Search results for: deterministic process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15422

Search results for: deterministic process

14192 Analytic Hierarchy Process Method for Supplier Selection Considering Green Logistics: Case Study of Aluminum Production Sector

Authors: H. Erbiyik, A. Bal, M. Sirakaya, Ö. Yesildal, E. Yolcu

Abstract:

The emergence of many environmental issues began with the Industrial Revolution. The depletion of natural resources and emerging environmental challenges over time requires enterprises and managers to take into consideration environmental factors while managing business. If we take notice of these causes; the design and implementation of environmentally friendly green purchasing, production and waste management systems become very important at green logistics systems. Companies can adopt green supply chain with the awareness of these facts. The concept of green supply chain constitutes from green purchasing, green production, green logistics, waste management and reverse logistics. In this study, we wanted to identify the concept of green supply chain and why green supply chain should be applied. In the practice part of the study an analytic hierarchy process (AHP) study is conducted on an aluminum production company to evaluate suppliers.

Keywords: aluminum sector, analytic hierarchy process, decision making, green logistics

Procedia PDF Downloads 355
14191 Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlay

Authors: Lydia Chan, Islam Shyha, Dale Dreyer, John Hamilton, Phil Hackney

Abstract:

Nickel-based superalloys are generally known to be difficult to cut due to their strength, low thermal conductivity, and high work hardening tendency. Superalloy such as alloy 625 is often used in the oil and gas industry as a surfacing material to provide wear and corrosion resistance to components. The material is typically applied onto a metallic substrate through weld overlay cladding, an arc welding technique. Cladded surfaces are always rugged and carry a tough skin; this creates further difficulties to the machining process. The present work utilised design of experiment to optimise the internal cylindrical rough turning for weld overlay surfaces. An L27 orthogonal array was used to assess effects of the four selected key process variables: cutting insert, depth of cut, feed rate, and cutting speed. The optimal cutting conditions were determined based on productivity and the level of tool wear.

Keywords: cylindrical turning, nickel superalloy, turning of overlay, weld overlay

Procedia PDF Downloads 374
14190 Students' ExperiEnce Enhancement Through Simulaton. A Process Flow in Logistics and Transportation Field

Authors: Nizamuddin Zainuddin, Adam Mohd Saifudin, Ahmad Yusni Bahaudin, Mohd Hanizan Zalazilah, Roslan Jamaluddin

Abstract:

Students’ enhanced experience through simulation is a crucial factor that brings reality to the classroom. The enhanced experience is all about developing, enriching and applications of a generic process flow in the field of logistics and transportations. As educational technology has improved, the effective use of simulations has greatly increased to the point where simulations should be considered a valuable, mainstream pedagogical tool. Additionally, in this era of ongoing (some say never-ending) assessment, simulations offer a rich resource for objective measurement and comparisons. Simulation is not just another in the long line of passing fads (or short-term opportunities) in educational technology. It is rather a real key to helping our students understand the world. It is a way for students to acquire experience about how things and systems in the world behave and react, without actually touching them. In short, it is about interactive pretending. Simulation is all about representing the real world which includes grasping the complex issues and solving intricate problems. Therefore, it is crucial before stimulate the real process of inbound and outbound logistics and transportation a generic process flow shall be developed. The paper will be focusing on the validization of the process flow by looking at the inputs gains from the sample. The sampling of the study focuses on multi-national and local manufacturing companies, third party companies (3PL) and government agency, which are selected in Peninsular Malaysia. A simulation flow chart was proposed in the study that will be the generic flow in logistics and transportation. A qualitative approach was mainly conducted to gather data in the study. It was found out from the study that the systems used in the process of outbound and inbound are System Application Products (SAP) and Material Requirement Planning (MRP). Furthermore there were some companies using Enterprises Resources Planning (ERP) and Electronic Data Interchange (EDI) as part of the Suppliers Own Inventories (SOI) networking as a result of globalized business between one countries to another. Computerized documentations and transactions were all mandatory requirement by the Royal Custom and Excise Department. The generic process flow will be the basis of developing a simulation program that shall be used in the classroom with the objective of further enhanced the students’ learning experience. Thus it will contributes to the body of knowledge on the enrichment of the student’s employability and also shall be one of the way to train new workers in the logistics and transportation filed.

