.9 × 104 using Rhodamine 6G (R6G). Multifunctional PDA-Ag-PDA coating provides an alternative platform to conjugate biomolecules and perform biological applications on DMF, in particular, for the adhesive protein and cell study.Keywords: polydopamine, silver nanoparticles, digital microfluidic, optical sensor, antimicrobial assay, SERS
Procedia PDF Downloads 911696 Simple and Effective Method of Lubrication and Wear Protection
Authors: Buddha Ratna Shrestha, Jimmy Faivre, Xavier Banquy
Abstract:
By precisely controlling the molecular interactions between anti-wear macromolecules and bottle-brush lubricating molecules in the solution state, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. Our results provide rational guides to design such fluids for virtually any type of surfaces. The lowest friction coefficient and the maximum pressure that it can sustain is 5*10-3 and 2.5 MPa which is close to the physiological pressure. Lubricating and protecting surfaces against wear using liquid lubricants is a great technological challenge. Until now, wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface while lubrication was provided by a lubricating fluid. Hence, we here research for a simple, effective and applicable solution to the above problem using surface force apparatus (SFA). SFA is a powerful technique with sub-angstrom resolution in distance and 10 nN/m resolution in interaction force while performing friction experiment. Thus, SFA is used to have the direct insight into interaction force, material and friction at interface. Also, we always know the exact contact area. From our experiments, we found that by precisely controlling the molecular interactions between anti-wear macromolecules and lubricating molecules, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. The lowest friction coefficient and the maximum pressure that it can sustain in our system is 5*10-3 and 2.5 GPA which is well above the physiological pressure. Our results provide rational guides to design such fluids for virtually any type of surfaces. Most importantly this process is simple, effective and applicable method of lubrication and protection as until now wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface. Currently, the frictional data that are obtained while sliding the flat mica surfaces are compared and confirmed that a particular mixture of solution was found to surpass all other combination. So, further we would like to confirm that the lubricating and antiwear protection remains the same by performing the friction experiments in synthetic cartilages.Keywords: bottle brush polymer, hyaluronic acid, lubrication, tribology
Procedia PDF Downloads 2601695 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites
Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash
Abstract:
Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work, it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.Keywords: gamma ray irradiation, hard ferrite, magnetic coefficient, magnetic material, radiation dose
Procedia PDF Downloads 2381694 Integrating GIS and Analytical Hierarchy Process-Multicriteria Decision Analysis for Identification of Suitable Areas for Artificial Recharge with Reclaimed Water
Authors: Mahmoudi Marwa, Bahim Nadhem, Aydi Abdelwaheb, Issaoui Wissal, S. Najet
Abstract:
This work represents a coupling between the geographic information system (GIS) and the multicriteria analysis aiming at the selection of an artificial recharge site by the treated wastewater for the Ariana governorate. On regional characteristics, bibliography and available data on artificial recharge, 13 constraints and 5 factors were hierarchically structured for the adequacy of an artificial recharge. The factors are subdivided into two main groups: environmental factors and economic factors. The adopted methodology allows a preliminary assessment of a recharge site, the weighted linear combination (WLC) and the analytical hierarchy process (AHP) in a GIS. The standardization of the criteria is carried out by the application of the different membership functions. The form and control points of the latter are defined by the consultation of the experts. The weighting of the selected criteria is allocated according to relative importance using the AHP methodology. The weighted linear combination (WLC) integrates the different criteria and factors to delineate the most suitable areas for artificial recharge site selection by treated wastewater. The results of this study showed three potential candidate sites that appear when environmental factors are more important than economic factors. These sites are ranked in descending order using the ELECTRE III method. Nevertheless, decision making for the selection of an artificial recharge site will depend on the decision makers in force.Keywords: artificial recharge site, treated wastewater, analytical hierarchy process, ELECTRE III
Procedia PDF Downloads 1641693 Micro- and Nanoparticle Transport and Deposition in Elliptic Obstructed Channels by Lattice Boltzmann Method
Authors: Salman Piri
Abstract:
