Search results for: management models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15503

Search results for: management models

14273 Contribution to Energy Management in Hybrid Energy Systems Based on Agents Coordination

Authors: Djamel Saba, Fatima Zohra Laallam, Brahim Berbaoui

Abstract:

This paper presents a contribution to the design of a multi-agent for the energy management system in a hybrid energy system (SEH). The multi-agent-based energy-coordination management system (MA-ECMS) is based mainly on coordination between agents. The agents share the tasks and exchange information through communications protocols to achieve the main goal. This intelligent system can fully manage the consumption and production or simply to make proposals for action he thinks is best. The initial step is to give a presentation for the system that we want to model in order to understand all the details as much as possible. In our case, it is to implement a system for simulating a process control of energy management.

Keywords: communications protocols, control process, energy management, hybrid energy system, modelization, multi-agents system, simulation

Procedia PDF Downloads 332
14272 A Block World Problem Based Sudoku Solver

Authors: Luciana Abednego, Cecilia Nugraheni

Abstract:

There are many approaches proposed for solving Sudoku puzzles. One of them is by modelling the puzzles as block world problems. There have been three model for Sudoku solvers based on this approach. Each model expresses Sudoku solver as a parameterized multi agent systems. In this work, we propose a new model which is an improvement over the existing models. This paper presents the development of a Sudoku solver that implements all the proposed models. Some experiments have been conducted to determine the performance of each model.

Keywords: Sudoku puzzle, Sudoku solver, block world problem, parameterized multi agent systems

Procedia PDF Downloads 341
14271 Towards Establishing a Universal Theory of Project Management

Authors: Divine Kwaku Ahadzie

Abstract:

Project management (PM) as a concept has evolved from the early 20th Century into a recognized academic and professional discipline, and indications are that it has come to stay in the 21st Century as a world-wide paradigm shift for managing successful construction projects. However, notwithstanding the strong inroads that PM has made in legitimizing its academic and professional status in construction management practice, the underlining philosophies are still based on cases and conventional practices. An important theoretical issue yet to be addressed is the lack of a universal theory that offers philosophical legitimacy for the PM concept as a uniquely specialized management concept. Here, it is hypothesized that the law of entropy, the theory of uncertainties and the theory of risk management offer plausible explanations for addressing the lacuna of what constitute PM theory. The theoretical bases of these plausible underlying theories are argued and attempts made to establish the functional relationships that exist between these theories and the PM concept. The paper then draws on data related to the success and/or failure of a number of construction projects to validate the theory.

Keywords: concepts, construction, project management, universal theory

Procedia PDF Downloads 328
14270 Modelling Home Appliances for Energy Management System: Comparison of Simulation Results with Measurements

Authors: Aulon Shabani, Denis Panxhi, Orion Zavalani

Abstract:

This paper presents the modelling and development of a simulator for residential electrical appliances. The simulator is developed on MATLAB providing the possibility to analyze and simulate energy consumption of frequently used home appliances in Albania. Modelling of devices considers the impact of different factors, mentioning occupant behavior and climacteric conditions. Most devices are modeled as an electric circuit, and the electric energy consumption is estimated by the solutions of the guiding differential equations. The provided models refer to devices like a dishwasher, oven, water heater, air conditioners, light bulbs, television, refrigerator water, and pump. The proposed model allows us to simulate beforehand the energetic behavior of the largest consumption home devices to estimate peak consumption and improving its reduction. Simulated home prototype results are compared to real measurement of a considered typical home. Obtained results from simulator framework compared to monitored typical household using EmonTxV3 show the effectiveness of the proposed simulation. This conclusion will help for future simulation of a large group of typical household for a better understanding of peak consumption.

Keywords: electrical appliances, energy management, modelling, peak estimation, simulation, smart home

Procedia PDF Downloads 164
14269 Drivers and Barriers for Implementing Environmental Management in Beverage Processors: A Case of Thailand

Authors: Auttasuriyanan Pakpoom, Setthasakko Watchaneeporn

Abstract:

The main purpose of this study is to gain a clearer understanding of key determinants that drive environmental management and barriers that hinder its development. The study employs semi-structured interviews with key informants accompanied by site observations. Key informants include production, environmental and plant managers of six beverage companies, including three Thai and three multinational companies in Thailand. It is found that corporate image, government subsidies, top management leadership and education institutes are four primary factors influencing the implementation of environmental management in the beverage processors. No demand from Asian buyers, employee resistance to change and lack of environmental knowledge are identified as barriers.