Keywords: enhancement, simulation, process flow, logistics, transportation

Procedia PDF Downloads 330
14189 The Change in Management Accounting from an Institutional and Contingency Perspective. A Case Study for a Romanian Company

Authors: Gabriel Jinga, Madalina Dumitru

Abstract:

The objective of this paper is to present the process of change in management accounting in Romania, a former communist country from Eastern Europe. In order to explain this process, we used the contingency and institutional theories. We focused on the following directions: the presentation of the scientific context and motivation of this research and the case study. We presented the state of the art in the process of change in the management accounting from the international and national perspective. We also described the evolution of management accounting in Romania in the context of economic and political changes. An important moment was the fall of communism in 1989. This represents a starting point for a new economic environment and for new management accounting. Accordingly, we developed a case study which presented this evolution. The conclusion of our research was that the changes in the management accounting system of the company analysed occurred in the same time with the institutionalisation of some elements (e.g. degree of competition, training and competencies in management accounting). The management accounting system was modelled by the contingencies specific to this company (e.g. environment, industry, strategy).

Keywords: management accounting, change, Romania, contingency and institutional theory

Procedia PDF Downloads 422
14188 Analyzing On-Line Process Data for Industrial Production Quality Control

Authors: Hyun-Woo Cho

Abstract:

The monitoring of industrial production quality has to be implemented to alarm early warning for unusual operating conditions. Furthermore, identification of their assignable causes is necessary for a quality control purpose. For such tasks many multivariate statistical techniques have been applied and shown to be quite effective tools. This work presents a process data-based monitoring scheme for production processes. For more reliable results some additional steps of noise filtering and preprocessing are considered. It may lead to enhanced performance by eliminating unwanted variation of the data. The performance evaluation is executed using data sets from test processes. The proposed method is shown to provide reliable quality control results, and thus is more effective in quality monitoring in the example. For practical implementation of the method, an on-line data system must be available to gather historical and on-line data. Recently large amounts of data are collected on-line in most processes and implementation of the current scheme is feasible and does not give additional burdens to users.

Keywords: detection, filtering, monitoring, process data

Procedia PDF Downloads 559
14187 Elements of Sector Benchmarking in Physical Education Curriculum: An Indian Perspective

Authors: Kalpana Sharma, Jyoti Mann

Abstract:

The study was designed towards institutional analysis for a clear understanding of the process involved in functioning and layout of determinants influencing physical education teacher’s education program in India. This further can be recommended for selection of parameters for creating sector benchmarking for physical education teachers training institutions across India. 165 stakeholders involving students, teachers, parents, administrators were surveyed from the identified seven institutions and universities from different states of India. They were surveyed on the basis of seven broad parameters which were associated with the post graduate physical education program in India. A physical education program assessment tool of 52 items was designed to administer it among the stakeholders selected for the survey. An item analysis of the contents was concluded through the review process from selected experts working in higher education with experience in teacher training program in physical education. The data was collected from the stakeholders of the selected institutions through Physical Education Program Assessment Tool (PEPAT). The hypothesis that PE teacher education program is independent of physical education institutions was significant. The study directed a need towards robust admission process emphasizing on identification, selection of potential candidates and quality control of intake with the scientific process developed according to the Indian education policies and academic structure. The results revealed that the universities do not have similar functional and delivery process related to the physical education teacher training program. The study reflects towards the need for physical education universities and institutions to identify the best practices to be followed regarding the functioning of delivery of physical education programs at various institutions through strategic management studies on the identified parameters before establishing strict standards and norms for achieving excellence in physical education in India.

Keywords: assessment, benchmarking, curriculum, physical education, teacher education

Procedia PDF Downloads 559
14186 Nano-emulsion/Nano-suspension as Precursors for Oral Dissolvable Film to Enhance Bioavalabilty for Poor-water Solubility Drugs

Authors: Yuan Yang, Mickey Lam

Abstract:

Oral dissolvable films have been considered as a unique alternative approach to conventional oral dosage forms. The films could be administrated via the gastrointestinal tract as conventional dosages or through sublingual/buccal mucosa membranes, which could enhance drug bioavailability by avoiding the first-pass effect and improving permeability due to high blood flow and lymphatic circulation. This work has described a state-of-art technic using nano-emulsion/nano-suspension as a precursor for the film to enhance the bioavailability of BCS class II drugs. The drug molecules are consequentially processed through the emulsification, gelation, and film-casting processes. The gelation process is critical to stabilizing the nano-emulsion for the film-casting as well as controlling the drug release process. Furthermore, the size of the nanoparticle on the film has a strong correlation with the size of the micelles in the precursor and the condition of the gelation process. It has been discovered that nanoparticle from 200 nm to 300 nm has shown the highest permeability for sublingual administration. In one example shown in work, the bioavailability of a low solubilize drug has been increased from 10% to 24% via sublingual administration of the film. The increasing of the bioavailability was thought to be associated with the enhancement of the diffusion process of the drug in the saliva layer above the mucosa membrane and the fact that the presents of the emulsifier help lose the rigid junction of the mucosa cells.

