Search results for: plasma surface texturing
6188 LTF Expression Profiling Which is Essential for Cancer Cell Proliferation and Metastasis, Correlating with Clinical Features, as Well as Early Stages of Breast Cancer
Authors: Azar Heidarizadi, Mahdieh Salimi, Hossein Mozdarani
Abstract:
Introduction: As a complex disease, breast cancer results from several genetic and epigenetic changes. Lactoferrin, a member of the transferrin family, is reported to have a number of biological functions, including DNA synthesis, immune responses, iron transport, etc., any of which could play a role in tumor progression. The aim of this study was to investigate the bioinformatics data and experimental assay to find the pattern of promoter methylation and gene expression of LTF in breast cancer in order to study its potential role in cancer management. Material and Methods: In order to evaluate the methylation status of the LTF promoter, we studied the MS-PCR and Real-Time PCR on samples from patients with breast cancer and normal cases. 67 patient samples were conducted for this study, including tumoral, plasma, and normal tissue adjacent samples, as well as 30 plasma from normal cases and 10 tissue breast reduction cases. Subsequently, bioinformatics analyses such as cBioPortal databases, string, and genomatix were conducted to disclose the prognostic value of LTF in breast cancer progression. Results: The analysis of LTF expression showed an inverse relationship between the expression level of LTF and the stages of tissues of breast cancer patients (p<0.01). In fact, stages 1 and 2 had a high expression in LTF, while, in stages 3 and 4, a significant reduction was observable (p < 0.0001). LTF expression frequently alters with a decrease in the expression in ER⁺, PR⁺, and HER2⁺ patients (P < 0.01) and an increase in the expression in the TNBC, LN¯, ER¯, and PR- patients (P < 0.001). Also, LTF expression is significantly associated with metastasis and lymph node involvement factors (P < 0.0001). The sensitivity and specificity of LTF were detected, respectively. A negative correlation was detected between the results of level expression and methylation of the LTF promoter. Conclusions: The altered expression of LTF observed in breast cancer patients could be considered as a promotion in cell proliferation and metastasis even in the early stages of cancer.Keywords: LTF, expression, methylation, breast cancer
Procedia PDF Downloads 716187 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design
Authors: A. Thakur, P. S. Panesar, M. S. Saini
Abstract:
Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio (φ), and batch extraction time (τ) with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs,, ψ, φ and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively.Keywords: emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology
Procedia PDF Downloads 3836186 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface
Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan
Abstract:
Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor
Procedia PDF Downloads 4846185 Pharmacokinetic Modeling of Valsartan in Dog following a Single Oral Administration
Authors: In-Hwan Baek
Abstract:
Valsartan is a potent and highly selective antagonist of the angiotensin II type 1 receptor, and is widely used for the treatment of hypertension. The aim of this study was to investigate the pharmacokinetic properties of the valsartan in dogs following oral administration of a single dose using quantitative modeling approaches. Forty beagle dogs were randomly divided into two group. Group A (n=20) was administered a single oral dose of valsartan 80 mg (Diovan® 80 mg), and group B (n=20) was administered a single oral dose of valsartan 160 mg (Diovan® 160 mg) in the morning after an overnight fast. Blood samples were collected into heparinized tubes before and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12 and 24 h following oral administration. The plasma concentrations of the valsartan were determined using LC-MS/MS. Non-compartmental pharmacokinetic analyses were performed using WinNonlin Standard Edition software, and modeling approaches were performed using maximum-likelihood estimation via the expectation maximization (MLEM) algorithm with sampling using ADAPT 5 software. After a single dose of valsartan 80 mg, the mean value of maximum concentration (Cmax) was 2.68 ± 1.17 μg/mL at 1.83 ± 1.27 h. The area under the plasma concentration-versus-time curve from time zero to the last measurable concentration (AUC24h) value was 13.21 ± 6.88 μg·h/mL. After dosing with valsartan 160 mg, the mean Cmax was 4.13 ± 1.49 μg/mL at 1.80 ± 1.53 h, the AUC24h was 26.02 ± 12.07 μg·h/mL. The Cmax and AUC values increased in proportion to the increment in valsartan dose, while the pharmacokinetic parameters of elimination rate constant, half-life, apparent of total clearance, and apparent of volume of distribution were not significantly different between the doses. Valsartan pharmacokinetic analysis fits a one-compartment model with first-order absorption and elimination following a single dose of valsartan 80 mg and 160 mg. In addition, high inter-individual variability was identified in the absorption rate constant. In conclusion, valsartan displays the dose-dependent pharmacokinetics in dogs, and Subsequent quantitative modeling approaches provided detailed pharmacokinetic information of valsartan. The current findings provide useful information in dogs that will aid future development of improved formulations or fixed-dose combinations.Keywords: dose-dependent, modeling, pharmacokinetics, valsartan
Procedia PDF Downloads 2976184 Trace Elements in Yerba Mate from Brazil and Argentina by Inductively Coupled Plasma Mass Spectrometry
Authors: F. V. Matta, C. M. Donnelly, M. B. Jaafar, N. I. Ward
Abstract:
‘Yerba Mate’ (Ilex paraguariensis) is a native plant from South America with the main producers being Argentina and Brazil. ‘Mate’ is widely consumed in Argentina, Brazil, Uruguay and Paraguay. The most popular format is as an infusion made from dried leaves of a traditional cup, roasted material in tea bags or iced tea infusions. There are many alleged health benefits resulted from mate consumption, even though there is a lack of conclusive research published in the international literature. The main objective of this study was to develop and evaluate the sample preparation and instrumental analysis stages involved in the determination of trace elements in yerba mate using inductively coupled plasma mass spectrometry (ICP-MS). Specific details on the methods of sample digestion, validation of the ICP-MS analysis especially for polyatomic ion correction and matrix effects associated with the complex medium of mate will be presented. More importantly, mate produced in Brazil and Argentina, is subject to different soil conditions, methods of cultivation and production, especially for loose leaves and tea bags. The highest concentrations for loose mate leaf were for (mg/kg, dry weight): aluminium (253.6 – 506.9 for Brazil (Bra), 230.0 – 541.8 for Argentina (Arg), respectively), manganese (378.3 – 762.6 Bra; 440.8 – 879.9 Arg), iron (32.5 – 85.7 Bra; 28.2 – 132.9 Arg), zinc (28.2 – 91.1 Bra; 39.1 – 92.3 Arg), nickel (2.2 – 4.3 Bra; 2.9 – 10.8 Arg) and copper (4.8 – 9.1 Bra; 4.3 – 9.2 Arg), with lower levels of chromium, cobalt, selenium, molybdenum, cadmium, lead and arsenic. Elemental levels of mate leaf consumed in tea bags were found to be higher, mainly due to only using leaf material (as opposed to leaf and twig for loose packed product). Further implications of the way of consuming yerba mate will be presented, including different infusion methods in Brazil and Argentina. This research provides for the first time an extensive evaluation of mate products from both countries and the possible implications of specific trace elements, especially Mn, Fe, Se, Cu and Zn and the various health claims of consuming yerba mate.Keywords: beverage analysis, ICP-MS, trace elements, yerba mate
Procedia PDF Downloads 2266183 Quantitative Detection of the Conformational Transitions between Open and Closed Forms of Cytochrome P450 Oxidoreductase (CYPOR) at the Membrane Surface in Different Functional States
Authors: Sara Arafeh, Kovriguine Evguine
Abstract:
Cytochromes P450 are enzymes that require a supply of electrons to catalyze the synthesis of steroid hormones, fatty acids, and prostaglandin hormone. Cytochrome P450 Oxidoreductase (CYPOR), a membrane bound enzyme, provides these electrons in its open conformation. CYPOR has two cytosolic domains (FAD domain and FMN domain) and an N-terminal in the membrane. In its open conformation, electrons flow from NADPH, FAD, and finally to FMN where cytochrome P450 picks up these electrons. In the closed conformation, cytochrome P450 does not bind to the FMN domain to take the electrons. It was found that when the cytosolic domains are isolated, CYPOR could not bind to cytochrome P450. This suggested that the membrane environment is important for CYPOR function. This project takes the initiative to better understand the dynamics of CYPOR in its full length. Here, we determine the distance between specific sites in the FAD and FMN binding domains in CYPOR by Forster Resonance