Search results for: infrared range sensors
7334 Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation
Authors: A. A. Abid
Abstract:
The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed beforeKeywords: EMIC waves, temperature anisotropy of hot protons, energization of the cold proton, magnetospheric multiscale (MMS) satellite observations
Procedia PDF Downloads 1227333 Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification
Authors: Satam Alotibi, Haya A. Al-Sunaidi, Almaymunah M. AlRoibah, Zahraa H. Al-Omaran, Mohammed Alyami, Fatehia S. Alhakami, Abdellah Kaiba, Mazen Alshaaer, Talal F. Qahtan
Abstract:
This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment.Keywords: geopolymer, TiO2 nanoparticles, photocatalytic materials, water decontamination, sustainable remediation
Procedia PDF Downloads 677332 Improving the Design of Blood Pressure and Blood Saturation Monitors
Authors: L. Parisi
Abstract:
A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken.Keywords: blood pressure, blood saturation, sensors, actuators, design improvement
Procedia PDF Downloads 4557331 The Study of Climate Change Effects on the Performance of Thermal Power Plants in Iran
Authors: Masoud Soltani Hosseini, Fereshteh Rahmani, Mohammad Tajik Mansouri, Ali Zolghadr
Abstract:
Climate change is accompanied with ambient temperature increase and water accessibility limitation. The main objective of this paper is to investigate the effects of climate change on thermal power plants including gas turbines, steam and combined cycle power plants in Iran. For this purpose, the ambient temperature increase and water accessibility will be analyzed and their effects on power output and efficiency of thermal power plants will be determined. According to the results, the ambient temperature has high effect on steam power plants with indirect cooling system (Heller). The efficiency of this type of power plants decreases by 0.55 percent per 1oC ambient temperature increase. This amount is 0.52 and 0.2 percent for once-through and wet cooling systems, respectively. The decrease in power output covers a range of 0.2% to 0.65% for steam power plant with wet cooling system and gas turbines per 1oC air temperature increase. Based on the thermal power plants distribution in Iran and different scenarios of climate change, the total amount of power output decrease falls between 413 and 1661 MW due to ambient temperature increase. Another limitation incurred by climate change is water accessibility. In optimistic scenario, the power output of steam plants decreases by 1450 MW in dry and hot climate areas throughout next decades. The remaining scenarios indicate that the amount of decrease in power output would be by 4152 MW in highlands and cold climate. Therefore, it is necessary to consider appropriate solutions to overcome these limitations. Considering all the climate change effects together, the actual power output falls in range of 2465 and 7294 MW and efficiency loss covers the range of 0.12 to .56 % in different scenarios.Keywords: climate, change, thermal, power plants
Procedia PDF Downloads 827330 Bubbling in Gas Solids Fluidization at a Strouhal Number Tuned for Low Energy Dissipation
Authors: Chenxi Zhang, Weizhong Qian, Fei Wei
Abstract:
Gas solids multiphase flow is common in many engineering and environmental applications. Turbulence and multiphase flows are two of the most challenging topics in fluid mechanics, and when combined they pose a formidable challenge, even in the dilute dispersed regime. Dimensionless numbers are important in mechanics because their constancy can imply dynamic similarity between systems, despite possible differences in medium or scale. In the fluid mechanics literature, the Strouhal number is usually associated with the dimensionless shedding frequency of a von Karman wake; here we introduce this dimensionless number to investigate bubbling in gas solids fluidization. St=fA/U, which divides stroke frequency (f) and amplitude (A) by forward speed (U). The bubble behavior in a large two-dimensional bubbling fluidized bed (500mm×30mm×6000mm) is investigated. Our result indicates that propulsive efficiency is high and energy dissipation is low over a narrow range of St and usually within the interval 0.27329 Mineralogy and Thermobarometry of Xenoliths in Basalt from the Chanthaburi-Trat Gem Fields, Thailand
Authors: Apichet Boonsoong
Abstract:
