Search results for: multiple data
26760 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 12326759 Implementation of a Culturally Responsive Home Visiting Framework in Head Start Teacher Professional Development
Authors: Meilan Jin, Mary Jane Moran
Abstract:
This study aims to introduce the framework of culturally responsive home visiting (CRHV) to head start teacher professional sessions in the Southeastern of the US and investigate its influence on the evolving beliefs of teachers about their roles and relationships with families in-home visits. The framework orients teachers to an effective way of taking on the role of learner to listen for spoken and unspoken needs and look for family strengths. In addition, it challenges the deficit model that is grounded on 'cultural deprivation,' and it stresses the value of family cultures and advocates equal, collaborative parent-teacher relationships. The home visit reflection papers and focus group transcriptions of eight teachers have been collected since 2010 throughout a five-year longitudinal collaboration with them. Reflection papers were written by the teachers before and after introducing the CRHV framework, including the details of visit purposes and actions and their plans for later home visits. Particularly, the CRHV framework guided the teachers to listen and look for information about family-living environments; parent-child interactions; child-rearing practices; and parental beliefs, values, and needs. Two focus groups were organized in 2014 by asking the teachers to read their written reflection papers and then discussing their shared beliefs and experiences of home visits in recent years. The average length of the discussions was one hour, and the discussions were audio-recorded and transcribed verbatim. Moreover, the data were analyzed using constant comparative analysis, and the analysis was verified through (a) the uses of multiple data sources, (b) the involvement of multiple researchers, (c) coding checks, and (d) the provisions of the thick descriptions of the findings. The study findings corroborate that the teachers become to reposition themselves as 'knowledge seekers' through reorienting their cynosure toward 'setting stones' to learn, grow, and change rather than framing their home visits. The teachers also continually engage in careful listening, observing, questioning, and dialoguing, and these actions reflect their care toward parents. The value of teamwork with parents is advocated, and the teachers recognize that when parents feel empowered, they are active and committed to doing more for their children, which can further advantage proactive long-term parent-teacher collaborations. The study findings also validate that the framework is influential for educators to provide the experiences of home visiting that is culturally responsive and to share collaborative relationships with caregivers. The long-term impact of the framework further implies that teachers continue to put themselves in the position of evolving, including beliefs and actions, to better work with children and families who are culturally, ethnically, and linguistically different from them. This framework can be applicable to educators and professionals who are looking for avenues to bridge the relationship between home and school and parents and teachers.Keywords: culturally responsive home visit, early childhood education, parent–teacher collaboration, teacher professional development
Procedia PDF Downloads 9726758 Estimating Destinations of Bus Passengers Using Smart Card Data
Authors: Hasik Lee, Seung-Young Kho
Abstract:
Nowadays, automatic fare collection (AFC) system is widely used in many countries. However, smart card data from many of cities does not contain alighting information which is necessary to build OD matrices. Therefore, in order to utilize smart card data, destinations of passengers should be estimated. In this paper, kernel density estimation was used to forecast probabilities of alighting stations of bus passengers and applied to smart card data in Seoul, Korea which contains boarding and alighting information. This method was also validated with actual data. In some cases, stochastic method was more accurate than deterministic method. Therefore, it is sufficiently accurate to be used to build OD matrices.Keywords: destination estimation, Kernel density estimation, smart card data, validation
Procedia PDF Downloads 35226757 Optical Multicast over OBS Networks: An Approach Based on Code-Words and Tunable Decoders
Authors: Maha Sliti, Walid Abdallah, Noureddine Boudriga
Abstract:
In the frame of this work, we present an optical multicasting approach based on optical code-words. Our approach associates, in the edge node, an optical code-word to a group multicast address. In the core node, a set of tunable decoders are used to send a traffic data to multiple destinations based on the received code-word. The use of code-words, which correspond to the combination of an input port and a set of output ports, allows the implementation of an optical switching matrix. At the reception of a burst, it will be delayed in an optical memory. And, the received optical code-word is split to a set of tunable optical decoders. When it matches a configured code-word, the delayed burst is switched to a set of output ports.Keywords: optical multicast, optical burst switching networks, optical code-words, tunable decoder, virtual optical memory