Energy Transfer (FRET) and Ultrafast TA spectroscopy with and without NADPH. The approach to determine these distances will rely on labeling these sites with red and infrared fluorophores. Mimic membrane attachment is done by inserting CYPOR in lipid nanodiscs. By determining the distances between the donor-acceptor sites in these domains, we can observe the open/closed conformations upon reducing CYPOR in the presence and absence of cytochrome P450. Such study is important to better understand CYPOR mechanism of action in various endosomal membranes including hepatic CYPOR which is vital in plasma cholesterol homeostasis. By investigating the conformational cycles of CYPOR, we can synthesize drugs that would be more efficient in affecting the steroid hormonal levels and metabolism of toxins catalyzed by Cytochrome P450.Keywords: conformational cycle of CYPOR, cytochrome P450, cytochrome P450 oxidoreductase, FAD domain, FMN domain, FRET, Ultrafast TA Spectroscopy
Procedia PDF Downloads 2796182 Synthesis of Highly Active Octahedral NaInS₂ for Enhanced H₂ Evolution
Authors: C. K. Ngaw
Abstract:
Crystal facet engineering, which involves tuning and controlling a crystal surface and morphology, is a commonly employed strategy to optimize the performance of crystalline nanocrystals. The principle behind this strategy is that surface atomic rearrangement and coordination, which inherently determines their catalytic activity, can be easily tuned by morphological control. Because of this, the catalytic properties of a nanocrystal are closely related to the surface of an exposed facet, and it has provided great motivation for researchers to synthesize photocatalysts with high catalytic activity by maximizing reactive facets exposed through morphological control. In this contribution, octahedral NaInS₂ crystals have been successfully developed via solvothermal method. The formation of the octahedral NaInS₂ crystals was investigated using field emission scanning electron microscope (FESEM) and X-Ray diffraction (XRD), and results have shown that the concentration of sulphur precursor plays an important role in the growth process, leading to the formation of other NaInS₂ crystal structures in the form of hexagonal nanosheets and microspheres. Structural modeling analysis suggests that the octahedral NaInS₂ crystals were enclosed with {012} and {001} facets, while the nanosheets and microspheres are bounded with {001} facets only and without any specific facets, respectively. Visible-light photocatalytic H₂ evolution results revealed that the octahedral NaInS₂ crystals (~67 μmol/g/hr) exhibit ~6.1 and ~2.3 times enhancement as compared to the conventional NaInS₂ microspheres (~11 μmol/g/hr) and nanosheets (~29 μmol/g/hr), respectively. The H₂ enhancement of the NaInS₂ octahedral crystal is attributed to the presence of {012} facets on the surface. Detailed analysis of the octahedron model revealed obvious differences in the atomic arrangement between the {001} and {012} facets and this can affect the interaction between the water molecules and the surface facets before reducing into H₂ gas. These results highlight the importance of tailoring crystal morphology with highly reactive facets in improving photocatalytic properties.Keywords: H₂ evolution, photocatalysis, octahedral, reactive facets
Procedia PDF Downloads 666181 A Dissolution Mechanism of the Silicon Carbide in HF/K₂Cr₂O₇ Solutions
Authors: Karima Bourenane, Aissa Keffous
Abstract:
In this paper, we present an experimental method on the etching reaction of p-type 6H-SiC, etching that was carried out in HF/K₂Cr₂O₇ solutions. The morphology of the etched surface was examined with varying K₂Cr₂O₇ concentrations, etching time and temperature solution. The surfaces of the etched samples were analyzed using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Photoluminescence. The surface morphology of samples etched in HF/K₂Cr₂O₇ is shown to depend on the solution composition and bath temperature. The investigation of the HF/K₂Cr₂O₇ solutions on 6H-SiC surface shows that as K₂Cr₂O₇ concentration increases, the etch rate increases to reach a maximum value at about 0.75 M and then decreases. Similar behavior has been observed when the temperature of the solution is increased. The maximum etch rate is found for 80 °C. Taking into account the result, a polishing etching solution of 6H-SiC has been developed. In addition, the result is very interesting when, to date, no chemical polishing solution has been developed on silicon carbide (SiC). Finally, we have proposed a dissolution mechanism of the silicon carbide in HF/K₂Cr₂O₇ solutions.Keywords: silicon carbide, dissolution, Chemical etching, mechanism
