Search results for: grid computing
720 Renewable Energy Utilization for Future Sustainability: An Approach to Roof-Mounted Photovoltaic Array Systems and Domestic Rooftop Rainwater Harvesting System Implementation in a Himachal Pradesh, India
Authors: Rajkumar Ghosh, Ananya Mukhopadhyay
Abstract:
This scientific paper presents a thorough investigation into the integration of roof-mounted photovoltaic (PV) array systems and home rooftop rainwater collection systems in a remote community in Himachal Pradesh, India, with the goal of optimum utilization of natural resources for attaining sustainable living conditions by 2030. The study looks into the technical feasibility, environmental benefits, and socioeconomic impacts of this integrated method, emphasizing its ability to handle energy and water concerns in remote rural regions. This comprehensive method not only provides a sustainable source of electricity but also ensures a steady supply of clean water, promoting resilience and improving the quality of life for the village's residents. This research highlights the potential of such integrated systems in supporting sustainable conditions in rural areas through a combination of technical feasibility studies, economic analysis, and community interaction. There would be 20690 villages and 1.48 million homes (23.79% annual growth rate) in Himachal Pradesh if all residential buildings in the state had roof-mounted photovoltaic arrays to capture solar energy for power generation. The energy produced is utilized to power homes, lessening dependency on traditional fossil fuels. The same residential buildings housed domestic rooftop rainwater collection systems. Rainwater runoff from rooftops is collected and stored in tanks for use in a number of residential purposes, such as drinking, cooking, and irrigation. The gathered rainfall enhances the region's limited groundwater resources, easing the strain on local wells and aquifers. Although Himachal Pradesh of India is a Power state, the PV arrays have reduced the reliance of village on grid power and diesel generators by providing a steady source of electricity. Rooftop rainwater gathering has not only increased residential water supply but it has also lessened the burden on local groundwater resources. This helps to replenish groundwater and offers a more sustainable water supply for the town. The neighbourhood has saved money by utilizing renewable energy and rainwater gathering. Furthermore, lower fossil fuel consumption reduces greenhouse gas emissions, which helps to mitigate the effects of climate change. The integrated strategy of installing grid connected rooftop photovoltaic arrays and home rooftop rainwater collecting systems in Himachal Pradesh rural community demonstrates a feasible model for sustainable development. According to “Swaran Jayanti Energy Policy of Himachal Pradesh”, Himachal Pradesh is planned 10 GW from rooftop mode from Solar Power. Government of India provides 40% subsidy on solar panel of 1-3 kw and subsidy of Rs 6,000 per kw per year to encourage domestic consumers of Himachal Pradesh. This effort solves energy and water concerns, improves economic well-being, and helps to conserve the environment. Such integrated systems can serve as a model for sustainable development in rural areas not only in Himachal Pradesh, but also in other parts of the world where resource scarcity is a major concern. Long-term performance and scalability of such integrated systems should be the focus of future study. Efforts should also be made to duplicate this approach in other rural areas and examine its socioeconomic and environmental implications over time.Keywords: renewable energy, photovoltaic arrays, rainwater harvesting, sustainability, rural development, Himachal Pradesh, India
Procedia PDF Downloads 103719 Smart Airport: Application of Internet of Things for Confronting Airport Challenges
Authors: Ali Safaeianpour, Nima Shamandi
Abstract:
As air traffic expands, many airports have evolved into transit centers for people, information, and commerce, and technology implementation is an absolute part of airport development. Several challenges are in the way of implementing technology in an airport. Airport 4.0 proposes the "Smart Airport" concept, which focuses on using modern technologies such as Big Data, the Internet of Things (IoT), advanced biometric systems, blockchain, and cloud computing to alter and enhance passengers' journeys. Several common IoT concrete topics as partial keys to smart airports are discussed and introduced, ranging from automated check-in systems to exterior tracking processes, with the goal of enlightening more and more insightful ideas and proposals about smart airport solutions. IoT will dramatically alter people's lives by infusing intelligence, boosting the quality of life, and assembling it smarter. This paper reviews the approaches to transforming an airport into a smart airport and describes several enabling components of IoT and challenges that can hinder the implementation of a smart airport's function, which require to be addressed.Keywords: airport 4.0, digital airport, smart airport, IoT