Keywords: environmental management, beverage, government subsidies, education institutes, employee resistance, environmental knowledge, Thailand

Procedia PDF Downloads 250
14268 Efficacy of Knowledge Management Practices in Selected Public Libraries in the Province of Kwazulu-Natal, South Africa

Authors: Petros Dlamini, Bethiweli Malambo, Maggie Masenya

Abstract:

Knowledge management practices are very important in public libraries, especial in the era of the information society. The success of public libraries depends on the recognition and application of knowledge management practices. The study investigates the value and challenges of knowledge management practices in public libraries. Three research objectives informed the study: to identify knowledge management practices in public libraries, understand the value of knowledge management practices in public libraries, and determine the factors hampering knowledge management practices in public libraries. The study was informed by the interpretivism research paradigm, which is associated with qualitative studies. In that light, the study collected data from eight librarians and or library heads, who were purposively selected from public libraries. The study adopted a social anthropological approach, which thoroughly evaluated each participant's response. Data was collected from the respondents through telephonic semi-structured interviews and assessed accordingly. Furthermore, the study used the latest content concept for data interpretation. The chosen data analysis method allowed the study to achieve its main purpose with concrete and valid information. The study's findings showed that all six (100%) selected public libraries apply knowledge management practices. The findings of the study revealed that public libraries have knowledge sharing as the main knowledge management practice. It was noted that public libraries employ many practices, but each library employed its practices of choice depending on their knowledge management practices structure. The findings further showed that knowledge management practices in public libraries are employed through meetings, training, information sessions, and awareness, to mention a few. The findings revealed that knowledge management practices make the libraries usable. Furthermore, it has been asserted that knowledge management practices in public libraries meet users’ needs and expectations and equip them with skills. It was discovered that all participating public libraries from Umkhanyakude district municipality valued their knowledge management practices as the pillar and foundation of services. Noticeably, knowledge management practices improve users ‘standard of living and build an information society. The findings of the study showed that librarians should be responsible for the value of knowledge management practices as they are qualified personnel. The results also showed that 83.35% of public libraries had factors hampering knowledge management practices. The factors are not limited to shortage of funds, resources and space, and political interference. Several suggestions were made to improve knowledge management practices in public libraries. These suggestions include improving the library budget, increasing libraries’ building sizes, and conducting more staff training.

Keywords: knowledge management, knowledge management practices, storage, dissemination

Procedia PDF Downloads 94
14267 Households’ Willingness to Pay for Watershed Management Practices in Lake Hawassa Watershed, Southern Ethiopia

Authors: Mulugeta Fola, Mengistu Ketema, Kumilachew Alamerie

Abstract:

Watershed provides vast economic benefits within and beyond the management area of interest. But most watersheds in Ethiopia are increasingly facing the threats of degradation due to both natural and man-made causes. To reverse these problems, communities’ participation in sustainable management programs is among the necessary measures. Hence, this study assessed the households’ willingness to pay for watershed management practices through a contingent valuation study approach. Double bounded dichotomous choice with open-ended follow-up format was used to elicit the households’ willingness to pay. Based on data collected from 275 randomly selected households, descriptive statistics results indicated that most households (79.64%) were willing to pay for watershed management practices. A bivariate Probit model was employed to identify determinants of households’ willingness to pay and estimate mean willingness to pay. Its result shows that age, gender, income, livestock size, perception of watershed degradation, social position, and offered bids were important variables affecting willingness to pay for watershed management practices. The study also revealed that the mean willingness to pay for watershed management practices was calculated to be 58.41 Birr and 47.27 Birr per year from the double bounded and open-ended format, respectively. The study revealed that the aggregate welfare gains from watershed management practices were calculated to be 931581.09 Birr and 753909.23 Birr per year from double bounded dichotomous choice and open-ended format, respectively. Therefore, the policymakers should make households to pay for the services of watershed management practices in the study area.