In the Chanthaburi-Trat basalts, xenoliths are composed of essentially ultramafic xenoliths (particularly spinel lherzolite) with a few of an aggregate of feldspar. Some 19 ultramafic xenoliths were collected from 13 different locations. They range in size from 3.5 to 60mm across. Most are weathered and oxidized on the surface but fresh samples are obtained from cut surfaces. Chemical analyses were performed on carbon-coated polished thin sections using a fully automated CAMECA SX-50 electron microprobe (EMPA) in wavelength-dispersive mode. In thin section, they are seen to consist of variable amounts of olivine, clinopyroxene, orthopyroxene with minor spinel and plagioclase, and are classed as lherzolite. Modal compositions of the ultramafic nodules vary with olivine (60-75%), clinopyroxene (20-30%), orthopyroxene (0-15%), minor spinel (1-3%) and plagioclase (<1%). The essential minerals form an equigranular, medium- to coarse-grained, granoblastic texture, and all are in mutual contact indicating attainment of equilibrium. Reaction rims are common along the nodule margins and in some are also present along grain boundaries. Zoning occurs in clinopyroxene, and to a lesser extent in orthopyroxene. The homogeneity of mineral compositions in lherzolite xenoliths suggests the attainment of equilibrium. The equilibration temperatures of these xenoliths are estimated to be in the range of 973 to 1063°C. Pressure estimates are not so easily obtained because no suitable barometer exists for garnet-free lherzolites and so an indirect method was used. The general mineral assemblage of the lherzolite xenoliths and the absence of garnet indicate a pressure range of approximately 12–19kbar, which is equivalent to depths approximately of 38 to 60km.Keywords: chanthaburi-trat basalts, spinel lherzolite, xenoliths, 973 to 1063°C, 38 to 60km
Procedia PDF Downloads 1207328 Muscle and Cerebral Regional Oxygenation in Preterm Infants with Shock Using Near-Infrared Spectroscopy
Authors: Virany Diana, Martono Tri Utomo, Risa Etika
Abstract:
Background: Shock is one severe condition that can be a major cause of morbidity and mortality in the Neonatal Intensive Care Unit. Preterm infants are very susceptible to shock caused by many complications such as asphyxia, patent ductus arteriosus, intra ventricle haemorrhage, necrotizing enterocolitis, persistent pulmonal hypertension of the newborn, and septicaemia. Limited hemodynamic monitoring for early detection of shock causes delayed intervention and comprises the outcomes. Clinical parameters still used in neonatal shock detection, such as Capillary Refill Time, heart rate, cold extremity, and urine production. Blood pressure is most frequently used to evaluate preterm's circulation, but hypotension indicates uncompensated shock. Near-infrared spectroscopy (NIRS) is known as a noninvasive tool for monitoring and detecting the state of inadequate tissue perfusion. Muscle oxygen saturation shows decreased cardiac output earlier than systemic parameters of tissue oxygenation when cerebral regional oxygen saturation is still stabilized by autoregulation. However, to our best knowledge, until now, no study has analyzed the decrease of muscle oxygen regional saturation (mRSO₂) and the ratio of muscle and cerebral oxygen regional saturation (mRSO₂/cRSO₂) by NIRS in preterm with shock. Purpose: The purpose of this study is to analyze the decrease of mRSO₂ and ratio of muscle to cerebral oxygen regional saturation (mRSO₂/cRSO₂) by NIRS in preterm with shock. Patients and Methods: This cross-sectional study was conducted on preterm infants with 28-34 weeks gestational age, admitted to the NICU of Dr. Soetomo Hospital from November to January 2022. Patients were classified into two groups: shock and non-shock. The diagnosis of shock is based on clinical criteria (tachycardia, prolonged CRT, cold extremity, decreased urine production, and MAP Blood Pressure less than GA in weeks). Measurement of mRSO₂ and cRSO₂ by NIRS was performed by the doctor in charge when the patient came to NICU. Results: We enrolled 40 preterm infants. The initial conventional hemodynamic parameter as the basic diagnosis of shock showed significant differences in all variables. Preterm with shock had higher mean HR (186.45±1.5), lower MAP (29.8±2.1), and lower SBP (45.1±4.28) than non-shock children, and most had a prolonged CRT. The patients’ outcome was not a significant difference between shock and non-shock patients. The mean mRSO₂ in the shock and non-shock groups were 33,65 ± 11,32 vs. 69,15 ± 3,96 (p=0.001), and the mean ratio mRSO₂/cRSO₂ 0,45 ± 0,12 vs. 0,84 ± 0,43 (p=0,001), were significantly different. The mean cRSO₂ in the shock and non-shock groups were 71,60 ± 4,90 vs. 81,85 ± 7,85 (p 0.082), not significantly different. Conclusion: The decrease of mRSO₂ and ratio of mRSO₂/cRSO₂ can differentiate between shock and non-shock in the preterm infant when cRSO₂ is still normal.Keywords: preterm infant, regional muscle oxygen saturation, regional cerebral oxygen saturation, NIRS, shock
Procedia PDF Downloads 917327 Accurate Binding Energy of Ytterbium Dimer from Ab Initio Calculations and Ultracold Photoassociation Spectroscopy