Procedia PDF Downloads 117718 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning
Authors: A. D. Tayal
Abstract:
The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.Keywords: data, innovation, renewable, solar
Procedia PDF Downloads 368717 A CFD Study of the Performance Characteristics of Vented Cylinders as Vortex Generators
Authors: R. Kishan, R. M. Sumant, S. Suhas, Arun Mahalingam
Abstract:
This paper mainly researched on influence of vortex generator on lift coefficient and drag coefficient, when vortex generator is mounted on a flat plate. Vented cylinders were used as vortex generators which intensify vortex shedding in the wake of the vented cylinder as compared to base line circular cylinder which ensures more attached flow and increases lift force of the system. Firstly vented cylinders were analyzed in commercial CFD software which is compared with baseline cylinders for different angles of attack and further variation of lift and drag forces were studied by varying Reynolds number to account for influence of turbulence and boundary layer in the flow. Later vented cylinders were mounted on a flat plate and variation of lift and drag coefficients was studied by varying angles of attack and studying the dependence of Reynolds number and dimensions of vortex generator on the coefficients. Mesh grid sensitivity is studied to check the convergence of the results obtained It was found that usage of vented cylinders as vortex generators increased lift forces with small variation in drag forces by varying angle of attack.Keywords: CFD analysis, drag coefficient, FVM, lift coefficient, modeling, Reynolds number, simulation, vortex generators, vortex shedding
Procedia PDF Downloads 432716 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus
Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen
Abstract:
The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay
Procedia PDF Downloads 281715 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.Keywords: settlement, Subway Line, FLAC3D, ANFIS Method
Procedia PDF Downloads 235714 Spatial Analysis for Wind Risk Index Assessment
Authors: Ljiljana Seric, Vladimir Divic, Marin Bugaric
Abstract:
This paper presents methodology for spatial analysis of GIS data that is used for assessing the microlocation risk index from potential damages of high winds. The analysis is performed on freely available GIS data comprising information about wind load, terrain cover and topography of the area. The methodology utilizes the legislation of Eurocode norms for determination of wind load of buildings and constructions. The core of the methodology is adoption of the wind load parameters related to location on geographical spatial grid. Presented work is a part of the Wind Risk Project, supported by the European Commission under the Civil Protection Financial Instrument of the European Union (ECHO). The partners involved in Wind Risk project performed Wind Risk assessment and proposed action plan for three European countries – Slovenia, Croatia and Germany. The proposed method is implemented in GRASS GIS open source GIS software and demonstrated for Case study area of wider area of Split, Croatia. Obtained Wind Risk Index is visualized and correlated with critical infrastructures like buildings, roads and power lines. The results show good correlation between high Wind Risk Index with recent incidents related to wind.Keywords: Eurocode norms, GIS, spatial analysis, wind distribution, wind risk
Procedia PDF Downloads 317713 Defining the Turbulent Coefficients with the Effect of Atmospheric Stability in Wake of a Wind Turbine Wake
Authors: Mohammad A. Sazzad, Md M. Alam
Abstract:
Wind energy is one of the cleanest form of renewable energy. Despite wind industry is growing faster than ever there are some roadblocks towards the improvement. One of the difficulties the industry facing is insufficient knowledge about wake within the wind farms. As we know energy is generated in the lowest layer of the atmospheric boundary layer (ABL). This interaction between the wind turbine (WT) blades and wind introduces a low speed wind region which is defined as wake. This wake region shows different characteristics under each stability condition of the ABL. So, it is fundamental to know this wake region well which is defined mainly by turbulence transport and wake shear. Defining the wake recovery length and width are very crucial for wind farm to optimize the generation and reduce the waste of power to the grid. Therefore, in order to obtain the turbulent coefficients of velocity and length, this research focused on the large eddy simulation (LES) data for neutral ABL (NABL). According to turbulent theory, if we can present velocity defect and Reynolds stress in the form of local length and velocity scales, they become invariant. In our study velocity and length coefficients are 0.4867 and 0.4794 respectively which is close to the theoretical value of 0.5 for NABL. There are some invariant profiles because of the presence of thermal and wind shear power coefficients varied a little from the ideal condition.Keywords: atmospheric boundary layer, renewable energy, turbulent coefficient, wind turbine, wake