Keywords: bivariate probit model, contingent valuation, watershed management practices, willingness to pay

Procedia PDF Downloads 224
14266 The Role of Risk Management Practices in the Relationship between Risks Factors and Construction Project Performance

Authors: Ali Abdullah Albezaghi

Abstract:

This article aims to introduce a conceptual framework that can facilitate investigations concerning the role of risk management practices in the relationship between construction risks and the construction project's performance. This article is structured based on the extant literature; it reviews theoretical perspectives, highlights the gaps, and illustrates the significance of developing a framework of suggested relationships. Despite growing interest in the role of risks in construction project performance, previous studies have paid little attention to investigating the moderating role of risk management practices on the risk-performance link. This has left researchers and construction project managers with minimal information to explain the conditions under which risk management practices can reduce the impact of project-related risks and improve performance. In this context, this article suggests a viable research model with propositions that assess risk-performance relationships and discusses the potential moderating effects on the domain relationship. This paper adds to the risk management literature by focusing on risk variables that directly impact performance. Further, it also considers the moderating role of risk management practices in such relationships.

Keywords: risk management practices, external risks, internal risks, project risks, project performance

Procedia PDF Downloads 137
14265 Models to Estimate Monthly Mean Daily Global Solar Radiation on a Horizontal Surface in Alexandria

Authors: Ahmed R. Abdelaziz, Zaki M. I. Osha

Abstract:

Solar radiation data are of great significance for solar energy system design. This study aims at developing and calibrating new empirical models for estimating monthly mean daily global solar radiation on a horizontal surface in Alexandria, Egypt. Day length hours, sun height, day number, and declination angle calculated data are used for this purpose. A comparison between measured and calculated values of solar radiation is carried out. It is shown that all the proposed correlations are able to predict the global solar radiation with excellent accuracy in Alexandria.

Keywords: solar energy, global solar radiation, model, regression coefficient

Procedia PDF Downloads 405
14264 Approach to Formulate Intuitionistic Fuzzy Regression Models

Authors: Liang-Hsuan Chen, Sheng-Shing Nien

Abstract:

This study aims to develop approaches to formulate intuitionistic fuzzy regression (IFR) models for many decision-making applications in the fuzzy environments using intuitionistic fuzzy observations. Intuitionistic fuzzy numbers (IFNs) are used to characterize the fuzzy input and output variables in the IFR formulation processes. A mathematical programming problem (MPP) is built up to optimally determine the IFR parameters. Each parameter in the MPP is defined as a couple of alternative numerical variables with opposite signs, and an intuitionistic fuzzy error term is added to the MPP to characterize the uncertainty of the model. The IFR model is formulated based on the distance measure to minimize the total distance errors between estimated and observed intuitionistic fuzzy responses in the MPP resolution processes. The proposed approaches are simple/efficient in the formulation/resolution processes, in which the sign of parameters can be determined so that the problem to predetermine the sign of parameters is avoided. Furthermore, the proposed approach has the advantage that the spread of the predicted IFN response will not be over-increased, since the parameters in the established IFR model are crisp. The performance of the obtained models is evaluated and compared with the existing approaches.

Keywords: fuzzy sets, intuitionistic fuzzy number, intuitionistic fuzzy regression, mathematical programming method

Procedia PDF Downloads 138
14263 The Artificial Intelligence (AI) Impact on Project Management: A Destructive or Transformative Agent

Authors: Kwame Amoah

Abstract:

Artificial intelligence (AI) has the prospect of transforming project management, significantly improving efficiency and accuracy. By automating specific tasks with defined guidelines, AI can assist project managers in making better decisions and allocating resources efficiently, with possible risk mitigation. This study explores how AI is already impacting project management and likely future AI's impact on the field. The AI's reaction has been a divided opinion; while others picture it as a destroyer of jobs, some welcome it as an innovation advocate. Both sides agree that AI will be disruptive and revolutionize PM's functions. If current research is to go by, AI or some form will replace one-third of all learning graduate PM jobs by as early as 2030. A recent survey indicates AI spending will reach $97.9 billion by the end of 2023. Considering such a profound impact, the project management profession will also see a paradigm shift driven by AI. The study examines what the project management profession will look like in the next 5-10 years after this technological disruption. The research methods incorporate existing literature, develop trend analysis, and conduct structured interviews with project management stakeholders from North America to gauge the trend. PM professionals can harness the power of AI, ensuring a smooth transition and positive outcomes. AI adoption will maximize benefits, minimize adverse consequences, and uphold ethical standards, leading to improved project performance.