Procedia PDF Downloads 60726756 Impact of Early Father Involvement on Middle Childhood Cognitive and Behavioral Outcomes
Authors: Jamel Slaughter
Abstract:
Father involvement across the development of a child has been linked to children’s psychological adjustment, fewer behavioral problems, and higher educational attainment. Conversely, there is much less research that highlights father involvement in relation to childhood development during early childhood period prior to preschool age (ages 1-3 years). Most research on fathers and child outcomes have been limited by its focus on the stages of adolescence, middle childhood, and infancy. This study examined the influence of father involvement, during the toddler stage, on 5th grade cognitive development, rule-breaking, and behavior outcomes measured by Child Behavior Checklist (CBCL) scores. Using data from the Early Head Start Research and Evaluation (EHSRE) Study, 1996-2010: United States, a total of 3,001 children and families were identified in 17 sites (cities), representing a diverse demographic sample. An independent samples t-test was run to compare cognitive development, aggressive, and rule-breaking behavior mean scores among children who had early continuous father involvement for the first 14 – 36 months to children who did not have early continuous father involvement for the first 14 – 36 months. Multiple linear regression was conducted to determine if continuous, or non-continuous father involvement (14 month-36 months), can be used to predict outcome scores on the Child Behavior Checklist in aggressive behavior, rule-breaking behavior, and cognitive development, at 5th grade. A statistically significant mean difference in cognitive development scores were found for children who had continuous father involvement (M=1.92, SD=2.41, t (1009) =2.81, p =.005, 95% CI=.146 to .828) compared to those who did not (M=2.60, SD=3.06, t (1009) =-2.38, p=.017, 95% CI= -1.08 to -.105). There was also a statistically significant mean difference in rule-breaking behavior scores between children who had early continuous father involvement (M=1.95, SD=2.33, t (1009) = 3.69, p <.001, 95% CI= .287 to .940), compared to those that did not (M=2.87, SD=2.93, t (1009) = -3.49, p =.001, 95% CI= -1.30 to -.364). No statistically significant difference was found in aggressive behavior scores. Multiple linear regression was performed using continuous father involvement to determine which has the largest relationship to rule-breaking behavior and cognitive development based on CBCL scores. Rule-breaking behavior was found to be significant (F (2, 1008) = 8.353, p<.001), with an R2 of .016. Cognitive development was also significant (F (2, 1008) = 4.44, p=.012), with an R2 of .009. Early continuous father involvement was a significant predictor of rule-breaking behavior and cognitive development at middle childhood. Findings suggest early continuous father involvement during the first 14 – 36 months of their children’s life, may lead to lower levels of rule-breaking behaviors and thought problems at 5th grade.Keywords: cognitive development, early continuous father involvement, middle childhood, rule-breaking behavior
Procedia PDF Downloads 30226755 Drug Therapy Problem and Its Contributing Factors among Pediatric Patients with Infectious Diseases Admitted to Jimma University Medical Center, South West Ethiopia: Prospective Observational Study
Authors: Desalegn Feyissa Desu
Abstract:
Drug therapy problem is a significant challenge to provide high quality health care service for the patients. It is associated with morbidity, mortality, increased hospital stay, and reduced quality of life. Moreover, pediatric patients are quite susceptible to drug therapy problems. Thus this study aimed to assess drug therapy problem and its contributing factors among pediatric patients diagnosed with infectious disease admitted to pediatric ward of Jimma university medical center, from April 1 to June 30, 2018. Prospective observational study was conducted among pediatric patients with infectious disease admitted from April 01 to June 30, 2018. Drug therapy problems were identified by using Cipolle’s and strand’s drug related problem classification method. Patient’s written informed consent was obtained after explaining the purpose of the study. Patient’s specific data were collected using structured questionnaire. Data were entered into Epi data version 4.0.2 and then exported to statistical software package version 21.0 for analysis. To identify predictors of drug therapy problems occurrence, multiple stepwise backward logistic regression analysis was done. The 95% CI was used to show the accuracy of data analysis and statistical significance was considered at p-value < 0.05. A total of 304 pediatric patients were included in the study. Of these, 226(74.3%) patients had at least one drug therapy problem during their hospital stay. A total of 356 drug therapy problems were identified among two hundred twenty six patients. Non-compliance (28.65%) and dose too low (27.53%) were the most common type of drug related problems while disease comorbidity [AOR=3.39, 95% CI= (1.89-6.08)], Polypharmacy [AOR=3.16, 95% CI= (1.61-6.20)] and more than six days stay in hospital [AOR=3.37, 95% CI= (1.71-6.64) were independent predictors of drug therapy problem occurrence. Drug therapy problems were common in pediatric patients with infectious disease in the study area. Presence of comorbidity, polypharmacy and prolonged hospital stay were the predictors of drug therapy problem in study area. Therefore, to overcome the significant gaps in pediatric pharmaceutical care, clinical pharmacists, Pediatricians, and other health care professionals have to work in collaboration.Keywords: drug therapy problem, pediatric, infectious disease, Ethiopia