In this study, a two-dimensional lattice Boltzmann method (LBM) was considered for the numerical simulation of fluid flow in a channel. Also, the Lagrangian method was used for particle tracking in one-way coupling. Three hundred spherical particles with specific diameters were released in the channel entry and an elliptical object was placed in the channel for flow obstruction. The effect of gravity, the drag force, the Saffman lift and the Brownian forces were evaluated in the particle motion trajectories. Also, the effect of the geometrical parameter, ellipse aspect ratio, and the flow characteristic or Reynolds number was surveyed for the transport and deposition of particles. Moreover, the influence of particle diameter between 0.01 and 10 µm was investigated. Results indicated that in small Reynolds, more inertial and gravitational trapping occurred on the obstacle surface for particles with larger diameters. Whereas, for nano-particles, influenced by Brownian diffusion and vortices behind the obstacle, the inertial and gravitational mechanisms were insignificant and diffusion was the dominant deposition mechanism. In addition, in Reynolds numbers larger than 400, there was no significant difference between the deposition of finer and larger particles. Also, in higher aspect ratios of the ellipse, more inertial trapping occurred for particles of larger diameter (10 micrometers), while in lower cases, interception and gravitational mechanisms were dominant.Keywords: ellipse aspect elito, particle tracking diffusion, lattice boltzman method, larangain particle tracking
Procedia PDF Downloads 781692 Increasing of Gain in Unstable Thin Disk Resonator
Authors: M. Asl. Dehghan, M. H. Daemi, S. Radmard, S. H. Nabavi
Abstract:
Thin disk lasers are engineered for efficient thermal cooling and exhibit superior performance for this task. However the disk thickness and large pumped area make the use of this gain format in a resonator difficult when constructing a single-mode laser. Choosing an unstable resonator design is beneficial for this purpose. On the other hand, the low gain medium restricts the application of unstable resonators to low magnifications and therefore to a poor beam quality. A promising idea to enable the application of unstable resonators to wide aperture, low gain lasers is to couple a fraction of the out coupled radiation back into the resonator. The output coupling gets dependent on the ratio of the back reflection and can be adjusted independently from the magnification. The excitation of the converging wave can be done by the use of an external reflector. The resonator performance is numerically predicted. First of all the threshold condition of linear, V and 2V shape resonator is investigated. Results show that the maximum magnification is 1.066 that is very low for high quality purposes. Inserting an additional reflector covers the low gain. The reflectivity and the related magnification of a 350 micron Yb:YAG disk are calculated. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically by the Fox and Li algorithm. Results show that with back reflection mechanism in combination with increasing the number of beam incidents on disk, high gain and high magnification can occur.Keywords: unstable resonators, thin disk lasers, gain, external reflector
Procedia PDF Downloads 4101691 Characteristics of Speed Dispersion in Urban Expressway
Authors: Fujian Wang, Shubin Ruan, Meiwei Dai
Abstract:
Speed dispersion has tight relation to traffic safety. In this paper, several kinds of indicating parameters (the standard speed deviation, the coefficient of variation, the deviation of V85 and V15, the mean speed deviations, and the difference between adjacent car speeds) are applied to investigate the characteristics of speed dispersion, where V85 and V15 are 85th and 15th percentile speed, respectively. Their relationships are into full investigations and the results show that: there exists a positive relation (linear) between mean speed and the deviation of V85 and V15; while a negative relation (quadratic) between traffic flow and standard speed deviation. The mean speed deviation grows exponentially with mean speed while the absolute speed deviation between adjacent cars grows linearly with the headway. The results provide some basic information for traffic management.Keywords: headway, indicating parameters, speed dispersion, urban expressway
Procedia PDF Downloads 3511690 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures
Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse
Abstract:
A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.Keywords: industrial sludge drying, heat transfer, mass transfer, mathematical modelling
Procedia PDF Downloads 1311689 A Parametric Study on Effects of Internal Factors on Carbonation of Reinforced Concrete
Authors: Kunal Tongaria, Abhishek Mangal, S. Mandal, Devendra Mohan
Abstract:
The carbonation of concrete is a phenomenon which is a function of various interdependent parameters. Therefore, in spite of numerous literature and database, the useful generalization is not an easy task. These interdependent parameters can be grouped under the category of internal and external factors. This paper focuses on the internal parameters which govern and increase the probability of the ingress of deleterious substances into concrete. The mechanism of effects of internal parameters such as microstructure for with and without supplementary cementing materials (SCM), water/binder ratio, the age of concrete etc. has been discussed. This is followed by the comparison of various proposed mathematical models for the deterioration of concrete. Based on existing laboratory experiments as well as field results, this paper concludes the present understanding of mechanism, modeling and future research needs in this field.Keywords: carbonation, diffusion coefficient, microstructure of concrete, reinforced concrete