Keywords: project management, disruptive teacnologies, project management function, AL applications, artificial intelligence

Procedia PDF Downloads 83
14262 Heteroscedastic Parametric and Semiparametric Smooth Coefficient Stochastic Frontier Application to Technical Efficiency Measurement

Authors: Rebecca Owusu Coffie, Atakelty Hailu

Abstract:

Variants of production frontier models have emerged, however, only a limited number of them are applied in empirical research. Hence the effects of these alternative frontier models are not well understood, particularly within sub-Saharan Africa. In this paper, we apply recent advances in the production frontier to examine levels of technical efficiency and efficiency drivers. Specifically, we compare the heteroscedastic parametric and the semiparametric stochastic smooth coefficient (SPSC) models. Using rice production data from Ghana, our empirical estimates reveal that alternative specification of efficiency estimators results in either downward or upward bias in the technical efficiency estimates. Methodologically, we find that the SPSC model is more suitable and generates high-efficiency estimates. Within the parametric framework, we find that parameterization of both the mean and variance of the pre-truncated function is the best model. For the drivers of technical efficiency, we observed that longer farm distances increase inefficiency through a reduction in labor productivity. High soil quality, however, increases productivity through increased land productivity.

Keywords: pre-truncated, rice production, smooth coefficient, technical efficiency

Procedia PDF Downloads 446
14261 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach

Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi

Abstract:

Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.

Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty

Procedia PDF Downloads 231
14260 3D Reconstruction of Human Body Based on Gender Classification

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo

Abstract:

SMPL-X was a powerful parametric human body model that included male, neutral, and female models, with significant gender differences between these three models. During the process of 3D human body reconstruction, the correct selection of standard templates was crucial for obtaining accurate results. To address this issue, we developed an efficient gender classification algorithm to automatically select the appropriate template for 3D human body reconstruction. The key to this gender classification algorithm was the precise analysis of human body features. By using the SMPL-X model, the algorithm could detect and identify gender features of the human body, thereby determining which standard template should be used. The accuracy of this algorithm made the 3D reconstruction process more accurate and reliable, as it could adjust model parameters based on individual gender differences. SMPL-X and the related gender classification algorithm have brought important advancements to the field of 3D human body reconstruction. By accurately selecting standard templates, they have improved the accuracy of reconstruction and have broad potential in various application fields. These technologies continue to drive the development of the 3D reconstruction field, providing us with more realistic and accurate human body models.

Keywords: gender classification, joint detection, SMPL-X, 3D reconstruction

Procedia PDF Downloads 70
14259 The Investment Decision-Making Principles in Regional Tourism

Authors: Evgeni Baratashvili, Giorgi Sulashvili, Malkhaz Sulashvili, Bela Khotenashvili, Irma Makharashvili

Abstract:

The most investment decision-making principle of regional travel firm's management and its partner is the formulation of the aims of investment programs. The investments can be targeted in order to reduce the firm's production costs and to purchase good transport equipment. In attractive region, in order to develop firm’s activities, the investment program can be targeted for increasing of provided services. That is the case where the sales already have been used in the market. The investment can be directed to establish the affiliate firms, branches, to construct new hotels, to create food and trade enterprises, to develop entertainment enterprises, etc. Economic development is of great importance to regional development. International experience shows that inclusive economic growth largely depends on not only the national, but also regional development planning and implementation of a strong and competitive regions. Regional development is considered as the key factor in achieving national success. Establishing a modern institute separate entities if the pilot centers will constitute a promotion, international best practice-based public-private partnership to encourage the use of models. Regional policy directions and strategies adopted in accordance with the successful implementation of major importance in the near future specific action plans for inclusive development and implementation, which will be provided in accordance with the effective monitoring and evaluation tools and measurable indicators combined. All of these above-mentioned investments are characterized by different levels, which are related to the following fact: How successful tourism marketing service is, whether it is able to determine the proper market's reaction according to the particular firm's actions. In the sphere of regional tourism industry and in the investment decision possible variants it can be developed the some specter of models. Each of the models can be modified and specified according to the situation, and characteristic skills of the existing problem that must be solved. Besides, while choosing the proper model, the process is affected by the regulation system of economic processes. Also, it is influenced by liberalization quality and by the level of state participation.