Procedia PDF Downloads 133712 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds
Authors: Sahar Sohrabi
Abstract:
The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.Keywords: cloud computing, scheduling, real-time private cloud, bayesian
Procedia PDF Downloads 360711 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines
Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka
Abstract:
To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps
Procedia PDF Downloads 153710 The Video Database for Teaching and Learning in Football Refereeing
Authors: M. Armenteros, A. Domínguez, M. Fernández, A. J. Benítez
Abstract:
The following paper describes the video database tool used by the Fédération Internationale de Football Association (FIFA) as part of the research project developed in collaboration with the Carlos III University of Madrid. The database project began in 2012, with the aim of creating an educational tool for the training of instructors, referees and assistant referees, and it has been used in all FUTURO III courses since 2013. The platform now contains 3,135 video clips of different match situations from FIFA competitions. It has 1,835 users (FIFA instructors, referees and assistant referees). In this work, the main features of the database are described, such as the use of a search tool and the creation of multimedia presentations and video quizzes. The database has been developed in MySQL, ActionScript, Ruby on Rails and HTML. This tool has been rated by users as "very good" in all courses, which prompt us to introduce it as an ideal tool for any other sport that requires the use of video analysis.Keywords: assistants referees, cloud computing, e-learning, instructors, FIFA, referees, soccer, video database
Procedia PDF Downloads 440709 Determine the Optimal Path of Content Adaptation Services with Max Heap Tree
Authors: Shilan Rahmani Azr, Siavash Emtiyaz
Abstract:
Recent development in computing and communicative technologies leads to much easier mobile accessibility to the information. Users can access to the information in different places using various deceives in which the care variety of abilities. Meanwhile, the format and details of electronic documents are changing each day. In these cases, a mismatch is created between content and client’s abilities. Recently the service-oriented content adaption has been developed which the adapting tasks are dedicated to some extended services. In this method, the main problem is to choose the best appropriate service among accessible and distributed services. In this paper, a method for determining the optimal path to the best services, based on the quality control parameters and user preferences, is proposed using max heap tree. The efficiency of this method in contrast to the other previous methods of the content adaptation is related to the determining the optimal path of the best services which are measured. The results show the advantages and progresses of this method in compare of the others.Keywords: service-oriented content adaption, QoS, max heap tree, web services
Procedia PDF Downloads 261708 Managing the Cloud Procurement Process: Findings from a Case Study
Authors: Andreas Jede, Frank Teuteberg
Abstract:
Cloud computing (CC) has already gained overall appreciation in research and practice. Whereas the willingness to integrate cloud services in various IT environments is still unbroken, the previous CC procurement processes run mostly in an unorganized and non-standardized way. In practice, a sufficiently specific, yet applicable business process for the important acquisition phase is often lacking. And research does not appropriately remedy this deficiency yet. Therefore, this paper introduces a field-tested approach for CC procurement. Based on an extensive literature review and augmented by expert interviews, we designed a model that is validated and further refined through an in-depth real-life case study. For the detailed process description, we apply the event-driven process chain notation (EPC). The gained valuable insights into the case study may help CC research to shift to a more socio-technical area. For practice, next to giving useful organizational instructions we will provide extended checklists and lessons learned.Keywords: cloud procurement process, IT-organization, event-driven process chain, in-depth case study