Procedia PDF Downloads 15326754 Ideation, Plans, and Attempts for Suicide among Adolescents with Disability
Authors: Nyla Anjum, Humaira Bano
Abstract:
Disability, regardless of its type and nature limits one or two significant life activities. These limitations constitute risk factors for suicide. Rate and intensity of problem upsurges in critical age of adolescence. Researches in the field of mental health over look problem of suicide among persons with disability. Aim of the study was to investigate prevalence and risk factors for suicide among adolescents with disability. The study constitutes purposive sample of 106 elements of both gender with four major categories of disability: hearing impairment, physical impairment, visual impairment and intellectual disabilities. Face to face interview technique was opted for data collection. Other variable are: socio-economic status, social and family support, provision of services for persons with disability, education and employment opportunities. For data analysis independent sample t-test was applied to find out significant differences in gender and One Way Analysis of variance was run to find out differences among four types of disability. Major predictors of suicide were identified with multiple regression analysis. It is concluded that ideation, plans and attempts of suicide among adolescents with disability is a multifaceted and imperative concern in the area of mental health. Urgent research recommendations contains valid measurement of suicide rate and identification of more risk factors for suicide among persons with disability. Study will also guide towards prevention of this pressing problem and will bring message of happy and healthy life not only for persons with disability but also for their families. It will also help to reduce suicide rate in society.Keywords: suicide, risk factors, adolescent, disability, mental health
Procedia PDF Downloads 38226753 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model
Authors: Gholba Niranjan Dilip, Anil Kumar
Abstract:
Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector
Procedia PDF Downloads 16026752 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data
Authors: M. Kharrat, G. Moreau, Z. Aboura
Abstract:
The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition
Procedia PDF Downloads 15526751 Evaluated Nuclear Data Based Photon Induced Nuclear Reaction Model of GEANT4
Authors: Jae Won Shin
Abstract:
We develop an evaluated nuclear data based photonuclear reaction model of GEANT4 for a more accurate simulation of photon-induced neutron production. The evaluated photonuclear data libraries from the ENDF/B-VII.1 are taken as input. Incident photon energies up to 140 MeV which is the threshold energy for the pion production are considered. For checking the validity of the use of the data-based model, we calculate the photoneutron production cross-sections and yields and compared them with experimental data. The results obtained from the developed model are found to be in good agreement with the experimental data for (γ,xn) reactions.Keywords: ENDF/B-VII.1, GEANT4, photoneutron, photonuclear reaction
Procedia PDF Downloads 27526750 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams
Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem
Abstract:
In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data
Procedia PDF Downloads 16126749 Probing Language Models for Multiple Linguistic Information
Authors: Bowen Ding, Yihao Kuang
Abstract:
In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.Keywords: language models, probing task, text presentation, linguistic information
Procedia PDF Downloads 11026748 Intersections and Cultural Landscape Interpretation, in the Case of Ancient Messene in the Peloponnese
Authors: E. Maistrou, P. Themelis, D. Kosmopoulos, K. Boulougoura, A. M. Konidi, K. Moretti
Abstract:
InterArch is an ongoing research project that is running since September 2020 and aims to propose a digital application for the enhancement of the cultural landscape, which emphasizes the contribution of physical space and time in digital data organization. The research case study refers to Ancient Messene in the Peloponnese, one of the most important archaeological sites in Greece. The project integrates an interactive approach to the natural environment, aiming at a manifold sensory experience. It combines the physical space of the archaeological site with the digital space of archaeological and cultural data while, at the same time, it embraces storytelling processes by engaging an interdisciplinary approach that familiarizes the user to multiple semantic interpretations. The research project is co‐financed by the European Union and Greek national funds, through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH - CREATE – INNOVATE (project code: Τ2ΕΔΚ-01659). It involves mutual collaboration between academic and cultural institutions and the contribution of an IT applications development company. New technologies and the integration of digital data enable the implementation of non‐linear narratives related to the representational characteristics of the art of collage. Various images (photographs, drawings, etc.) and sounds (narrations, music, soundscapes, audio signs, etc.) could be presented according to our proposal through new semiotics of augmented and virtual reality technologies applied in touch screens and smartphones. Despite the fragmentation of tangible or intangible references, material landscape formations, including archaeological remains, constitute the common ground that can inspire cultural narratives in a process that unfolds personal perceptions and collective imaginaries. It is in this context that cultural landscape may be considered an indication of space and historical continuity. It is in this context that history could emerge, according to our proposal, not solely as a previous inscription but also as an actual happening. As a rhythm of occurrences suggesting mnemonic references and, moreover, evolving history projected on the contemporary ongoing cultural landscape.Keywords: cultural heritage, digital data, landscape, archaeological sites, visitors’ itineraries
Procedia PDF Downloads 8026747 Impact of Risk Management Practices on Company Performance
Authors: Syed Atif Ali, Farzan Yahya
Abstract:
This research paper covers the issue of risk management impact on the company performance. Degree of financial leverage (DFL), degree of operating leverage (DOL) and the working capital ratio (WCR) are taken as independent variables which are the representative of risk and the earning price per share (EPS), return on assets (ROA), return on equity (ROE), Sales and Net profits which are the representative of performance. Last 10 years (2004-2013) of Cement sector of Pakistan data is chosen as sample for analyze their relations by multiple regression technique. Through analyses, it is found that WCR impact adequately on the company performance because if company has enough liquidity than it perform its operations smoothly and enhance its performance very well. DFL should be control moderately because enough DFL leads performance of company downward. On the other hand, the DOL should be less because it causes the less profitability for a company from its operations.Keywords: degree of financial leverage (DFL), degree of operating leverage (DOL), working capital ratio (WCR), earning per share (EPS), return on equity (ROE), return on assets (ROA)
Procedia PDF Downloads 45326746 A Small-Scale Survey on Risk Factors of Musculoskeletal Disorders in Workers of Logistics Companies in Cyprus and on the Early Adoption of Industrial Exoskeletons as Mitigation Measure
Authors: Kyriacos Clerides, Panagiotis Herodotou, Constantina Polycarpou, Evagoras Xydas
Abstract:
Background: Musculoskeletal disorders (MSDs) in the workplace is a very common problem in Europe which are caused by multiple risk factors. In recent years, wearable devices and exoskeletons for the workplace have been trying to address the various risk factors that are associated with strenuous tasks in the workplace. The logistics sector is a huge sector that includes warehousing, storage, and transportation. However, the task associated with logistics is not well-studied in terms of MSDs risk. This study was aimed at looking into the MSDs affecting workers of logistics companies. It compares the prevalence of MSDs among workers and evaluates multiple risk factors that contribute to the development of MSDs. Moreover, this study seeks to obtain user feedback on the adoption of exoskeletons in such a work environment. Materials and Methods: The study was conducted among workers in logistics companies in Nicosia, Cyprus, from July to September 2022. A set of standardized questionnaires was used for collecting different types of data. Results: A high proportion of logistics professionals reported MSDs in one or more other body regions, the lower back being the most commonly affected area. Working in the same position for long periods, working in awkward postures, and handling an excessive load, were found to be the most commonly reported job risk factor that contributed to the development of MSDs, in this study. A significant number of participants consider the back region as the most to be benefited from a wearable exoskeleton device. Half of the participants would like to have at least a 50% reduction in their daily effort. The most important characteristics for the adoption of exoskeleton devices were found to be how comfortable the device is and its weight. Conclusion: Lower back and posture were the highest risk factors among all logistics professionals assessed in this study. A larger scale study using quantitative analytical tools may give a more accurate estimate of MSDs, which would pave the way for making more precise recommendations to eliminate the risk factors and thereby prevent MSDs. A follow-up study using exoskeletons in the workplace should be done to assess whether they assist in MSD prevention.Keywords: musculoskeletal disorders, occupational health, safety, occupational risk, logistic companies, workers, Cyprus, industrial exoskeletons, wearable devices