Keywords: net income of travel firm, economic growth, Investment profitability, regional development, tourist product, tourism development

Procedia PDF Downloads 260
14258 Modelling Agricultural Commodity Price Volatility with Markov-Switching Regression, Single Regime GARCH and Markov-Switching GARCH Models: Empirical Evidence from South Africa

Authors: Yegnanew A. Shiferaw

Abstract:

Background: commodity price volatility originating from excessive commodity price fluctuation has been a global problem especially after the recent financial crises. Volatility is a measure of risk or uncertainty in financial analysis. It plays a vital role in risk management, portfolio management, and pricing equity. Objectives: the core objective of this paper is to examine the relationship between the prices of agricultural commodities with oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at-Risk and expected shortfall. Data and methods: the data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The data sets consists of the daily returns of agricultural commodity prices namely: white maize, yellow maize, wheat, sunflower, soya, corn, and sorghum. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH and the two regime Markov-switching GARCH (MS-GARCH) models. Results: to choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under three distributions for innovations. The results indicate that: (i) the price of agricultural commodities was found to be significantly associated with the price of coal, price of natural gas, price of oil and exchange rate, (ii) for all agricultural commodities except sunflower, k=3 had higher log-likelihood values and lower AIC and BIC values. Thus, the three-state MS regression model outperformed the two-state MS regression model (iii) MS-GARCH(1,1) with generalized error distribution (ged) innovation performs best for white maize and yellow maize; MS-GARCH(1,1) with student-t distribution (std) innovation performs better for sorghum; MS-gjrGARCH(1,1) with ged innovation performs better for wheat, sunflower and soya and MS-GARCH(1,1) with std innovation performs better for corn. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MS-GARCH processes. This paper can be good as a reference when facing modelling agricultural commodity price problems.

Keywords: commodity prices, MS-GARCH model, MS regression model, South Africa, volatility

Procedia PDF Downloads 202
14257 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.

Keywords: copper prices, prediction model, neural network, time series forecasting

Procedia PDF Downloads 113
14256 Implementation of Lean Management in Non-Governmental Organizations: A Case Study on WrocłAw Food Bank

Authors: Maciej Pieńkowski

Abstract:

Lean Management is nowadays one of the most dominating management concepts within industrial and service environment, providing compelling business benefits to many companies. At the same time, its application in the non-governmental organizations has not been extensively researched yet. Filling this gap will address clear necessity of efficient management system in NGO environment and significantly improve operational performance of many organizations. The goal of the research is to verify effectiveness of Lean Management implementation in the non-governmental organizations, based on Wrocław Food Bank case study. The case study describes a Lean Management implementation project within analyzed organization. During the project, Wrocław Food Bank went through full 5-step Lean Thinking processes, which consist of value identification, value stream mapping, creation of flow, establishing pull and seeking perfection. The research contains a detailed summary of each of those steps and provides with information regarding results of their implementation. The major findings of the study indicate, that application of Lean Management in NGO environment is possible, however physical implementation of its guidelines can be strongly impeded by multiple constraints, which non-governmental organizations are facing. Due to challenges like limited resources, project based activities and lack of traditional supplier-customer relationship, many NGOs may fail in their efforts to implement Lean Management. Successful Lean application requires therefore strong leadership commitment, which would drive transformation to remove barriers and obstacles.