Procedia PDF Downloads 4051688 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even though decreases at these extreme wind speeds but are not infinite. Moreover, we also found that it is possible to stabilize the power coefficient (stabilizing the output power) above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.Keywords: probability, probability density function, stochastic, turbulence
Procedia PDF Downloads 5861687 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach
Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton
Abstract:
Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.Keywords: competition, growth, model, thinning
Procedia PDF Downloads 1241686 Theoretical Study of Structural, Magnetic, and Magneto-Optical Properties of Ultrathin Films of Fe/Cu (001)
Authors: Mebarek Boukelkoul, Abdelhalim Haroun
Abstract:
By means of the first principle calculation, we have investigated the structural, magnetic and magneto-optical properties of the ultra-thin films of Fen/Cu(001) with (n=1, 2, 3). We adopted a relativistic approach using DFT theorem with local spin density approximation (LSDA). The electronic structure is performed within the framework of the Spin-Polarized Relativistic (SPR) Linear Muffin-Tin Orbitals (LMTO) with the Atomic Sphere Approximation (ASA) method. During the variational principle, the crystal wave function is expressed as a linear combination of the Bloch sums of the so-called relativistic muffin-tin orbitals centered on the atomic sites. The crystalline structure is calculated after an atomic relaxation process using the optimization of the total energy with respect to the atomic interplane distance. A body-centered tetragonal (BCT) pseudomorphic crystalline structure with a tetragonality ratio c/a larger than unity is found. The magnetic behaviour is characterized by an enhanced magnetic moment and a ferromagnetic interplane coupling. The polar magneto-optical Kerr effect spectra are given over a photon energy range extended to 15eV and the microscopic origin of the most interesting features are interpreted by interband transitions. Unlike thin layers, the anisotropy in the ultra-thin films is characterized by a perpendicular magnetization which is perpendicular to the film plane.Keywords: ultrathin films, magnetism, magneto-optics, pseudomorphic structure
Procedia PDF Downloads 3341685 Investigation of Mass Transfer for RPB Distillation at High Pressure
Authors: Amiza Surmi, Azmi Shariff, Sow Mun Serene Lock
Abstract:
In recent decades, there has been a significant emphasis on the pivotal role of Rotating Packed Beds (RPBs) in absorption processes, encompassing the removal of Volatile Organic Compounds (VOCs) from groundwater, deaeration, CO2 absorption, desulfurization, and similar critical applications. The primary focus is elevating mass transfer rates, enhancing separation efficiency, curbing power consumption, and mitigating pressure drops. Additionally, substantial efforts have been invested in exploring the adaptation of RPB technology for offshore deployment. This comprehensive study delves into the intricacies of nitrogen removal under low temperature and high-pressure conditions, employing the high gravity principle via innovative RPB distillation concept with a specific emphasis on optimizing mass transfer. Based on the author's knowledge and comprehensive research, no cryogenic experimental testing was conducted to remove nitrogen via RPB. The research identifies pivotal process control factors through meticulous experimental testing, with pressure, reflux ratio, and reboil ratio emerging as critical determinants in achieving the desired separation performance. The results are remarkable, with nitrogen removal reaching less than one mole% in the Liquefied Natural Gas (LNG) product and less than three moles% methane in the nitrogen-rich gas stream. The study further unveils the mass transfer coefficient, revealing a noteworthy trend of decreasing Number of Transfer Units (NTU) and Area of Transfer Units (ATU) as the rotational speed escalates. Notably, the condenser and reboiler impose varying demands based on the operating pressure, with lower pressures at 12 bar requiring a more substantial duty than the 15-bar operation of the RPB. In pursuit of optimal energy efficiency, a meticulous sensitivity analysis is conducted, pinpointing the ideal combination of pressure and rotating speed that minimizes overall energy consumption. These findings underscore the efficiency of the RPB distillation approach in effecting efficient separation, even when operating under the challenging conditions of low temperature and high pressure. This achievement is attributed to a rigorous process control framework that diligently manages the operational pressure and temperature profile of the RPB. Nonetheless, the study's conclusions point towards the need for further research to address potential scaling challenges and associated risks, paving the way for the industrial implementation of this transformative technology.Keywords: mass transfer coefficient, nitrogen removal, liquefaction, rotating packed bed
Procedia PDF Downloads 501684 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications
Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R
Abstract:
Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays
Procedia PDF Downloads 771683 Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study
Authors: Karthika Chandran, Pulkit Prakash, Amitabh Das, Santhosh P. N.
