Search results for: fuzzy set Models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7336

Search results for: fuzzy set Models

6106 Impacts on Marine Ecosystems Using a Multilayer Network Approach

Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade

Abstract:

Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.

Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management

Procedia PDF Downloads 113
6105 Seismic Hazard Assessment of Offshore Platforms

Authors: F. D. Konstandakopoulou, G. A. Papagiannopoulos, N. G. Pnevmatikos, G. D. Hatzigeorgiou

Abstract:

This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.

Keywords: hazard analysis, offshore platforms, earthquakes, safety

Procedia PDF Downloads 148
6104 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations

Authors: Ramon Santana

Abstract:

The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.

Keywords: fingerprint, template protection, bio-cryptography, minutiae protection

Procedia PDF Downloads 170
6103 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model

Authors: Jian Yang, Atsushi Yagi

Abstract:

Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.

Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems

Procedia PDF Downloads 160
6102 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques

Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt

Abstract:

Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.

Keywords: forecasting, time series, auto regression, ARCH, ARMA

Procedia PDF Downloads 348
6101 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation

Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro

Abstract:

This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.

Keywords: acceptance, block size, mixed linear model, testing order, testing order

Procedia PDF Downloads 321
6100 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 101
6099 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 43
6098 Churn Prediction for Savings Bank Customers: A Machine Learning Approach

Authors: Prashant Verma

Abstract:

Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.

Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling

Procedia PDF Downloads 143
6097 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
6096 Signs-Only Compressed Row Storage Format for Exact Diagonalization Study of Quantum Fermionic Models

Authors: Michael Danilov, Sergei Iskakov, Vladimir Mazurenko

Abstract:

The present paper describes a high-performance parallel realization of an exact diagonalization solver for quantum-electron models in a shared memory computing system. The proposed algorithm contains a storage format for efficient computing eigenvalues and eigenvectors of a quantum electron Hamiltonian matrix. The results of the test calculations carried out for 15 sites Hubbard model demonstrate reduction in the required memory and good multiprocessor scalability, while maintaining performance of the same order as compressed row storage.

Keywords: sparse matrix, compressed format, Hubbard model, Anderson model

Procedia PDF Downloads 402
6095 Optimizing the Passenger Throughput at an Airport Security Checkpoint

Authors: Kun Li, Yuzheng Liu, Xiuqi Fan

Abstract:

High-security standard and high efficiency of screening seem to be contradictory to each other in the airport security check process. Improving the efficiency as far as possible while maintaining the same security standard is significantly meaningful. This paper utilizes the knowledge of Operation Research and Stochastic Process to establish mathematical models to explore this problem. We analyze the current process of airport security check and use the M/G/1 and M/G/k models in queuing theory to describe the process. Then we find the least efficient part is the pre-check lane, the bottleneck of the queuing system. To improve passenger throughput and reduce the variance of passengers’ waiting time, we adjust our models and use Monte Carlo method, then put forward three modifications: adjust the ratio of Pre-Check lane to regular lane flexibly, determine the optimal number of security check screening lines based on cost analysis and adjust the distribution of arrival and service time based on Monte Carlo simulation results. We also analyze the impact of cultural differences as the sensitivity analysis. Finally, we give the recommendations for the current process of airport security check process.

Keywords: queue theory, security check, stochatic process, Monte Carlo simulation

Procedia PDF Downloads 200
6094 Application of Signature Verification Models for Document Recognition

Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova

Abstract:

In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.

Keywords: signature recognition, biometric data, artificial intelligence, neural networks

Procedia PDF Downloads 148
6093 Ischemic Stroke Detection in Computed Tomography Examinations

Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina

Abstract:

Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.

Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means

Procedia PDF Downloads 366
6092 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces

Authors: Monika Rawat, Rahul Kumar

Abstract:

Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.

Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation

Procedia PDF Downloads 196
6091 An As-Is Analysis and Approach for Updating Building Information Models and Laser Scans

Authors: Rene Hellmuth

Abstract:

Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring of the factory building is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A building information model (BIM) is the planning basis for rebuilding measures and becomes an indispensable data repository to be able to react quickly to changes. Use as a planning basis for restructuring measures in factories only succeeds if the BIM model has adequate data quality. Under this aspect and the industrial requirement, three data quality factors are particularly important for this paper regarding the BIM model: up-to-dateness, completeness, and correctness. The research question is: how can a BIM model be kept up to date with required data quality and which visualization techniques can be applied in a short period of time on the construction site during conversion measures? An as-is analysis is made of how BIM models and digital factory models (including laser scans) are currently being kept up to date. Industrial companies are interviewed, and expert interviews are conducted. Subsequently, the results are evaluated, and a procedure conceived how cost-effective and timesaving updating processes can be carried out. The availability of low-cost hardware and the simplicity of the process are of importance to enable service personnel from facility mnagement to keep digital factory models (BIM models and laser scans) up to date. The approach includes the detection of changes to the building, the recording of the changing area, and the insertion into the overall digital twin. Finally, an overview of the possibilities for visualizations suitable for construction sites is compiled. An augmented reality application is created based on an updated BIM model of a factory and installed on a tablet. Conversion scenarios with costs and time expenditure are displayed. A user interface is designed in such a way that all relevant conversion information is available at a glance for the respective conversion scenario. A total of three essential research results are achieved: As-is analysis of current update processes for BIM models and laser scans, development of a time-saving and cost-effective update process and the conception and implementation of an augmented reality solution for BIM models suitable for construction sites.

Keywords: building information modeling, digital factory model, factory planning, restructuring

Procedia PDF Downloads 114
6090 Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles in the Kidney Disease

Authors: Leonardo C. Pacheco-Londoño, Nataly J Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta-Hoyos, Elkin Navarro, Gustavo Aroca-Martinez, Karin Rondón-Payares, Alberto C. Espinosa-Garavito, Samuel P. Hernández-Rivera

Abstract:

At the Life Science Research Center at Simon Bolivar University, a primary focus is the diagnosis of various diseases, and the use of gold nanoparticles (Au-NPs) in diverse biomedical applications is continually expanding. In the present study, Au-NPs were employed as substrates for Surface-Enhanced Raman Spectroscopy (SERS) aimed at diagnosing kidney diseases arising from Lupus Nephritis (LN), preeclampsia (PC), and Hypertension (H). Discrimination models were developed for distinguishing patients with and without kidney diseases based on the SERS signals from urine samples by partial least squares-discriminant analysis (PLS-DA). A comparative study of the Raman signals across the three conditions was conducted, leading to the identification of potential metabolite signals. Model performance was assessed through cross-validation and external validation, determining parameters like sensitivity and specificity. Additionally, a secondary analysis was performed using machine learning (ML) models, wherein different ML algorithms were evaluated for their efficiency. Models’ validation was carried out using cross-validation and external validation, and other parameters were determined, such as sensitivity and specificity; the models showed average values of 0.9 for both parameters. Additionally, it is not possible to highlight this collaborative effort involved two university research centers and two healthcare institutions, ensuring ethical treatment and informed consent of patient samples.

Keywords: SERS, Raman, PLS-DA, kidney diseases

Procedia PDF Downloads 45
6089 Comfort Sensor Using Fuzzy Logic and Arduino

Authors: Samuel John, S. Sharanya

Abstract:

Automation has become an important part of our life. It has been used to control home entertainment systems, changing the ambience of rooms for different events etc. One of the main parameters to control in a smart home is the atmospheric comfort. Atmospheric comfort mainly includes temperature and relative humidity. In homes, the desired temperature of different rooms varies from 20 °C to 25 °C and relative humidity is around 50%. However, it varies widely. Hence, automated measurement of these parameters to ensure comfort assumes significance. To achieve this, a fuzzy logic controller using Arduino was developed using MATLAB. Arduino is an open source hardware consisting of a 24 pin ATMEGA chip (atmega328), 14 digital input /output pins and an inbuilt ADC. It runs on 5v and 3.3v power supported by a board voltage regulator. Some of the digital pins in Aruduino provide PWM (pulse width modulation) signals, which can be used in different applications. The Arduino platform provides an integrated development environment, which includes support for c, c++ and java programming languages. In the present work, soft sensor was introduced in this system that can indirectly measure temperature and humidity and can be used for processing several measurements these to ensure comfort. The Sugeno method (output variables are functions or singleton/constant, more suitable for implementing on microcontrollers) was used in the soft sensor in MATLAB and then interfaced to the Arduino, which is again interfaced to the temperature and humidity sensor DHT11. The temperature-humidity sensor DHT11 acts as the sensing element in this system. Further, a capacitive humidity sensor and a thermistor were also used to support the measurement of temperature and relative humidity of the surrounding to provide a digital signal on the data pin. The comfort sensor developed was able to measure temperature and relative humidity correctly. The comfort percentage was calculated and accordingly the temperature in the room was controlled. This system was placed in different rooms of the house to ensure that it modifies the comfort values depending on temperature and relative humidity of the environment. Compared to the existing comfort control sensors, this system was found to provide an accurate comfort percentage. Depending on the comfort percentage, the air conditioners and the coolers in the room were controlled. The main highlight of the project is its cost efficiency.

Keywords: arduino, DHT11, soft sensor, sugeno

Procedia PDF Downloads 312
6088 Plot Scale Estimation of Crop Biophysical Parameters from High Resolution Satellite Imagery

Authors: Shreedevi Moharana, Subashisa Dutta

Abstract:

The present study focuses on the estimation of crop biophysical parameters like crop chlorophyll, nitrogen and water stress at plot scale in the crop fields. To achieve these, we have used high-resolution satellite LISS IV imagery. A new methodology has proposed in this research work, the spectral shape function of paddy crop is employed to get the significant wavelengths sensitive to paddy crop parameters. From the shape functions, regression index models were established for the critical wavelength with minimum and maximum wavelengths of multi-spectrum high-resolution LISS IV data. Moreover, the functional relationships were utilized to develop the index models. From these index models crop, biophysical parameters were estimated and mapped from LISS IV imagery at plot scale in crop field level. The result showed that the nitrogen content of the paddy crop varied from 2-8%, chlorophyll from 1.5-9% and water content variation observed from 40-90% respectively. It was observed that the variability in rice agriculture system in India was purely a function of field topography.

Keywords: crop parameters, index model, LISS IV imagery, plot scale, shape function

Procedia PDF Downloads 168
6087 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 248
6086 The Prediction of Effective Equation on Drivers' Behavioral Characteristics of Lane Changing

Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi

Abstract:

According to the increasing volume of traffic, lane changing plays a crucial role in traffic flow. Lane changing in traffic depends on several factors including road geometrical design, speed, drivers’ behavioral characteristics, etc. A great deal of research has been carried out regarding these fields. Despite of the other significant factors, the drivers’ behavioral characteristics of lane changing has been emphasized in this paper. This paper has predicted the effective equation based on personal characteristics of lane changing by regression models.

Keywords: effective equation, lane changing, drivers’ behavioral characteristics, regression models

Procedia PDF Downloads 450
6085 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery

Authors: Mohammadreza Mohebbi, Masoumeh Sanagou

Abstract:

The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.

Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics

Procedia PDF Downloads 297
6084 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter

Authors: Amartya Hatua, Trung Nguyen, Andrew Sung

Abstract:

In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.

Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter

Procedia PDF Downloads 391
6083 Construction of QSAR Models to Predict Potency on a Series of substituted Imidazole Derivatives as Anti-fungal Agents

Authors: Sara El Mansouria Beghdadi

Abstract:

Quantitative structure–activity relationship (QSAR) modelling is one of the main computer tools used in medicinal chemistry. Over the past two decades, the incidence of fungal infections has increased due to the development of resistance. In this study, the QSAR was performed on a series of esters of 2-carboxamido-3-(1H-imidazole-1-yl) propanoic acid derivatives. These compounds have showed moderate and very good antifungal activity. The multiple linear regression (MLR) was used to generate the linear 2d-QSAR models. The dataset consists of 115 compounds with their antifungal activity (log MIC) against «Candida albicans» (ATCC SC5314). Descriptors were calculated, and different models were generated using Chemoffice, Avogadro, GaussView software. The selected model was validated. The study suggests that the increase in lipophilicity and the reduction in the electronic character of the substituent in R1, as well as the reduction in the steric hindrance of the substituent in R2 and its aromatic character, supporting the potentiation of the antifungal effect. The results of QSAR could help scientists to propose new compounds with higher antifungal activities intended for immunocompromised patients susceptible to multi-resistant nosocomial infections.

Keywords: quantitative structure–activity relationship, imidazole, antifungal, candida albicans (ATCC SC5314)

Procedia PDF Downloads 84
6082 The Design of the Questionnaire of Attitudes in Physics Teaching

Authors: Ricardo Merlo

Abstract:

Attitude is a hypothetical construct that can be significantly measured to know the favorable or unfavorable predisposition that students have towards the teaching of sciences such as Physics. Although the state-of-the-art attitude test used in Physics teaching indicated different design and validation models in different groups of students, the analysis of the weight given to each dimension that supported the attitude was scarcely evaluated. Then, in this work, a methodology of attitude questionnaire construction process was proposed that allowed the teacher to design and validate the measurement instrument for different subjects of Physics at the university level developed in the classroom according to the weight considered to the affective, knowledge, and behavioural dimensions. Finally, questionnaire models were tested for the case of incoming university students, achieving significant results in the improvement of Physics teaching.

Keywords: attitude, physics teaching, motivation, academic performance

Procedia PDF Downloads 71
6081 Testing and Validation Stochastic Models in Epidemiology

Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa

Abstract:

This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.

Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions

Procedia PDF Downloads 7
6080 Research on the Ecological Impact Evaluation Index System of Transportation Construction Projects

Authors: Yu Chen, Xiaoguang Yang, Lin Lin

Abstract:

Traffic engineering construction is an important infrastructure for economic and social development. In the process of construction and operation, the ability to make a correct evaluation of the project's environmental impact appears to be crucial to the rational operation of existing transportation projects, the correct development of transportation engineering construction and the adoption of corresponding measures to scientifically carry out environmental protection work. Most of the existing research work on ecological and environmental impact assessment is limited to individual aspects of the environment and less to the overall evaluation of the environmental system; in terms of research conclusions, there are more qualitative analyses from the technical and policy levels, and there is a lack of quantitative research results and quantitative and operable evaluation models. In this paper, a comprehensive analysis of the ecological and environmental impacts of transportation construction projects is conducted, and factors such as the accessibility of data and the reliability of calculation results are comprehensively considered to extract indicators that can reflect the essence and characteristics. The qualitative evaluation indicators were screened using the expert review method, the qualitative indicators were measured using the fuzzy statistics method, the quantitative indicators were screened using the principal component analysis method, and the quantitative indicators were measured by both literature search and calculation. An environmental impact evaluation index system with the general objective layer, sub-objective layer and indicator layer was established, dividing the environmental impact of the transportation construction project into two periods: the construction period and the operation period. On the basis of the evaluation index system, the index weights are determined using the hierarchical analysis method, and the individual indicators to be evaluated are dimensionless, eliminating the influence of the original background and meaning of the indicators. Finally, the thesis uses the above research results, combined with the actual engineering practice, to verify the correctness and operability of the evaluation method.