Authors: Giorgio Visentin, Alexei A. Buchachenko
Abstract:
Recent proposals to use Yb dimer as an optical clock and as a sensor for non-Newtonian gravity imply the knowledge of its interaction potential. Here, the ground-state Born-Oppenheimer Yb₂ potential energy curve is represented by a semi-analytical function, consisting of short- and long-range contributions. For the former, the systematic ab initio all-electron exact 2-component scalar-relativistic CCSD(T) calculations are carried out. Special care is taken to saturate diffuse basis set component with the atom- and bond-centered primitives and reach the complete basis set limit through n = D, T, Q sequence of the correlation-consistent polarized n-zeta basis sets. Similar approaches are used to the long-range dipole and quadrupole dispersion terms by implementing the CCSD(3) polarization propagator method for dynamic polarizabilities. Dispersion coefficients are then computed through Casimir-Polder integration. The semiclassical constraint on the number of the bound vibrational levels known for the ¹⁷⁴Yb isotope is used to scale the potential function. The scaling, based on the most accurate ab initio results, bounds the interaction energy of two Yb atoms within the narrow 734 ± 4 cm⁻¹ range, in reasonable agreement with the previous ab initio-based estimations. The resulting potentials can be used as the reference for more sophisticated models that go beyond the Born-Oppenheimer approximation and provide the means of their uncertainty estimations. The work is supported by Russian Science Foundation grant # 17-13-01466.Keywords: ab initio coupled cluster methods, interaction potential, semi-analytical function, ytterbium dimer
Procedia PDF Downloads 1547326 Numerical Study on the EHD Pump with a Recirculating Channel
Authors: Dong Sik Cho, Yong Kweon Suh
Abstract:
Numerical study has been conducted on the electro-hydrodynamic (EHD) pumping method in terms of a recirculating channel. The method relies on the principle of EHD generated by the electric-field dependent electrical conductivity (Onsager effect). Before considering the full three-dimensional simulation, we solved the two-dimensional problem of EHD flow in a circular channel like a doughnut shape. We observed that when dc voltage was applied a fast and regular flow was produced around electrodes, which is then used as a driving force for the fluid pumping. In this parametric study, the diameters of circular electrodes are varied in the range 0.3mm~3mm and the gap between the electrodes pair is varied in the range 0.3mm~2mm. We found that both the volume flow rate and the pumping efficiency are increased as the distance between the electrodes is decreased. Finally, we also performed the numerical simulation for the three-dimensional channel and found that the averaged flow velocity is in the same order of magnitude as the two-dimensional one.Keywords: electro-hydrodynamic, electric-field, onsager effect, DC voltage
Procedia PDF Downloads 3017325 Synthesis of Crosslinked Konjac Glucomannan and Kappa Carrageenan Film with Glutaraldehyde
Authors: Sperisa Distantina, Fadilah, Mujtahid Kaavessina
Abstract:
Crosslinked konjac glucomannan and kappa carrageenan film were prepared by chemical crosslinking using glutaraldehyde (GA) as the crosslinking agent. The effect crosslinking on the swelling degree was investigated. Konjac glucomanan and its mixture with kappa carragenan film was immersed in GA solution and then thermally cured. The obtained crosslinked film was washed and soaked in the ethanol to remove the unreacted GA. The obtained film was air dried at room temperature to a constant weight. The infrared spectra and the value of swelling degree of obtained crosslinked film showed that glucomannan and kappa carrageenan was able to be crosslinked using glutaraldehyde by film immersion and curing method without catalyst. The crosslinked films were found to be pH sensitive, indicating a potential to be used in drug delivery polymer system.Keywords: crosslinking, glucomannan, carrageenan, swelling
Procedia PDF Downloads 2797324 Assesing Spatio-Temporal Growth of Kochi City Using Remote Sensing Data
Authors: Navya Saira George, Patroba Achola Odera
Abstract:
This study aims to determine spatio-temporal expansion of Kochi City, situated on the west coast of Kerala State in India. Remote sensing and GIS techniques have been used to determine land use/cover and urban expansion of the City. Classification of Landsat images of the years 1973, 1988, 2002 and 2018 have been used to reproduce a visual story of the growth of the City over a period of 45 years. Accuracy range of 0.79 ~ 0.86 is achieved with kappa coefficient range of 0.69 ~ 0.80. Results show that the areas covered by vegetation and water bodies decreased progressively from 53.0 ~ 30.1% and 34.1 ~ 26.2% respectively, while built-up areas increased steadily from 12.5 to 42.2% over the entire study period (1973 ~ 2018). The shift in land use from agriculture to non-agriculture may be attributed to the land reforms since 1980s.Keywords: Geographical Information Systems, Kochi City, Land use/cover, Remote Sensing, Urban Sprawl