Keywords: lean management, non-governmental organizations, continuous improvement, lean thinking

Procedia PDF Downloads 304
14255 A History of Knowledge Management: A Chronological Account from the 1970s to 2017

Authors: Alexslis N. Maindze

Abstract:

Knowledge management (KM) has become an imperative to modern business growth, competitive edge, and sustainability. Though there has been extensive research in the field, this literature overview showcases massive gaps that exist on the coverage of the field’s rich and fascinating history. Particularly, accounts of the history of KM are inconsistent and fragmentary in breadth and depth. This paper presents new insights into the history of KM from the early 70s when the actual coinage ‘knowledge management’ entered the literature. It reveals how knowledge over the years was shrouded in secrecy and subsumed by technology. It makes a clear distinction between the histories of the debate around knowledge and that of KM. The paper also finds a history of KM filled with skepticisms and engulfed by an ‘intellectual paradox’.

Keywords: knowledge management history, secrecy, skepticism, intellectual paradox

Procedia PDF Downloads 221
14254 Optimization of Strategies and Models Review for Optimal Technologies-Based on Fuzzy Schemes for Green Architecture

Authors: Ghada Elshafei, A. Elazim Negm

Abstract:

Recently, Green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives are green buildings should be designed to minimize the overall impact of the built environment on ecosystems in general and particularly on human health and on the natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state of art review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.

Keywords: green architecture/building, technologies, optimization, strategies, fuzzy techniques, models

Procedia PDF Downloads 475
14253 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 57
14252 Development of Energy Management System Based on Internet of Things Technique

Authors: Wen-Jye Shyr, Chia-Ming Lin, Hung-Yun Feng

Abstract:

The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer.

Keywords: energy management, IoT technique, sensor, WebAccess

Procedia PDF Downloads 335
14251 Parametric Estimation of U-Turn Vehicles

Authors: Yonas Masresha Aymeku

Abstract:

The purpose of capacity modelling at U-turns is to develop a relationship between capacity and its geometric characteristics. In fact, the few models available for the estimation of capacity at different transportation facilities do not provide specific guidelines for median openings. For this reason, an effort is made to estimate the capacity by collecting the data sets from median openings at different lane roads in Hyderabad City, India. Wide difference (43% -59%) among the capacity values estimated by the existing models shows the limitation to consider for mixed traffic situations. Thus, a distinct model is proposed for the estimation of the capacity of U-turn vehicles at median openings considering mixed traffic conditions, which would further prompt to investigate the effect of different factors that might affect the capacity.

Keywords: geometric, guiddelines, median, vehicles

Procedia PDF Downloads 68
14250 Create a Dynamic Model in Project Control and Management

Authors: Hamed Saremi, Shahla Saremi

Abstract:

In this study, control and management of construction projects is evaluated through developing a dynamic model in which some means are used in order to evaluating planning assumptions and reviewing the effectiveness of some project control policies based on previous researches about time, cost, project schedule pressure management, source management, project control, adding elements and sub-systems from cost management such as estimating consumption budget from budget due to costs, budget shortage effects and etc. using sensitivity analysis, researcher has evaluated introduced model that during model simulation by VENSIM software and assuming optimistic times and adding information about doing job and changes rate and project is forecasted with 373 days (2 days sooner than forecasted) and final profit $ 1,960,670 (23% amount of contract) assuming 15% inflation rate in year and costs rate accordance with planned amounts and other input information and final profit.

Keywords: dynamic planning, cost, time, performance, project management

Procedia PDF Downloads 478
14249 Correlation between Entrepreneur's Perception of Human Resource Function and Company's Growth

Authors: Ivan Todorović, Stefan Komazec, Jelena Anđelković-Labrović, Ondrej Jaško, Miha Marič

Abstract:

Micro, small and medium enterprises (MSME) are important factors of the economy in each country. Recent years have brought increased number and higher sophistication of scientific research related to numerous aspects of entrepreneurship. Various authors try to find the positive correlation between entrepreneur's personal characteristics, skills and knowledge on one hand, and company growth and success of small business on the other hand. Different models recognize staff as one of the key elements in every organizational system. Human resource (HR) function is present in almost all large companies, despite the geographical location or industry. Small and medium enterprises also often have separate positions or even departments for HR administration. However, in early stages of organizational life cycle human resources are usually managed by the founder, entrepreneur. In this paper we want to question whether the companies where founder, entrepreneur, recognizes the significance of human capital in the organization and understands the importance of HR management have higher growth rate and better business results. The findings of this research can be implemented in practice, but also in the academia, for improving the curricula related to the MSME and entrepreneurship.