Procedia PDF Downloads 395707 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow
Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun
Abstract:
With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.Keywords: cloud storage security, sharing storage, attributes, Hash algorithm
Procedia PDF Downloads 390706 Frequency Transformation with Pascal Matrix Equations
Authors: Phuoc Si Nguyen
Abstract:
Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal’s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter.Keywords: frequency transformation, bilinear z-transformation, pre-warping frequency, digital filters, analog filters, pascal’s triangle
Procedia PDF Downloads 549705 Solving Linear Systems Involved in Convex Programming Problems
Authors: Yixun Shi
Abstract:
Many interior point methods for convex programming solve an (n+m)x(n+m)linear system in each iteration. Many implementations solve this system in each iteration by considering an equivalent mXm system (4) as listed in the paper, and thus the job is reduced into solving the system (4). However, the system(4) has to be solved exactly since otherwise the error would be entirely passed onto the last m equations of the original system. Often the Cholesky factorization is computed to obtain the exact solution of (4). One Cholesky factorization is to be done in every iteration, resulting in higher computational costs. In this paper, two iterative methods for solving linear systems using vector division are combined together and embedded into interior point methods. Instead of computing one Cholesky factorization in each iteration, it requires only one Cholesky factorization in the entire procedure, thus significantly reduces the amount of computation needed for solving the problem. Based on that, a hybrid algorithm for solving convex programming problems is proposed.Keywords: convex programming, interior point method, linear systems, vector division
Procedia PDF Downloads 403704 Application of Supervised Deep Learning-based Machine Learning to Manage Smart Homes
Authors: Ahmed Al-Adaileh
Abstract:
Renewable energy sources, domestic storage systems, controllable loads and machine learning technologies will be key components of future smart homes management systems. An energy management scheme that uses a Deep Learning (DL) approach to support the smart home management systems, which consist of a standalone photovoltaic system, storage unit, heating ventilation air-conditioning system and a set of conventional and smart appliances, is presented. The objective of the proposed scheme is to apply DL-based machine learning to predict various running parameters within a smart home's environment to achieve maximum comfort levels for occupants, reduced electricity bills, and less dependency on the public grid. The problem is using Reinforcement learning, where decisions are taken based on applying the Continuous-time Markov Decision Process. The main contribution of this research is the proposed framework that applies DL to enhance the system's supervised dataset to offer unlimited chances to effectively support smart home systems. A case study involving a set of conventional and smart appliances with dedicated processing units in an inhabited building can demonstrate the validity of the proposed framework. A visualization graph can show "before" and "after" results.Keywords: smart homes systems, machine learning, deep learning, Markov Decision Process
Procedia PDF Downloads 207703 Use of Large Eddy Simulations Model to Simulate the Flow of Heavy Oil-Water-Air through Pipe
Authors: Salim Al Jadidi, Shian Gao, Shivananda Moolya
Abstract:
Computational Fluid Dynamic (CFD) technique coupled with Sub-Grid-Scale (SGS) model is used to study the flow behavior of heavy oil-water-air flow in a horizontal pipe by adapting ANSYS Fluent CFD software. The technique suitable for the transport of water-lubricated heavy viscous oil in a horizontal pipe is the Core Annular flow (CAF) technique. The present study focuses on the numerical study of CAF adapting Large Eddy Simulations (LES). The basic objective of the present study is to gain a basic knowledge of the flow behavior of heavy oil using turbulent CAF through a conventional horizontal pipe. This work also focuses on the success and applicability of LES. The simulation of heavy oil-water-air three-phase flow and two-phase flow of heavy oil–water in a conventional horizontal pipe is performed using ANSYS Fluent 16.2 software. The influence of three-phase heavy oil-water air flow in a selected pipe is affected by gravity. It is also observed from the result that the air phase and the variation in the temperature impact the behavior of the annular stream and pressure drop. Some results obtained during the study are validated with the results gained from part of the literature experiments and simulations, and the results show reasonably good agreement between the studies.Keywords: computational fluid dynamics, gravity, heavy viscous oil, three-phase flow