Procedia PDF Downloads 1297323 Light Sensitive Plasmonic Nanostructures for Photonic Applications
Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi
Abstract:
In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures
Procedia PDF Downloads 3067322 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase
Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He
Abstract:
Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification
Procedia PDF Downloads 3117321 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application
Authors: D. Berdous, H. Ferfera-Harrar
Abstract:
Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.Keywords: antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent Hydrogel
Procedia PDF Downloads 2467320 Preparation and Characterization of Copper-Nanoparticle on Extracted Carrageenan and Its Catalytic Activity for Reducing Aromatic Nitro Group
Authors: Vida Jodaeian, Behzad Sani
Abstract:
Copper nanoparticles were successfully synthesized and characterized on green-extracted Carrageenan from seaweed by precipitation method without using any supporter and template with precipitation method. The crystallinity, optical properties, morphology, and composition of products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transforms infrared (FT-IR) spectroscopy. The effects of processing parameters on the size and shape of Cu- nanostructures such as effect of pH were investigated. It is found that the reaction at lower pH values (acidic) could not be completed and pH = 8.00 was the best pH value to prepare very fine nanoparticles. They as synthesized Cu-nanoparticles were used as catalysts for the reduction of aromatic nitro compounds in presence of NaBH4. The results showed that Cu-nanoparticles are very active for reduction of these nitro aromatic compounds.Keywords: nanoparticles, carrageenan, seaweed, nitro aromatic compound
Procedia PDF Downloads 3987319 Speed Characteristics of Mixed Traffic Flow on Urban Arterials
Authors: Ashish Dhamaniya, Satish Chandra
Abstract:
Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.Keywords: normal distribution, percentile speed, speed spread ratio, traffic volume
Procedia PDF Downloads 4227318 Numerical Investigation of Effect of Throat Design on the Performance of a Rectangular Ramjet Intake
Authors: Subrat Partha Sarathi Pattnaik, Rajan N.K.S.
Abstract:
Integrated rocket ramjet engines are highly suitable for long range missile applications. Designing the fixed geometry intakes for such missiles that can operate efficiently over a range of operating conditions is a highly challenging task. Hence, the present study aims to evaluate the effect of throat design on the performance of a rectangular mixed compression intake for operation in the Mach number range of 1.8 – 2.5. The analysis has been carried out at four different Mach numbers of 1.8, 2, 2.2, 2.5 and two angle-of-attacks of +5 and +10 degrees. For the throat design, three different throat heights have been considered, one corresponding to a 3- external shock design and two heights corresponding to a 2-external shock design leading to different internal contraction ratios. The on-design Mach number for the study is M 2.2. To obtain the viscous flow field in the intake, the theoretical designs have been considered for computational fluid dynamic analysis. For which Favre averaged Navier- Stokes (FANS) equations with two equation SST k-w model have been solved. The analysis shows that for zero angle of attack at on-design and high off-design Mach number operations the three-ramp design leads to a higher total pressure recovery (TPR) compared to the two-ramp design at both contraction ratios maintaining same mass flow ratio (MFR). But at low off-design Mach numbers the total pressure shows an opposite trend that is maximum for the two-ramp low contraction ratio design due to lower shock loss across the external shocks similarly the MFR is higher for low contraction ratio design as the external ramp shocks move closer to the cowl. At both the angle of attack conditions and complete range of Mach numbers the total pressure recovery and mass flow ratios are highest for two ramp low contraction design due to lower stagnation pressure loss across the detached bow shock formed at the ramp and lower mass spillage. Hence, low contraction design is found to be suitable for higher off-design performance.Keywords: internal contraction ratio, mass flow ratio, mixed compression intake, performance, supersonic flows