Procedia PDF Downloads 526180 Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology
Authors: Rotchanaphan Hengaroonprasan, Malinee Sriariyanun, Prapakorn Tantayotai, Supacharee Roddecha, Kraipat Cheenkachorn
Abstract:
Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes.Keywords: lignocellolusic biomass, pretreatment, organic acid response surface methodology, biorefinery
Procedia PDF Downloads 6546179 Comparison of Efficient Production of Small Module Gears
Authors: Vaclav Musil, Robert Cep, Sarka Malotova, Jiri Hajnys, Frantisek Spalek
Abstract:
The new designs of satellite gears comprising a number of small gears pose high requirements on the precise production of small module gears. The objective of the experimental activity stated in this article was to compare the conventional rolling gear cutting technology with the modern wire electrical discharge machining (WEDM) technology for the production of small module gear m=0.6 mm (thickness of 2.5 mm and material 30CrMoV9). The WEDM technology lies in copying the profile of gearing from the rendered trajectory which is then transferred to the track of a wire electrode. During the experiment, we focused on the comparison of these production methods. Main measured parameters which significantly influence the lifetime and noise was chosen. The first parameter was to compare the precision of gearing profile in respect to the mathematic model. The second monitored parameter was the roughness and surface topology of the gear tooth side. The experiment demonstrated high accuracy of WEDM technology, but a low quality of machined surface.Keywords: precision of gearing, small module gears, surface topology, WEDM technology
Procedia PDF Downloads 2336178 Monitoring Saltwater Corrosion on Steel Samples Using Coda Wave Interferometry in MHZ Frequencies
Authors: Maxime Farin, Emmanuel Moulin, Lynda Chehami, Farouk Benmeddour, Pierre Campistron
Abstract:
Assessing corrosion is crucial in the petrochemical and marine industry. Usual ultrasonic methods based on guided waves to detect corrosion can inspect large areas but lack precision. We propose a complementary and sensitive ultrasonic method (~ 10 MHz) based on coda wave interferometry to detect and quantify corrosion at the surface of a steel sample. The method relies on a single piezoelectric transducer, exciting the sample and measuring the scattered coda signals at different instants in time. A laboratory experiment is conducted with a steel sample immersed in salted water for 60~h with parallel coda and temperature measurements to correct coda dependence to temperature variations. Micrometric changes to the sample surface caused by corrosion are detected in the late coda signals, allowing precise corrosion detection. Moreover, a good correlation is found between a parameter quantifying the temperature-corrected stretching of the coda over time with respect to a reference without corrosion and the corrosion surface over the sample recorded with a camera.Keywords: coda wave interferometry, nondestructive evaluation, corrosion, ultrasonics
Procedia PDF Downloads 2346177 Electrochemical Coagulation of Synthetic Textile Dye Wastewater
Authors: H. B. Rekha, Usha N. Murthy, Prashanth, Ashoka
Abstract:
Dyes are manufactured to have high chemical resistance because they are normally species, very difficult to degrade (reactive dyes). It damages flora and fauna. Furthermore, coloured components are highly hazardous. So removal of dyes becomes a challenge for both textile industry and water treatment facility. Dyeing wastewater is usually treated by conventional methods such as biological oxidation and adsorption but nowadays them becoming in-adequate because of large variability of composition of waste water. In the present investigation, mild steel electrodes of varying surface area were used for treatment of synthetic textile dye. It appears that electro-chemical coagulation could be very effective in removing coloured from wastewater; it could also be used to remove other parameters like chlorides, COD, and solids to some extent. In the present study, coloured removal up to 99% was obtained for surface area of mild steel electrode of 80 cm2 and 96% of surface area of mild steel electrode of 50 cm2. The findings from this study could be used to improve the design of electro-chemical treatment systems and modify existing systems to improve efficiency.Keywords: electrochemical coagulation, mild steel, colour, environmental engineering
Procedia PDF Downloads 3076176 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy
Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla
Abstract:
Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.Keywords: aluminium bronze, waste-based surface modification, tafel polarisation, corrosion resistance
Procedia PDF Downloads 2366175 Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology
Authors: I. F. Ejim, F. L. Kamen
Abstract:
Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses.Keywords: algae oil, response surface methodology, optimization, Box-Bohnken, extraction
Procedia PDF Downloads 3386174 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems
Authors: Moustafa Osman Mohammed
Abstract:
This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topological order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment 'interactional cycle' for exchange photon energy with molecules without changes in topology. The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies: which are; automated, real-time, reliable, reproducible, and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody-antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due to the pathogenic archival architecture of cell clusters.Keywords: autopoiesis, photonics systems, quantum topology, molecular structure, biosensing
Procedia PDF Downloads 946173 Relationship of Oxidative Stress to Elevated Homocysteine and DNA Damage in Coronary Artery Disease Patients
Authors: Shazia Anwer Bukhari, Madiha Javeed Ghani, Muhammad Ibrahim Rajoka
Abstract:
Objective: Biochemical, environmental, physical and genetic factors have a strong effect on the development of coronary disease (CAD). Plasma homocysteine (Hcy) level and DNA damage play a pivotal role in its development and progression. The aim of this study was to investigate the predictive strength of an oxidative stress, clinical biomarkers and total antioxidant status (TAS) in CAD patients to find the correlation of homocysteine, TOS and oxidative DNA damage with other clinical parameters. Methods: Sixty confirmed patients with CAD and 60 healthy individuals as control were included in this study. Different clinical and laboratory parameters were studied in blood samples obtained from patients and control subjects using commercially available biochemical kits and statistical software Results: As compared to healthy individuals, CAD patients had significantly higher concentrations of indices of oxidative stress: homocysteine (P=0.0001), total oxidative stress (TOS) (P=0.0001), serum cholesterol (P=0.04), low density lipoprotein cholesterol (LDL) (P=0.01), high density lipoprotein-cholesterol (HDL) (P=0.0001), and malondialdehyde (MDA) (P=0.001) than those of healthy individuals. Plasma homocysteine level and oxidative DNA damage were positively correlated with cholesterol, triglycerides, systolic blood pressure, urea, total protein and albumin (P values= 0.05). Both Hcy and oxidative DNA damage were negatively correlated with TAS and proteins. Conclusion: Coronary artery disease patients had a significant increase in homocysteine level and DNA damage due to increased oxidative stress. In conclusion, our study shows a significantly increase in lipid peroxidation, TOS, homocysteine and DNA damage in the erythrocytes of patients with CAD. A significant decrease level of HDL-C and TAS was observed only in CAD patients. Therefore these biomarkers may be useful diagnosis of patients with CAD and play an important role in the pathogenesis of CAD.Keywords: antioxidants, coronary artery disease, DNA damage, homocysteine, oxidative stress, malondialdehyde, 8-Hydroxy-2’deoxyguanosine
Procedia PDF Downloads 4856172 Expression of Micro RNAs in the Liver Tissue of Mice Generated through in vitro Embryo Culture and Embryo Transfer
Authors: Göksel Doğan, Murat Öztürk, Didar Tuğçe Karakulak, Mehmet Nurullah Orman, Nicolas Sylvius, Matthew Blades, Mustafa Sandıkçı, Cengiz Ünsal, Mehtap Kılıç Eren, Funda Kıral, Levent Karagenç
Abstract:
Assisted reproduction is associated with impaired glucose metabolism in adulthood. miRNAs are key regulators of glucose metabolism. Whether embryo culture and/or transfer alters the expression of miRNAs and to what extent this process affects glucose metabolism remain largely unknown. The purpose of the present study was to examine the expression of miRNAs in the liver in mice obtained by the transfer of blastocysts. The study was comprised of an experimental (EG) and a control group (CG). EG was generated by embryo transfer to pseudo-pregnant females. Mice born from naturally ovulating females were used as the CG. Differential expression of miRNAs, blood glucose, plasma insulin, liver glycogen, and activities of some of the rate-limiting