Procedia PDF Downloads 10726745 Destination Management Organization in the Digital Era: A Data Framework to Leverage Collective Intelligence
Authors: Alfredo Fortunato, Carmelofrancesco Origlia, Sara Laurita, Rossella Nicoletti
Abstract:
In the post-pandemic recovery phase of tourism, the role of a Destination Management Organization (DMO) as a coordinated management system of all the elements that make up a destination (attractions, access, marketing, human resources, brand, pricing, etc.) is also becoming relevant for local territories. The objective of a DMO is to maximize the visitor's perception of value and quality while ensuring the competitiveness and sustainability of the destination, as well as the long-term preservation of its natural and cultural assets, and to catalyze benefits for the local economy and residents. In carrying out the multiple functions to which it is called, the DMO can leverage a collective intelligence that comes from the ability to pool information, explicit and tacit knowledge, and relationships of the various stakeholders: policymakers, public managers and officials, entrepreneurs in the tourism supply chain, researchers, data journalists, schools, associations and committees, citizens, etc. The DMO potentially has at its disposal large volumes of data and many of them at low cost, that need to be properly processed to produce value. Based on these assumptions, the paper presents a conceptual framework for building an information system to support the DMO in the intelligent management of a tourist destination tested in an area of southern Italy. The approach adopted is data-informed and consists of four phases: (1) formulation of the knowledge problem (analysis of policy documents and industry reports; focus groups and co-design with stakeholders; definition of information needs and key questions); (2) research and metadatation of relevant sources (reconnaissance of official sources, administrative archives and internal DMO sources); (3) gap analysis and identification of unconventional information sources (evaluation of traditional sources with respect to the level of consistency with information needs, the freshness of information and granularity of data; enrichment of the information base by identifying and studying web sources such as Wikipedia, Google Trends, Booking.com, Tripadvisor, websites of accommodation facilities and online newspapers); (4) definition of the set of indicators and construction of the information base (specific definition of indicators and procedures for data acquisition, transformation, and analysis). The framework derived consists of 6 thematic areas (accommodation supply, cultural heritage, flows, value, sustainability, and enabling factors), each of which is divided into three domains that gather a specific information need to be represented by a scheme of questions to be answered through the analysis of available indicators. The framework is characterized by a high degree of flexibility in the European context, given that it can be customized for each destination by adapting the part related to internal sources. Application to the case study led to the creation of a decision support system that allows: •integration of data from heterogeneous sources, including through the execution of automated web crawling procedures for data ingestion of social and web information; •reading and interpretation of data and metadata through guided navigation paths in the key of digital story-telling; •implementation of complex analysis capabilities through the use of data mining algorithms such as for the prediction of tourist flows.Keywords: collective intelligence, data framework, destination management, smart tourism
Procedia PDF Downloads 12126744 Data Privacy: Stakeholders’ Conflicts in Medical Internet of Things
Authors: Benny Sand, Yotam Lurie, Shlomo Mark
Abstract:
Medical Internet of Things (MIoT), AI, and data privacy are linked forever in a gordian knot. This paper explores the conflicts of interests between the stakeholders regarding data privacy in the MIoT arena. While patients are at home during healthcare hospitalization, MIoT can play a significant role in improving the health of large parts of the population by providing medical teams with tools for collecting data, monitoring patients’ health parameters, and even enabling remote treatment. While the amount of data handled by MIoT devices grows exponentially, different stakeholders have conflicting understandings and concerns regarding this data. The findings of the research indicate that medical teams are not concerned by the violation of data privacy rights of the patients' in-home healthcare, while patients are more troubled and, in many cases, are unaware that their data is being used without their consent. MIoT technology is in its early phases, and hence a mixed qualitative and quantitative research approach will be used, which will include case studies and questionnaires in order to explore this issue and provide alternative solutions.Keywords: MIoT, data privacy, stakeholders, home healthcare, information privacy, AI