Keywords: transportation construction projects, ecological and environmental impact, analysis and evaluation, indicator evaluation system

Procedia PDF Downloads 105
6079 From the Sharing Economy to Social Manufacturing: Analyzing Collaborative Service Networks in the Manufacturing Domain

Authors: Babak Mohajeri

Abstract:

In recent years, the conventional business model of ownership has been changed towards accessibility in a variety of markets. Two trends can be observed in the evolution of this rental-like business model. Firstly, the technological development that enables the emergence of new business models. These new business models increasingly become agile and flexible. For example Spotify, an online music stream company provides consumers access to over millions of music tracks, conveniently through the smartphone, tablet or computer. Similarly, Car2Go, the car sharing company accesses its members with flexible and nearby sharing cars. The second trend is the increasing communication and connections via social networks. This trend enables a shift to peer-to-peer accessibility based business models. Conventionally, companies provide access for their customers to own companies products or services. In peer-to-peer model, nonetheless, companies facilitate access and connection across their customers to use other customers owned property or skills, competencies or services .The is so-called the sharing economy business model. The aim of this study is to investigate into a new and emerging type of the sharing economy model in which role of customers and service providers may dramatically change. This new model is called Collaborative Service Networks. We propose a mechanism for Collaborative Service Networks business model. Uber and Airbnb, two successful growing companies, have been selected for our case studies and their business models are analyzed. Finally, we study the emergence of the collaborative service networks in the manufacturing domain. Our finding results to a new manufacturing paradigm called social manufacturing.

Keywords: sharing economy, collaborative service networks, social manufacturing, manufacturing development

Procedia PDF Downloads 317
6078 Comparative Operating Speed and Speed Differential Day and Night Time Models for Two Lane Rural Highways

Authors: Vinayak Malaghan, Digvijay Pawar

Abstract:

Speed is the independent parameter which plays a vital role in the highway design. Design consistency of the highways is checked based on the variation in the operating speed. Often the design consistency fails to meet the driver’s expectation which results in the difference between operating and design speed. Literature reviews have shown that significant crashes take place in horizontal curves due to lack of design consistency. The paper focuses on continuous speed profile study on tangent to curve transition for both day and night daytime. Data is collected using GPS device which gives continuous speed profile and other parameters such as acceleration, deceleration were analyzed along with Tangent to Curve Transition. In this present study, models were developed to predict operating speed on tangents and horizontal curves as well as model indicating the speed reduction from tangent to curve based on continuous speed profile data. It is observed from the study that vehicle tends to decelerate from approach tangent to between beginning of the curve and midpoint of the curve and then accelerates from curve to tangent transition. The models generated were compared for both day and night and can be used in the road safety improvement by evaluating the geometric design consistency.

Keywords: operating speed, design consistency, continuous speed profile data, day and night time

Procedia PDF Downloads 157
6077 A Basic Modeling Approach for the 3D Protein Structure of Insulin

Authors: Daniel Zarzo Montes, Manuel Zarzo Castelló

Abstract:

Proteins play a fundamental role in biology, but their structure is complex, and it is a challenge for teachers to conceptually explain the differences between their primary, secondary, tertiary, and quaternary structures. On the other hand, there are currently many computer programs to visualize the 3D structure of proteins, but they require advanced training and knowledge. Moreover, it becomes difficult to visualize the sequence of amino acids in these models, and how the protein conformation is reached. Given this drawback, a simple and instructive procedure is proposed in order to teach the protein structure to undergraduate and graduate students. For this purpose, insulin has been chosen because it is a protein that consists of 51 amino acids, a relatively small number. The methodology has consisted of the use of plastic atom models, which are frequently used in organic chemistry and biochemistry to explain the chirality of biomolecules. For didactic purposes, when the aim is to teach the biochemical foundations of proteins, a manipulative system seems convenient, starting from the chemical structure of amino acids. It has the advantage that the bonds between amino acids can be conveniently rotated, following the pattern marked by the 3D models. First, the 51 amino acids were modeled, and then they were linked according to the sequence of this protein. Next, the three disulfide bonds that characterize the stability of insulin have been established, and then the alpha-helix structure has been formed. In order to reach the tertiary 3D conformation of this protein, different interactive models available on the Internet have been visualized. In conclusion, the proposed methodology seems very suitable for biology and biochemistry students because they can learn the fundamentals of protein modeling by means of a manipulative procedure as a basis for understanding the functionality of proteins. This methodology would be conveniently useful for a biology or biochemistry laboratory practice, either at the pre-graduate or university level.

Keywords: protein structure, 3D model, insulin, biomolecule

Procedia PDF Downloads 55