enzymes involved in glucose metabolism were determined at ten weeks of age. Blood glucose, plasma insulin, and glycogen concentrations were similar between the groups in both sexes. Activities of enzymes were similar among females. EG males had significantly less glucokinase and phosphofructokinase activity compared to CG males. None of the miRNAs were differentially expressed in males. On the other hand, miR-143-3p expression was upregulated in EG females. Expression of none of the genes targeted by miR143-3p differed between the groups. These results demonstrate that miR143-3p, a novel regulator of type 2 diabetes, is upregulated in mice generated by assisted reproduction in a sexually-dimorphic manner with no apparent effect on glucose and insulin levels at ten weeks of age. It remains to be determined if this process is associated with impaired glucose homeostasis in the long term.Keywords: assisted reproduction, blastocyst, embryo culture, glucose metabolism, miR143-3p, oxygen
Procedia PDF Downloads 1856171 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment
Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis
Abstract:
Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.Keywords: corrosion, surfactants, steel surface, quantum
Procedia PDF Downloads 3776170 Burnishing Effect on the Mechanical Characteristics of 100C6
Authors: Ouahiba Taamallah, Tarek Litim
Abstract:
This work relates to the physico-geometrical aspect of the surface layers of 100C6 steel having undergone the burnishing treatment by hard steel ball. The application of tip diamond burnishing promotes better roughness compared to turning. In addition, it allows the surface layers to be consolidated by work hardening phenomena. The optimal effects are closely related to the parameters of the treatment and the active part of the device. With an 80% improvement in roughness resulting from the treatment, burnishing can be defined as a finishing operation within the machining range. With a 40% gain in consolidation rate, this treatment is an efficient process for material consolidation.Keywords: 100C6 steel, burnishing, hardening, roughness
Procedia PDF Downloads 1566169 Volatile Organic Compounds Detection by Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers
Authors: Cristian Viespe, Dana Miu
Abstract:
Surface acoustic wave (SAW) sensors with nanoparticles (NPs) of various dimensions and concentrations embedded in different types of polymer sensing films for detecting volatile organic compounds (VOCs) were studied. The sensors were ‘delay line’ type with a center frequency of 69.4 MHz on ST-X quartz substrates. NPs with different diameters of 7 nm or 13 nm were obtained by laser ablation with lasers having 5 ns or 10 ps pulse durations, respectively. The influence of NPs dimensions and concentrations on sensor properties such as frequency shift, sensitivity, noise and response time were investigated. To the best of our knowledge, the influence of NP dimensions on SAW sensor properties with has not been investigated. The frequency shift and sensitivity increased with increasing NP concentration in the polymer for a given NP dimension and with decreasing NP diameter for a given concentration. The best performances were obtained for the smallest NPs used. The SAW sensor with NPs of 7 nm had a limit of detection (LOD) of 65 ppm (almost five times better than the sensor with polymer alone), and a response time of about 9 s for ethanol.Keywords: surface acoustic wave sensor, nanoparticles, volatile organic compounds, laser ablation
Procedia PDF Downloads 1506168 Towards the Design of Gripper Independent of Substrate Surface Structures
Authors: Annika Schmidt, Ausama Hadi Ahmed, Carlo Menon
Abstract:
End effectors for robotic systems are becoming more and more advanced, resulting in a growing variety of gripping tasks. However, most grippers are application specific. This paper presents a gripper that interacts with an object’s surface rather than being dependent on a defined shape or size. For this purpose, ingressive and astrictive features are combined to achieve the desired gripping capabilities. The developed prototype is tested on a variety of surfaces with different hardness and roughness properties. The results show that the gripping mechanism works on all of the tested surfaces. The influence of the material properties on the amount of the supported load is also studied and the efficiency is discussed.Keywords: claw, dry adhesion, insects, material properties
Procedia PDF Downloads 3596167 A Horn Antenna Loaded with FSS of Crossed Dipoles
Authors: Ibrahim Mostafa El-Mongy, Abdelmegid Allam