Procedia PDF Downloads 78702 Optimal Design of Redundant Hybrid Manipulator for Minimum Singularity
Authors: Arash Rahmani, Ahmad Ghanbari, Abbas Baghernezhad, Babak Safaei
Abstract:
In the design of parallel manipulators, usually mean value of a dexterity measure over the workspace volume is considered as the objective function to be used in optimization algorithms. The mentioned indexes in a hybrid parallel manipulator (HPM) are quite complicated to solve thanks to infinite solutions for every point within the workspace of the redundant manipulators. In this paper, spatial isotropic design axioms are extended as a well-known method for optimum design of manipulators. An upper limit for the isotropy measure of HPM is calculated and instead of computing and minimizing isotropy measure, minimizing the obtained limit is considered. To this end, two different objective functions are suggested which are obtained from objective functions of comprising modules. Finally, by using genetic algorithm (GA), the best geometric parameters for a specific hybrid parallel robot which is composed of two modified Gough-Stewart platforms (MGSP) are achieved.Keywords: hybrid manipulator, spatial isotropy, genetic algorithm, optimum design
Procedia PDF Downloads 338701 A New Optimization Algorithm for Operation of a Microgrid
Authors: Sirus Mohammadi, Rohala Moghimi
Abstract:
The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)
Procedia PDF Downloads 341700 Data Poisoning Attacks on Federated Learning and Preventive Measures
Authors: Beulah Rani Inbanathan
Abstract:
In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.Keywords: data poisoning, federated learning, Internet of Things, edge computing
Procedia PDF Downloads 88699 Adapting an Accurate Reverse-time Migration Method to USCT Imaging
Authors: Brayden Mi
Abstract:
Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation
Procedia PDF Downloads 76698 Electrodynamic Principles for Generation and Wireless Transfer of Energy
Authors: Steven D. P. Moore
Abstract:
An electrical discharge in the air induces an electromagnetic (EM) wave capable of wireless transfer, reception, and conversion back into electrical discharge at a distant location. Following Norton’s ground wave principles, EM wave radiation (EMR) runs parallel to the Earth’s surface. Energy in an EMR wave can move through the air and be focused to create a spark at a distant location, focused by a receiver to generate a local electrical discharge. This local discharge can be amplified and stored but also has the propensity to initiate another EMR wave. In addition to typical EM waves, lightning is also associated with atmospheric events, trans-ionospheric pulse pairs, the most powerful natural EMR signal on the planet. With each lightning strike, regardless of global position, it generates naturally occurring pulse-pairs that are emitted towards space within a narrow cone. An EMR wave can self-propagate, travel at the speed of light, and, if polarized, contain vector properties. If this reflective pulse could be directed by design through structures that have increased probabilities for lighting strikes, it could theoretically travel near the surface of the Earth at light speed towards a selected receiver for local transformation into electrical energy. Through research, there are several influencing parameters that could be modified to model, test, and increase the potential for adopting this technology towards the goal of developing a global grid that utilizes natural sources of energy.Keywords: electricity, sparkgap, wireless, electromagnetic
Procedia PDF Downloads 191697 Integration of Wireless Sensor Networks and Radio Frequency Identification (RFID): An Assesment
Authors: Arslan Murtaza
Abstract:
RFID (Radio Frequency Identification) and WSN (Wireless sensor network) are two significant wireless technologies that have extensive diversity of applications and provide limitless forthcoming potentials. RFID is used to identify existence and location of objects whereas WSN is used to intellect and monitor the environment. Incorporating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. It can be widely used in stock management, asset tracking, asset counting, security, military, environmental monitoring and forecasting, healthcare, intelligent home, intelligent transport vehicles, warehouse management, and precision agriculture. This assessment presents a brief introduction of RFID, WSN, and integration of WSN and RFID, and then applications related to both RFID and WSN. This assessment also deliberates status of the projects on RFID technology carried out in different computing group projects to be taken on WSN and RFID technology.Keywords: wireless sensor network, RFID, embedded sensor, Wi-Fi, Bluetooth, integration, time saving, cost efficient