Procedia PDF Downloads 10226743 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations
Authors: Deepak Singh, Rail Kuliev
Abstract:
The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization
Procedia PDF Downloads 7026742 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method
Procedia PDF Downloads 50226741 Incorporating Information Gain in Regular Expressions Based Classifiers
Authors: Rosa L. Figueroa, Christopher A. Flores, Qing Zeng-Treitler
Abstract:
A regular expression consists of sequence characters which allow describing a text path. Usually, in clinical research, regular expressions are manually created by programmers together with domain experts. Lately, there have been several efforts to investigate how to generate them automatically. This article presents a text classification algorithm based on regexes. The algorithm named REX was designed, and then, implemented as a simplified method to create regexes to classify Spanish text automatically. In order to classify ambiguous cases, such as, when multiple labels are assigned to a testing example, REX includes an information gain method Two sets of data were used to evaluate the algorithm’s effectiveness in clinical text classification tasks. The results indicate that the regular expression based classifier proposed in this work performs statically better regarding accuracy and F-measure than Support Vector Machine and Naïve Bayes for both datasets.Keywords: information gain, regular expressions, smith-waterman algorithm, text classification
Procedia PDF Downloads 32026740 Design and Synthesis of Two Tunable Bandpass Filters Based on Varactors and Defected Ground Structure
Authors: M'Hamed Boulakroune, Mouloud Challal, Hassiba Louazene, Saida Fentiz
Abstract:
This paper presents a new ultra wideband (UWB) microstrip bandpass filter (BPF) at microwave frequencies. The first one is based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The second structure is a tunable bandpass filters using planar patch resonators based on diode varactor. This filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactors are connected. Indeed, this filter is initially centered at 2.4 GHz, the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses, and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere.Keywords: defected ground structure, diode varactor, microstrip bandpass filter, multiple-mode resonator
Procedia PDF Downloads 31126739 Big Data Strategy for Telco: Network Transformation
Abstract:
Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.Keywords: big data, next generation networks, network transformation, strategy
Procedia PDF Downloads 36026738 Pharmacodynamic Enhancement of Repetitive rTMS Treatment Outcomes for Major Depressive Disorder
Authors: A. Mech
Abstract:
Repetitive transcranial magnetic stimulation has proven to be a valuable treatment option for patients who have failed to respond to multiple courses of antidepressant medication. In fact, the American Psychiatric Association recommends TMS after one failed treatment course of antidepressant medication. Genetic testing has proven valuable for pharmacokinetic variables, which, if understood, could lead to more efficient dosing of psychotropic medications to improve outcomes. Pharmacodynamic testing can identify biomarkers, which, if addressed, can improve patients' outcomes in antidepressant therapy. Monotherapy treatment of major depressive disorder with methylated B vitamin treatment has been shown to be safe and effective in patients with MTHFR polymorphisms without waiting for multiple trials of failed medication treatment for depression. Such treatment has demonstrated remission rates similar to antidepressant clinical trials. Combining pharmacodynamics testing with repetitive TMS treatment with NeuroStar has shown promising potential for enhancing remission rates and durability of treatment. In this study, a retrospective chart review (ongoing) of patients who obtained repetitive TMS treatment enhanced by dietary supplementation guided by Pharmacodynamic testing, displayed a greater remission rate (90%) than patients treated with only NeuroStar TMS (62%).Keywords: improved remission rate, major depressive disorder, pharmacodynamic testing, rTMS outcomes
Procedia PDF Downloads 5726737 Connections among Personality, Teacher-Student Relationship, Belief in a Just World for Others and Teacher Bullying
Authors: Hui-Yu Peng, Hsiu-I Hsueh, Li-Ming Chen
Abstract:
Most studies focused on bullying behaviors among students, however few research concerns about teachers’ bullying behaviors against students. In order to have more understandings and reduce teacher bullying, it is important to examine what factors may affect teachers’ bullying behaviors. This study aimed to explore the connections between different psychological variables and teacher bullying. Four variables, neuroticism, extraversion, teacher-student relationship, and belief in a just world for others (BJW-others), were selected in this study. Four hundred and five elementary and secondary school teachers in Taiwan endorsed the self-reported surveys. Multiple regression method was used to analyze data. Results revealed that teachers’ BJW-others and extraversion did not have significant correlations with teacher bullying scores. However, closed teacher-student relationship and neuroticism can negatively and positively predict teachers’ bullying behaviors against students, respectively. Implications for preventing teacher bullying were discussed at the end of this study.Keywords: belief in a just world for others, big five personality traits, teacher bullying, teacher-student relationship
Procedia PDF Downloads 21326736 REDUCER: An Architectural Design Pattern for Reducing Large and Noisy Data Sets
Authors: Apkar Salatian
Abstract:
To relieve the burden of reasoning on a point to point basis, in many domains there is a need to reduce large and noisy data sets into trends for qualitative reasoning. In this paper we propose and describe a new architectural design pattern called REDUCER for reducing large and noisy data sets that can be tailored for particular situations. REDUCER consists of 2 consecutive processes: Filter which takes the original data and removes outliers, inconsistencies or noise; and Compression which takes the filtered data and derives trends in the data. In this seminal article, we also show how REDUCER has successfully been applied to 3 different case studies.Keywords: design pattern, filtering, compression, architectural design
Procedia PDF Downloads 21226735 Fuzzy Expert Systems Applied to Intelligent Design of Data Centers
Authors: Mario M. Figueroa de la Cruz, Claudia I. Solorzano, Raul Acosta, Ignacio Funes
Abstract:
This technological development project seeks to create a tool that allows companies, in need of implementing a Data Center, intelligently determining factors for allocating resources support cooling and power supply (UPS) in its conception. The results should show clearly the speed, robustness and reliability of a system designed for deployment in environments where they must manage and protect large volumes of data.Keywords: telecommunications, data center, fuzzy logic, expert systems
Procedia PDF Downloads 34526734 Surge in U. S. Citizens Expatriation: Testing Structual Equation Modeling to Explain the Underlying Policy Rational
Authors: Marco Sewald
Abstract:
Comparing present to past the numbers of Americans expatriating U. S. citizenship have risen. Even though these numbers are small compared to the immigrants, U. S. citizens expatriations have historically been much lower, making the uptick worrisome. In addition, the published lists and numbers from the U.S. government seems incomplete, with many not counted. Different branches of the U. S. government report different numbers and no one seems to know exactly how big the real number is, even though the IRS and the FBI both track and/or publish numbers of Americans who renounce. Since there is no single explanation, anecdotal evidence suggests this uptick is caused by global tax law and increased compliance burdens imposed by the U.S. lawmakers on U.S. citizens abroad. Within a research project the question arose about the reasons why a constant growing number of U.S. citizens are expatriating – the answers are believed helping to explain the underlying governmental policy rational, leading to such activities. While it is impossible to locate former U.S. citizens to conduct a survey on the reasons and the U.S. government is not commenting on the reasons given within the process of expatriation, the chosen methodology is Structural Equation Modeling (SEM), in the first step by re-using current surveys conducted by different researchers within the population of U. S. citizens residing abroad during the last years. Surveys questioning the personal situation in the context of tax, compliance, citizenship and likelihood to repatriate to the U. S. In general SEM allows: (1) Representing, estimating and validating a theoretical model with linear (unidirectional or not) relationships. (2) Modeling causal relationships between multiple predictors (exogenous) and multiple dependent variables (endogenous). (3) Including unobservable latent variables. (4) Modeling measurement error: the degree to which observable variables describe latent variables. Moreover SEM seems very appealing since the results can be represented either by matrix equations or graphically. Results: the observed variables (items) of the construct are caused by various latent variables. The given surveys delivered a high correlation and it is therefore impossible to identify the distinct effect of each indicator on the latent variable – which was one desired result. Since every SEM comprises two parts: (1) measurement model (outer model) and (2) structural model (inner model), it seems necessary to extend the given data by conducting additional research and surveys to validate the outer model to gain the desired results.Keywords: expatriation of U. S. citizens, SEM, structural equation modeling, validating
Procedia PDF Downloads 22126733 Power Aware Modified I-LEACH Protocol Using Fuzzy IF Then Rules