Abstract:
In this article analysis and investigation of the effect of loading a horn antenna with frequency selective surface (FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524 mm and loss tangent 0.004. Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.25 GHz (10.75–11 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results.Keywords: antenna, filtenna, frequency selective surface (FSS), horn
Procedia PDF Downloads 4586166 Natural Convection between Two Parallel Wavy Plates
Authors: Si Abdallah Mayouf
Abstract:
In this work, the effects of the wavy surface on free convection heat transfer boundary layer flow between two parallel wavy plates have been studied numerically. The two plates are considered at a constant temperature. The equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm. The important parameters in this problem are the amplitude of the wavy surfaces and the distance between the two wavy plates. Results are presented as velocity profiles, temperature profiles and local Nusselt number according to the important parameters.Keywords: free convection, wavy surface, parallel plates, fluid dynamics
Procedia PDF Downloads 3076165 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment
Authors: Maedeh Pourmajidian, Joseph R. McDermid
Abstract:
Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation
Procedia PDF Downloads 3986164 Pilot Study of Determining the Impact of Surface Subsidence at The Intersection of Cave Mining with the Surface Using an Electrical Impedance Tomography
Authors: Ariungerel Jargal
Abstract:
: Cave mining is a bulk underground mining method, which allows large low-grade deposits to be mined underground. This method involves undermining the orebody to make it collapse under its own weight into a series of chambers from which the ore extracted. It is a useful technique to extend the life of large deposits previously mined by open pits, and it is a method increasingly proposed for new mines around the world. We plan to conduct a feasibility study using Electrical impedance tomography (EIT) technology to show how much subsidence there is at the intersection with the cave mining surface. EIT is an imaging technique which uses electrical measurements at electrodes attached on the body surface to yield a cross-sectional image of conductivity changes within the object. EIT has been developed in several different applications areas as a simpler, cheaper alternative to many other imaging methods. A low frequency current is injected between pairs of electrodes while voltage measurements are collected at all other electrode pairs. In the difference EIT, images are reconstructed of the change in conductivity distribution (σ) between the acquisition of the two sets of measurements. Image reconstruction in EIT requires the solution of an ill-conditioned nonlinear inverse problem on noisy data, typically requiring make simpler assumptions or regularization. It is noted that the ratio of current to voltage represents a complex value according to Ohm’s law, and that it is theoretically possible to re-express EIT. The results of the experiment were presented on the simulation, and it was concluded that it is possible to conduct further real experiments. Drill a certain number of holes in the top wall of the cave to attach the electrodes, flow a current through them, and measure and acquire the potential through these electrodes. Appropriate values should be selected depending on the distance between the holes, the frequency and duration of the measurements, the surface characteristics and the size of the study area using an EIT device.Keywords: impedance tomography, cave mining, soil, EIT device
Procedia PDF Downloads 1266163 Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance
Authors: Ying-Chang Yu, Yuan-Lung Lo
Abstract:
Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently.Keywords: multi-layer facade, porous media, facade performance, turbulence and distributed resistance, wind tunnel test
Procedia PDF Downloads 2186162 Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite
Authors: Hari Singh, Abhishek Kamboj, Sudhir Kumar
Abstract:
This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts Grey Relational Analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole.Keywords: metal matrix composite, drilling, optimization, step drill, surface roughness, burr height, hole diameter error
Procedia PDF Downloads 3196161 Relation between Pavement Roughness and Distress Parameters for Highways
Authors: Suryapeta Harini
Abstract:
Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.Keywords: roughness index, network survey vehicle, regression, correlation