Procedia PDF Downloads 1087317 Analysis of Epileptic Electroencephalogram Using Detrended Fluctuation and Recurrence Plots
Authors: Mrinalini Ranjan, Sudheesh Chethil
Abstract:
Epilepsy is a common neurological disorder characterised by the recurrence of seizures. Electroencephalogram (EEG) signals are complex biomedical signals which exhibit nonlinear and nonstationary behavior. We use two methods 1) Detrended Fluctuation Analysis (DFA) and 2) Recurrence Plots (RP) to capture this complex behavior of EEG signals. DFA considers fluctuation from local linear trends. Scale invariance of these signals is well captured in the multifractal characterisation using detrended fluctuation analysis (DFA). Analysis of long-range correlations is vital for understanding the dynamics of EEG signals. Correlation properties in the EEG signal are quantified by the calculation of a scaling exponent. We report the existence of two scaling behaviours in the epileptic EEG signals which quantify short and long-range correlations. To illustrate this, we perform DFA on extant ictal (seizure) and interictal (seizure free) datasets of different patients in different channels. We compute the short term and long scaling exponents and report a decrease in short range scaling exponent during seizure as compared to pre-seizure and a subsequent increase during post-seizure period, while the long-term scaling exponent shows an increase during seizure activity. Our calculation of long-term scaling exponent yields a value between 0.5 and 1, thus pointing to power law behaviour of long-range temporal correlations (LRTC). We perform this analysis for multiple channels and report similar behaviour. We find an increase in the long-term scaling exponent during seizure in all channels, which we attribute to an increase in persistent LRTC during seizure. The magnitude of the scaling exponent and its distribution in different channels can help in better identification of areas in brain most affected during seizure activity. The nature of epileptic seizures varies from patient-to-patient. To illustrate this, we report an increase in long-term scaling exponent for some patients which is also complemented by the recurrence plots (RP). RP is a graph that shows the time index of recurrence of a dynamical state. We perform Recurrence Quantitative analysis (RQA) and calculate RQA parameters like diagonal length, entropy, recurrence, determinism, etc. for ictal and interictal datasets. We find that the RQA parameters increase during seizure activity, indicating a transition. We observe that RQA parameters are higher during seizure period as compared to post seizure values, whereas for some patients post seizure values exceeded those during seizure. We attribute this to varying nature of seizure in different patients indicating a different route or mechanism during the transition. Our results can help in better understanding of the characterisation of epileptic EEG signals from a nonlinear analysis.Keywords: detrended fluctuation, epilepsy, long range correlations, recurrence plots
Procedia PDF Downloads 1767316 Effects of Stokes Shift and Purcell Enhancement in Fluorescence Assisted Radiative Cooling
Authors: Xue Ma, Yang Fu, Dangyuan Lei
Abstract:
Passive daytime radiative cooling is an emerging technology which has attracted worldwide attention in recent years due to its huge potential in cooling buildings without the use of electricity. Various coating materials with different optical properties have been developed to improve the daytime radiative cooling performance. However, commercial cooling coatings comprising functional fillers with optical bandgaps within the solar spectral range suffers from severe intrinsic absorption, limiting their cooling performance. Fortunately, it has recently been demonstrated that introducing fluorescent materials into polymeric coatings can covert the absorbed sunlight to fluorescent emissions and hence increase the effective solar reflectance and cooling performance. In this paper, we experimentally investigate the key factors for fluorescence-assisted radiative cooling with TiO2-based white coatings. The surrounding TiO2 nanoparticles, which enable spatial and temporal light confinement through multiple Mie scattering, lead to Purcell enhancement of phosphors in the coating. Photoluminescence lifetimes of two phosphors (BaMgAl10O17:Eu2+ and (Sr, Ba)SiO4:Eu2+) exhibit significant reduction of ~61% and ~23%, indicating Purcell factors of 2.6 and 1.3, respectively. Moreover, smaller Stokes shifts of the phosphors are preferred to further diminish solar absorption. Field test of fluorescent cooling coatings demonstrate an improvement of ~4% solar reflectance for the BaMgAl10O17:Eu2+-based fluorescent cooling coating. However, to maximize solar reflectance, a white appearance