Abstract:
Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧGKeywords: neutron powder diffraction, rare earth orthoferrites, Rietveld analysis, spin reorientation
Procedia PDF Downloads 1471682 Contemplation of Thermal Characteristics by Filling Ratio of Aluminium Oxide Nano Fluid in Wire Mesh Heat Pipe
Authors: D. Mala, S. Sendhilnathan, D. Ratchagaraja
Abstract:
In this paper, the performance of heat pipe in terms of overall heat transfer coefficient and thermal resistance is quantified by varying the volume of working fluid and the performance parameters are contemplated. For this purpose Al2O3 nano particles with a density of 9.8 gm/cm3 and a volume concentration of 1% is used as the working fluid in experimental heat pipe. The performance of heat pipe was evaluated by conducting experiments with different thermal loads and different angle of inclinations. Thermocouples are used to record the temperature distribution across the experiment. The results provide evidence that the suspension of Al2O3 nano particles in the base fluid increases the thermal efficiency of heat pipe and can be used in practical heat exchange applications.Keywords: heat pipe, angle of inclination, thermal resistance, thermal efficiency
Procedia PDF Downloads 5611681 Screening of Ionic Liquids for Hydrogen Sulfide Removal Using COSMO-RS
Authors: Zulaika Mohd Khasiran
Abstract:
The capability of ionic liquids in various applications makes them attracted by many researchers. They have potential to be developed as “green” solvents for gas separation, especially H2S gas. In this work, it is attempted to predict the solubility of hydrogen sulfide (H2S) in ILs by COSMO-RS method. Since H2S is a toxic pollutant, it is difficult to work on it in the laboratory, therefore an appropriate model will be necessary in prior work. The COSMO-RS method is implemented to predict the Henry’s law constants and activity coefficient of H2S in 140 ILs with various combinations of cations and anions. It is found by the screening that more H2S can be absorbed in ILs with [Cl] and [Ac] anion. The solubility of H2S in ILs with different alkyl chain at the cations not much affected and with different type of cations are slightly influence H2S capture capacities. Even though the cations do not affect much in solubility of H2S, we still need to consider the effectiveness of cation in different way. The prediction results only show their physical absorption ability, but the absorption of H2S need to be consider chemically to get high capacity of absorption of H2S.Keywords: H2S, hydrogen sulfide, ionic liquids, COSMO-RS
Procedia PDF Downloads 1371680 Secure Network Coding-Based Named Data Network Mutual Anonymity Transfer Protocol
Authors: Tao Feng, Fei Xing, Ye Lu, Jun Li Fang
Abstract:
NDN is a kind of future Internet architecture. Due to the NDN design introduces four privacy challenges,Many research institutions began to care about the privacy issues of naming data network(NDN).In this paper, we are in view of the major NDN’s privacy issues to investigate privacy protection,then put forwards more effectively anonymous transfer policy for NDN.Firstly,based on mutual anonymity communication for MP2P networks,we propose NDN mutual anonymity protocol.Secondly,we add interest package authentication mechanism in the protocol and encrypt the coding coefficient, security of this protocol is improved by this way.Finally, we proof the proposed anonymous transfer protocol security and anonymity.Keywords: NDN, mutual anonymity, anonymous routing, network coding, authentication mechanism
Procedia PDF Downloads 4501679 Increase in the Persistence of Various Invaded Multiplex Metacommunities Induced by Heterogeneity of Motifs
Authors: Dweepabiswa Bagchi, D. V. Senthilkumar
Abstract:
Numerous studies have typically demonstrated the devastation of invasions on an isolated ecosystem or, at most, a network of dispersively coupled similar ecosystem patches. Using such a simplistic 2-D network model, one can only consider dispersal coupling and inter-species trophic interactions. However, in a realistic ecosystem, numerous species co-exist and interact trophically and non-trophically in groups of 2 or more. Even different types of dispersal can introduce complexity in an ecological network. Therefore, a more accurate representation of actual ecosystems (or ecological networks) is a complex network consisting of motifs formed by two or more interacting species. Here, the apropos structure of the network should be multiplex or multi-layered. Motifs between different patches or species should be identical within the same layer and vary from one layer to another. This study investigates three distinct ecological multiplex networks facing invasion from one or more external species. This work determines and quantifies the criteria for the increased extinction risk of these networks. The dynamical states of the network with high extinction risk, i.e., the danger states, and those with low extinction risk, i.e., the resistive network states, are both subsequently identified. The analysis done in this study further quantifies the persistence of the entire network corresponding to simultaneous changes in the strength of invasive dispersal and higher-order trophic and non-trophic interactions. This study also demonstrates that the ecosystems enjoy an inherent advantage against invasions due to their multiplex network structure.Keywords: increased ecosystem persistence, invasion on ecosystems, multiplex networks, non-trophic interactions
Procedia PDF Downloads 64