Procedia PDF Downloads 1766160 Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility
Authors: Xiaodong Xu, Dan Zhao, Xiujuan Chang, Chunming Li, Huiyun Zhou, Xin Li, Qiang Shi, Shifang Luan, Jinghua Yin
Abstract:
Polypropylene (PP) is one of the most commonly used plastics because of its low density, outstanding mechanical properties, and low cost. However, its drawbacks such as low surface energy, poor dyeability, lack of chemical functionalities, and poor compatibility with polar polymers and inorganic materials, have restricted the application of PP. To expand its application in biomedical materials, functionalization is considered to be the most effective way. In this study, PP was functionalized with a chiral monomer, (S)-1-acryloylpyrrolidine-2-carboxylic acid ((S)-APCA), by free-radical grafting in the solid phase. The grafting degree of PP-g-APCA was determined by chemical titration method, and the chemical structure of functionalized PP was characterized by FTIR spectroscopy, which confirmed that the chiral monomer (S)-APCA was successfully grafted onto PP. Static water contact angle results suggested that the surface hydrophilicity of PP was significantly improved by solid phase grafting and assistance of surface water treatment. Protein adsorption and platelet adhesion results showed that hemocompatibility of PP was greatly improved by grafting the chiral monomer.Keywords: functionalization, polypropylene, chiral monomer, hemocompatibility
Procedia PDF Downloads 3816159 Real-Space Mapping of Surface Trap States in Cigse Nanocrystals Using 4D Electron Microscopy
Authors: Riya Bose, Ashok Bera, Manas R. Parida, Anirudhha Adhikari, Basamat S. Shaheen, Erkki Alarousu, Jingya Sun, Tom Wu, Osman M. Bakr, Omar F. Mohammed
Abstract:
This work reports visualization of charge carrier dynamics on the surface of copper indium gallium selenide (CIGSe) nanocrystals in real space and time using four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and correlates it with the optoelectronic properties of the nanocrystals. The surface of the nanocrystals plays a key role in controlling their applicability for light emitting and light harvesting purposes. Typically for quaternary systems like CIGSe, which have many desirable attributes to be used for optoelectronic applications, relative abundance of surface trap states acting as non-radiative recombination centre for charge carriers remains as a major bottleneck preventing further advancements and commercial exploitation of these nanocrystals devices. Though ultrafast spectroscopic techniques allow determining the presence of picosecond carrier trapping channels, because of relative larger penetration depth of the laser beam, only information mainly from the bulk of the nanocrystals is obtained. Selective mapping of such ultrafast dynamical processes on the surfaces of nanocrystals remains as a key challenge, so far out of reach of purely optical probing time-resolved laser techniques. In S-UEM, the optical pulse generated from a femtosecond (fs) laser system is used to generate electron packets from the tip of the scanning electron microscope, instead of the continuous electron beam used in the conventional setup. This pulse is synchronized with another optical excitation pulse that initiates carrier dynamics in the sample. The principle of S-UEM is to detect the secondary electrons (SEs) generated in the sample, which is emitted from the first few nanometers of the top surface. Constructed at different time delays between the optical and electron pulses, these SE images give direct and precise information about the carrier dynamics on the surface of the material of interest. In this work, we report selective mapping of surface dynamics in real space and time of CIGSe nanocrystals applying 4D S-UEM. We show that the trap states can be considerably passivated by ZnS shelling of the nanocrystals, and the carrier dynamics can be significantly slowed down. We also compared and discussed the S-UEM kinetics with the carrier dynamics obtained from conventional ultrafast time-resolved techniques. Additionally, a direct effect of the state trap removal can be observed in the enhanced photoresponse of the nanocrystals after shelling. Direct observation of surface dynamics will not only provide a profound understanding of the photo-physical mechanisms on nanocrystals’ surfaces but also enable to unlock their full potential for light emitting and harvesting applications.Keywords: 4D scanning ultrafast microscopy, charge carrier dynamics, nanocrystals, optoelectronics, surface passivation, trap states
Procedia PDF Downloads 295