Authors: Gagandeep Singh, Navdeep Singh
Abstract:
Due to limited battery of sensor nodes, so energy efficiency found to be main constraint in WSN. Therefore the main focus of the present work is to find the ways to minimize the energy consumption problem and will results; enhancement in the network stability period and life time. Many researchers have proposed different kind of the protocols to enhance the network lifetime further. This paper has evaluated the issues which have been neglected in the field of the WSNs. WSNs are composed of multiple unattended ultra-small, limited-power sensor nodes. Sensor nodes are deployed randomly in the area of interest. Sensor nodes have limited processing, wireless communication and power resource capabilities Sensor nodes send sensed data to sink or Base Station (BS). I-LEACH gives adaptive clustering mechanism which very efficiently deals with energy conservations. This paper ends up with the shortcomings of various adaptive clustering based WSNs protocols.Keywords: WSN, I-Leach, MATLAB, sensor
Procedia PDF Downloads 27526732 Genetic Testing and Research in South Africa: The Sharing of Data Across Borders
Authors: Amy Gooden, Meshandren Naidoo
Abstract:
Genetic research is not confined to a particular jurisdiction. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa
Procedia PDF Downloads 16126731 Assessing Diagnostic and Evaluation Tools for Use in Urban Immunisation Programming: A Critical Narrative Review and Proposed Framework
Authors: Tim Crocker-Buque, Sandra Mounier-Jack, Natasha Howard
Abstract:
Background: Due to both the increasing scale and speed of urbanisation, urban areas in low and middle-income countries (LMICs) host increasingly large populations of under-immunized children, with the additional associated risks of rapid disease transmission in high-density living environments. Multiple interdependent factors are associated with these coverage disparities in urban areas and most evidence comes from relatively few countries, e.g., predominantly India, Kenya, Nigeria, and some from Pakistan, Iran, and Brazil. This study aimed to identify, describe, and assess the main tools used to measure or improve coverage of immunisation services in poor urban areas. Methods: Authors used a qualitative review design, including academic and non-academic literature, to identify tools used to improve coverage of public health interventions in urban areas. Authors selected and extracted sources that provided good examples of specific tools, or categories of tools, used in a context relevant to urban immunization. Diagnostic (e.g., for data collection, analysis, and insight generation) and programme tools (e.g., for investigating or improving ongoing programmes) and interventions (e.g., multi-component or stand-alone with evidence) were selected for inclusion to provide a range of type and availability of relevant tools. These were then prioritised using a decision-analysis framework and a tool selection guide for programme managers developed. Results: Authors reviewed tools used in urban immunisation contexts and tools designed for (i) non-immunization and/or non-health interventions in urban areas, and (ii) immunisation in rural contexts that had relevance for urban areas (e.g., Reaching every District/Child/ Zone). Many approaches combined several tools and methods, which authors categorised as diagnostic, programme, and intervention. The most common diagnostic tools were cross-sectional surveys, key informant interviews, focus group discussions, secondary analysis of routine data, and geographical mapping of outcomes, resources, and services. Programme tools involved multiple stages of data collection, analysis, insight generation, and intervention planning and included guidance documents from WHO (World Health Organisation), UNICEF (United Nations Children's Fund), USAID (United States Agency for International Development), and governments, and articles reporting on diagnostics, interventions, and/or evaluations to improve urban immunisation. Interventions involved service improvement, education, reminder/recall, incentives, outreach, mass-media, or were multi-component. The main gaps in existing tools were an assessment of macro/policy-level factors, exploration of effective immunization communication channels, and measuring in/out-migration. The proposed framework uses a problem tree approach to suggest tools to address five common challenges (i.e. identifying populations, understanding communities, issues with service access and use, improving services, improving coverage) based on context and available data. Conclusion: This study identified many tools relevant to evaluating urban LMIC immunisation programmes, including significant crossover between tools. This was encouraging in terms of supporting the identification of common areas, but problematic as data volumes, instructions, and activities could overwhelm managers and tools are not always suitably applied to suitable contexts. Further research is needed on how best to combine tools and methods to suit local contexts. Authors’ initial framework can be tested and developed further.Keywords: health equity, immunisation, low and middle-income countries, poverty, urban health
Procedia PDF Downloads 139