Procedia PDF Downloads 335696 Easily Memorable Strong Password Generation and Retrieval
Authors: Shatadru Das, Natarajan Vijayarangan
Abstract:
In this paper, a system and method for generating and recovering an authorization code has been designed and analyzed. The system creates an authorization code by accepting a base-sentence from a user. Based on the characters present in this base-sentence, the system computes a base-sentence matrix. The system also generates a plurality of patterns. The user can either select the pattern from the multiple patterns suggested by the system or can create his/her own pattern. The system then performs multiplications between the base-sentence matrix and the selected pattern matrix at different stages in the path forward, for obtaining a strong authorization code. In case the user forgets the base sentence, the system has a provision to manage and retrieve 'forgotten authorization code'. This is done by fragmenting the base sentence into different matrices and storing the fragmented matrices into a repository after computing matrix multiplication with a security question-answer approach and with a secret key provided by the user.Keywords: easy authentication, key retrieval, memorable passwords, strong password generation
Procedia PDF Downloads 402695 Simulation and Modeling of High Voltage Pulse Transformer
Authors: Zahra Emami, H. Reza Mesgarzade, A. Morad Ghorbami, S. Reza Motahari
Abstract:
This paper presents a method for calculation of parasitic elements consisting of leakage inductance and parasitic capacitance in a high voltage pulse transformer. The parasitic elements of pulse transformers significantly influence the resulting pulse shape of a power modulator system. In order to prevent the effects on the pulse shape before constructing the transformer an electrical model is needed. The technique procedures for computing these elements are based on finite element analysis. The finite element model of pulse transformer is created using software "Ansys Maxwell 3D". Finally, the transformer parasitic elements is calculated and compared with the value obtained from the actual test and pulse modulator is simulated and results is compared with actual test of pulse modulator. The results obtained are very similar with the test values.Keywords: pulse transformer, simulation, modeling, Maxwell 3D, modulator
Procedia PDF Downloads 460694 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning
Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz
Abstract:
Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.Keywords: quantum machine learning, SVM, QSVM, matrix product state
Procedia PDF Downloads 95693 Blockchain’s Feasibility in Military Data Networks
Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam
Abstract:
Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.Keywords: blockchain, consensus mechanism, discrete-event simulation, fog computing
Procedia PDF Downloads 139692 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction
Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme
Procedia PDF Downloads 118691 Review of Vertical Axis Wind Turbine
Authors: Amare Worku, Harikrishnan Muralidharan
Abstract:
The research for more environmentally friendly sources of energy is a result of growing environmental awareness. In this aspect, wind energy is a very good option and there are two different wind turbines, horizontal axis wind turbine (HAWT) and vertical axis turbine (VAWT). For locations outside of integrated grid networks, vertical axis wind turbines (VAWT) present a feasible solution. However, those turbines have several drawbacks related to various setups, VAWT has a very low efficiency when compared with HAWT, but they work under different conditions and installation areas. This paper reviewed numerous measurements taken to improve the efficiency of VAWT configurations, either directly or indirectly related to the performance efficiency of the turbine. Additionally, the comparison and advantages of HAWT and VAWT turbines and also the findings of the design methodologies used for the VAWT design have been reviewed together with efficiency enhancement revision. Most of the newly modified designs are based on the turbine blade structure modification but need other studies on behalf other than electromechanical modification. Some of the techniques, like continuous variation of pitch angle control and swept area control, are not the most effective since VAWT is Omni-directional, and so wind direction is not a problem like HAWT. Hybrid system technology has become one of the most important and efficient methods to enhance the efficiency of VAWT. Besides hybridization, the contra-rotating method is also good if the installation area is big enough in an urban area.Keywords: wind turbine, horizontal axis wind turbine, vertical axis wind turbine, hybridization
Procedia PDF Downloads 104