is introduced based on multiple Mie scattering by the broad size distribution of fillers, which is visually pressurized and aesthetically bored. Besides, most colored pigments absorb visible light significantly and convert it to non-radiative thermal energy, offsetting the cooling effect. Therefore, current colored cooling coatings are facing the compromise between color saturation and cooling effect. To solve this problem, we introduced colored fluorescent materials into white coating based on SiO2 microspheres as a top layer, covering a white cooling coating based on TiO2. Compared with the colored pigments, fluorescent materials could re-emit the absorbed light, reducing the solar absorption introduced by coloration. Our work investigated the scattering properties of SiO2 dielectric spheres with different diameters and detailly discussed their impact on the PL properties of phosphors, paving the way for colored fluorescent-assisted cooling coting to application and industrialization.Keywords: solar reflection, infrared emissivity, mie scattering, photoluminescent emission, radiative cooling
Procedia PDF Downloads 867315 Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate
Authors: I. Grigoraviciute-Puroniene, K. Tsuru, E. Garskaite, Z. Stankeviciute, A. Beganskiene, K. Ishikawa, A. Kareiva
Abstract:
Tricalcium phosphate (β-Ca3(PO4)2, β-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 °C, the crystalline β-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of β-TCP. The SEM results showed that β-TCP solids were homogeneous having a small particle size distribution. The β-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated β-TCP specimens were placed to the bones of the rats and maintained for 1-2 months.Keywords: Tricalcium phosphate (β-Ca3(PO4)2, bone regeneration, wet chemical processing, polymeric precipitation
Procedia PDF Downloads 2987314 Anxiety and Stress as a Function of Dental Disfigurement
Authors: Lata Rathi, N. R. Mrinal
Abstract:
Dental Disfigurement is a major problem for a person who is suffering from Malocclusion. Malocclusion, is a technical name given to crowded, irregular or protruded teeth. In the present investigation the Anxiety and Stress are studied with reference to Dental Disfigurement among Adolescents. The 8 SQ Questionnaire (Cattell,1976)was administered to 50 Male(age range 12-20 years) and 50 Female(age range 12-20 years) patients to investigate anxiety and stress with an equal number of normal’s having no dental disfigurement of teeth. Both the groups, experimental and control were matched on age and sex. It was found that experimental group, i. e. orthodontic patients (M=14.34,s= 4.99) have significantly greater anxiety than their normal counterparts (M=11.8,s= 4.20) F=15.04,p=<.01. The sex differences were not observed. However, with reference to stress it was observed that it was significantly greater in orthodontic patients (M=15.11,s= 4.93 )as compared to normal’s (M=12.83, s=4.87). The gender differences on stress were also observed. The females showed greater stress (M=15.06) as compared to males (M=12.88),F=11.55,p.<1. Overall Malocclusion was found to have significant effect on anxiety and stress.Keywords: anxiety, malocclusion, orthodontic patients, stress
Procedia PDF Downloads 5757313 Eco-Friendly Natural Filler Based Epoxy Composites
Authors: Suheyla Kocaman, Gulnare Ahmetli
Abstract:
In this study, acrylated soybean oil (AESO) was used as modifying agent for DGEBF-type epoxy resin (ER). AESO was used as a co-matrix in 50 wt % with ER. Composites with eco-friendly natural fillers-banana bark and seashell were prepared. MNA was used as a hardener. Effect of banana peel (BP) and seashell (SSh) fillers on mechanical properties, such as tensile strength, elongation at break, and hardness of M-ERs were investigated. The structure epoxy resins (M-ERs) cured with MNA and sebacic acid (SAc) hardeners were characterized by Fourier transform infrared spectroscopy (FTIR). Tensile test results show that Young’s (elastic) modulus, tensile strength and hardness of SSh particles reinforced with M-ERs were higher than the M-ERs reinforced with banana bark.Keywords: biobased composite, epoxy resin, mechanical properties, natural fillers
Procedia PDF Downloads 2407312 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface
Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan
Abstract:
Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor
Procedia PDF Downloads 4847311 Synthesis of Epoxidized Castor Oil Using a Sulphonated Polystyrene Type Cation Exchange Resin and Its Blend Preparation with Epoxy Resin
Authors: G. S. Sudha, Smita Mohanty, S. K. Nayak
Abstract:
Epoxidized oils can replace petroleum derived materials in numerous industrial applications, because of their respectable oxirane oxygen content and high reactivity of oxirane ring. Epoxidized castor oil (ECO) has synthesized in the presence of a sulphonated polystyrene type cation exchange resin. The formation of the oxirane ring was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) analysis. The epoxidation reaction was evaluated by Nuclear Magnetic Resonance (NMR) studies. ECO is used as a toughening phase to increase the toughness of petroleum-based epoxy resin.Keywords: epoxy resin, epoxidized castor oil, sulphonated polystyrene type cation exchange resin, petroleum derived materials
Procedia PDF Downloads 4747310 Effects of Temperature and Enzyme Concentration on Quality of Pineapple and Pawpaw Blended Juice
Authors: Ndidi F. Amulu, Calistus N. Ude, Patrick E. Amulu, Nneka N. Uchegbu
Abstract:
The effects of temperature and enzyme concentration on the quality of mixed pineapple and pawpaw blended fruits juice were studied. Extracts of the two fruit juices were separately treated at 70 for 15 min each so as to inactivate micro-organisms. They were analyzed and blended in different proportions of 70% pawpaw and 30% pineapple, 60% pawpaw and 40% pineapple, 50% pineapple and 50% pawpaw, 40% pawpaw and 60% pineapple. The characterization of the fresh pawpaw and pineapple juice before blending showed that the juices have good quality. The high water content of the product may have affected the viscosity, vitamin C content and total soluble solid of the blended juice to be low. The effects of the process parameters on the quality showed that better quality of the blended juice can be obtained within the optimum temperature range of (50-70 °C) and enzyme concentration range (0.12-0.18 w/v). The ratio of mix 60% pineapple juice: 40% pawpaw juice has better quality. This showed that pawpaw and pineapple juices can blend effectively to produce a quality juice.Keywords: clarification, pawpaw, pineapple, viscosity, vitamin C
Procedia PDF Downloads 3037309 42CrMo4 Steel Flow Behavior Characterization for High Temperature Closed Dies Hot Forging in Automotive Components Applications
Authors: O. Bilbao, I. Loizaga, F. A. Girot, A. Torregaray
Abstract:
The current energetical situation and the high competitiveness in industrial sectors as the automotive one have become the development of new manufacturing processes with less energy and raw material consumption a real necessity. As consequence, new forming processes related with high temperature hot forging in closed dies have emerged in the last years as new solutions to expand the possibilities of hot forging and iron casting in the automotive industry. These technologies are mid-way between hot forging and semi-solid metal processes, working at temperatures higher than the hot forging but below the solidus temperature or the semi solid range, where no liquid phase is expected. This represents an advantage comparing with semi-solid forming processes as thixoforging, by the reason that no so high temperatures need to be reached in the case of high melting point alloys as steels, reducing the manufacturing costs and the difficulties associated to semi-solid processing of them. Comparing with hot forging, this kind of technologies allow the production of parts with as forged properties and more complex and near-net shapes (thinner sidewalls), enhancing the possibility of designing lightweight components. From the process viewpoint, the forging forces are significantly decreased, and a significant reduction of the raw material, energy consumption, and the forging steps have been demonstrated. Despite the mentioned advantages, from the material behavior point of view, the expansion of these technologies has shown the necessity of developing new material flow behavior models in the process working temperature range to make the simulation or the prediction of these new forming processes feasible. Moreover, the knowledge of the material flow behavior at the working temperature range also allows the design of the new closed dies concept required. In this work, the flow behavior characterization in the mentioned temperature range of the widely used in automotive commercial components 42CrMo4 steel has been studied. For that, hot compression tests have been carried out in a thermomechanical tester in a temperature range that covers the material behavior from the hot forging until the NDT (Nil Ductility Temperature) temperature (1250 ºC, 1275 ºC, 1300 ºC, 1325 ºC, 1350ºC, and 1375 ºC). As for the strain rates, three different orders of magnitudes have been considered (0,1 s-1, 1s-1, and 10s-1). Then, results obtained from the hot compression tests have been treated in order to adapt or re-write the Spittel model, widely used in automotive commercial softwares as FORGE® that restrict the current existing models up to 1250ºC. Finally, the obtained new flow behavior model has been validated by the process simulation in a commercial automotive component and the comparison of the results of the simulation with the already made experimental tests in a laboratory cellule of the new technology. So as a conclusion of the study, a new flow behavior model for the 42CrMo4 steel in the new working temperature range and the new process simulation in its application in automotive commercial components has been achieved and will be shown.Keywords: 42CrMo4 high temperature flow behavior, high temperature hot forging in closed dies, simulation of automotive commercial components, spittel flow behavior model