Keywords: entrepreneurship, MSME, micro small and medium enterprises, company growth, human resources, HR management

Procedia PDF Downloads 356
14248 Effects of Level Densities and Those of a-Parameter in the Framework of Preequilibrium Model for 63,65Cu(n,xp) Reactions in Neutrons at 9 to 15 MeV

Authors: L. Yettou

Abstract:

In this study, the calculations of proton emission spectra produced by 63Cu(n,xp) and 65Cu(n,xp) reactions are used in the framework of preequilibrium models using the EMPIRE code and TALYS code. Exciton Model predidtions combined with the Kalbach angular distribution systematics and the Hybrid Monte Carlo Simulation (HMS) were used. The effects of levels densities and those of a-parameter have been investigated for our calculations. The comparison with experimental data shows clear improvement over the Exciton Model and HMS calculations.

Keywords: Preequilibrium models , level density, level density a-parameter., Empire code, Talys code.

Procedia PDF Downloads 134
14247 Use of Multistage Transition Regression Models for Credit Card Income Prediction

Authors: Denys Osipenko, Jonathan Crook

Abstract:

Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.

Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability

Procedia PDF Downloads 487
14246 Maintenance Objective-Based Asset Maintenance Maturity Model

Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Peter Chemweno

Abstract:

The fast-changing business and operational environment are forcing organizations to adopt asset performance management strategies, not only to reduce costs but also maintain operational and production policies while addressing demand. To attain optimal asset performance management, a framework that ensures a continuous and systematic approach to analyzing an organization’s current maturity level and expected improvement regarding asset maintenance processes, strategies, technologies, capabilities, and systems is essential. Moreover, this framework while addressing maintenance-intensive organizations should consider the diverse business, operational and technical context (often dynamic) an organization is in and realistically prescribe or relate to the appropriate tools and systems the organization can potentially employ in the respective level, to improve and attain their maturity goals. This paper proposes an asset maintenance maturity model to assess the current capabilities, strength and weaknesses of maintenance processes an organization is using and analyze gaps for improvement via structuring set levels of achievement. At the epicentre of the proposed framework is the utilization of maintenance objective selected by an organization for various maintenance optimization programs. The framework adapts the Capability Maturity Model of assessing the maintenance process maturity levels in the organization.

Keywords: asset maintenance, maturity models, maintenance objectives, optimization

Procedia PDF Downloads 227
14245 Social Capital and Adoption of Sustainable Management Practices of Non Timber Forest Product in Cameroon

Authors: Eke Bala Sophie Michelle

Abstract:

The renewable resource character of NTFPs is an opportunity to its sustainability, this study analyzed the role of social capital in the adoption of sustainable management practices of NTFPs by households in the community forest (CF) Morikouali-ye. The analysis shows that 67% of households surveyed perceive the level of degradation of NTFPs in their CF as time passes and are close to 74% for adoption of sustainable management practices of NTFPs that are domestication, sustainable management of the CF, the logging ban trees and uprooting plants, etc. 26% refused to adopt these practices estimate that, at 39% it is better to promote logging in the CF. The estimated probit model shows that social capital through trust, solidarity and social inclusion significantly influences the probability of households to adopt sustainable NTFP management practices. In addition, age, education level and income from the sale of NTFPs have a significant impact on the probability of adoption. The probability of adoption increases with the level of education and confidence among households. So should they be animated by a spirit of solidarity and trust and not let a game of competition for sustainable management of NTFPs in their CF.

Keywords: community forest, social capital, NTFP, trust, solidarity, social inclusion, sustainable management

Procedia PDF Downloads 370
14244 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data

Authors: Ramzi Rihane, Yassine Benayed

Abstract:

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.

Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection

Procedia PDF Downloads 14