Procedia PDF Downloads 1297308 Biosensors for Parathion Based on Au-Pd Nanoparticles Modified Electrodes
Authors: Tian-Fang Kang, Chao-Nan Ge, Rui Li
Abstract:
An electrochemical biosensor for the determination of organophosphorus pesticides was developed based on electrochemical co-deposition of Au and Pd nanoparticles on glassy carbon electrode (GCE). Energy disperse spectroscopy (EDS) analysis was used for characterization of the surface structure. Scanning electron micrograph (SEM) demonstrates that the films are uniform and the nanoclusters are homogeneously distributed on the GCE surface. Acetylcholinesterase (AChE) was immobilized on the Au and Pd nanoparticle modified electrode (Au-Pd/GCE) by cross-linking with glutaraldehyde. The electrochemical behavior of thiocholine at the biosensor (AChE/Au-Pd/GCE) was studied. The biosensors exhibited substantial electrocatalytic effect on the oxidation of thiocholine. The peak current of linear scan voltammetry (LSV) of thiocholine at the biosensor is proportional to the concentration of acetylthiocholine chloride (ATCl) over the range of 2.5 × 10-6 to 2.5 × 10-4 M in 0.1 M phosphate buffer solution (pH 7.0). The percent inhibition of acetylcholinesterase was proportional to the logarithm of parathion concentration in the range of 4.0 × 10-9 to 1.0 × 10-6 M. The detection limit of parathion was 2.6 × 10-9 M. The proposed method exhibited high sensitivity and good reproducibility.Keywords: acetylcholinesterase, Au-Pd nanoparticles, electrochemical biosensors, parathion
Procedia PDF Downloads 4077307 The Determination of the Zinc Sulfate, Sodium Hydroxide and Boric Acid Molar Ratio on the Production of Zinc Borates
Authors: N. Tugrul, A. S. Kipcak, E. Moroydor Derun, S. Piskin
Abstract:
Zinc borate is an important boron compound that can be used as multi-functional flame retardant additive due to its high dehydration temperature property. In this study, the raw materials of ZnSO4.7H2O, NaOH and H3BO3 were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) and used in the synthesis of zinc borates. The synthesis parameters were set to 100°C reaction temperature and 120 minutes of reaction time, with different molar ratio of starting materials (ZnSO4.7H2O:NaOH:H3BO3). After the zinc borate synthesis, the identifications of the products were conducted by XRD and FT-IR. As a result, Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized at the molar ratios of 1:1:3, 1:1:4, 1:2:5 and 1:2:6. Among these ratios 1:2:6 had the best results.Keywords: Zinc borate, ZnSO4.7H2O, NaOH, H3BO3, XRD, FT-IR
Procedia PDF Downloads 3607306 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic
Authors: C.W. Kan
Abstract:
This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface
Procedia PDF Downloads 3537305 Effect of Sprouting Period of Proximate Composition, Functional Properties and Mineral Content on Malted Sorghum Flour
Authors: Adebola Ajayi, Olakunle M. Makanjuola
Abstract:
Effect of sprouting period on proximate, functional and mineral properties of malted sorghum flour was evaluated. The study was carried out to determine the proximate, functional and mineral properties of sprouting period on malted sorghum flour produced. The malted sorghum flour was obtained by sorting, weighing, washing, steeping, draining, germination, drying, dry milling, sieving. Malted sorghum flour was evaluated for proximate composition, functional properties and mineral contents. Moisture, protein, fat content, crude fiber, ash contents and carbohydrate of 24 and 48 hours, were in the range of 10.50-11.0, 11.17-11.17, 1.50-4.00, 2.50-1.50, 1.50-1.54 and 73.15-70.79% respectively. Bulk density ranged between 0.64 and 0.59g/ml, water and oil absorption capacities ranged between 139.3 and 150.0 and 217.3 and 222.7g/g respectively. Calcium, Magnesium, Zinc, Iron and Manganese were also range of 12.5, 59.3-60.0, 3.22-3.25, 3.80-3.90 and 3.22-3.25 mg/100g respectively. The results indicate that the germination of red sorghum resulted in the enhancement of the nutritional quality and its functional properties.Keywords: sprouting, sorghum, malted sorghum flour, cabinet dryer
Procedia PDF Downloads 208