Keywords: oral dissolvable film, nano-suspension, nano-emulsion, bioavailability

Procedia PDF Downloads 184
14185 Enhancing Wire Electric Discharge Machining Efficiency through ANOVA-Based Process Optimization

Authors: Rahul R. Gurpude, Pallvita Yadav, Amrut Mulay

Abstract:

In recent years, there has been a growing focus on advanced manufacturing processes, and one such emerging process is wire electric discharge machining (WEDM). WEDM is a precision machining process specifically designed for cutting electrically conductive materials with exceptional accuracy. It achieves material removal from the workpiece metal through spark erosion facilitated by electricity. Initially developed as a method for precision machining of hard materials, WEDM has witnessed significant advancements in recent times, with numerous studies and techniques based on electrical discharge phenomena being proposed. These research efforts and methods in the field of ED encompass a wide range of applications, including mirror-like finish machining, surface modification of mold dies, machining of insulating materials, and manufacturing of micro products. WEDM has particularly found extensive usage in the high-precision machining of complex workpieces that possess varying hardness and intricate shapes. During the cutting process, a wire with a diameter ranging from 0.18mm is employed. The evaluation of EDM performance typically revolves around two critical factors: material removal rate (MRR) and surface roughness (SR). To comprehensively assess the impact of machining parameters on the quality characteristics of EDM, an Analysis of Variance (ANOVA) was conducted. This statistical analysis aimed to determine the significance of various machining parameters and their relative contributions in controlling the response of the EDM process. By undertaking this analysis, optimal levels of machining parameters were identified to achieve desirable material removal rates and surface roughness.

Keywords: WEDM, MRR, optimization, surface roughness

Procedia PDF Downloads 75
14184 Mass Transfer in Reactor with Magnetic Field Generator

Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas

Abstract:

The growing interest in magnetic fields applications is visible due to the increased number of articles on this topic published in the last few years. In this study, the influence of various magnetic fields (MF) on the mass transfer process was examined. To carry out the prototype set-up equipped with an MF generator that is able to generate a pulsed magnetic field (PMF), oscillating magnetic field (OMF), rotating magnetic field (RMF) and static magnetic field (SMF) was used. To demonstrate the effect of MF’s on mass transfer, the calcium carbonate precipitation process was selected. To the vessel with attached conductometric probes and placed inside the generator, specific doses of calcium chloride and sodium carbonate were added. Electrical conductivity changes of the mixture inside the vessel were measured over time until equilibrium was established. Measurements were conducted for various MF strengths and concentrations of added chemical compounds. Obtained results were analyzed, which allowed to creation of mathematical correlation models showing the influence of MF’s on the studied process.

Keywords: mass transfer, oscillating magnetic field, rotating magnetic field, static magnetic field

Procedia PDF Downloads 206
14183 An Historical Revision of Change and Configuration Management Process

Authors: Expedito Pinto De Paula Junior

Abstract:

Current systems such as artificial satellites, airplanes, automobiles, turbines, power systems and air traffic controls are becoming increasingly more complex and/or highly integrated as defined in SAE-ARP-4754A (Society Automotive Engineering - Certification considerations for highly-integrated or complex aircraft systems standard). Among other processes, the development of such systems requires careful Change and Configuration Management (CCM) to establish and maintain product integrity. Understand the maturity of CCM process based in historical approach is crucial for better implementation in hardware and software lifecycle. The sense of work organization, in all fields of development is directly related to the order and interrelation of the parties, changes in time, and record of these changes. Generally, is observed that engineers, administrators and managers invest more time in technical activities than in organization of work. More these professionals are focused in solving complex problems with a purely technical bias. CCM process is fundamental for development, production and operation of new products specially in the safety critical systems. The objective of this paper is open a discussion about the historical revision based in standards focus of CCM around the world in order to understand and reflect the importance across the years, the contribution of this process for technology evolution, to understand the mature of organizations in the system lifecycle project and the benefits of CCM to avoid errors and mistakes during the Lifecycle Product.

Keywords: changes, configuration management, historical, revision

Procedia PDF Downloads 201
14182 Evaluation of Washing Performance of Household Wastewater Purified by Advanced Oxidation Process

Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır

Abstract:

Stressing the importance of water conservation, emphasizing the need for efficient management of household water, and underlining the significance of alternative solutions are important. In this context, advanced solutions based on technologies such as the advanced oxidation process have emerged as promising methods for treating household wastewater. Evaluating household water usage holds critical importance for the sustainability of water resources. Researchers and experts are examining various technological approaches to effectively treat and reclaim water for reuse. In this framework, the advanced oxidation process has proven to be an effective method for the removal of various organic and inorganic pollutants in the treatment of household wastewater. In this study, performance will be evaluated by comparing it with the reference case. This international criterion simulates the washing of home textile products, determining various performance parameters. The specially designed stain strips, including sebum, carbon black, blood, cocoa, and red wine, used in experiments, represent various household stains. These stain types were carefully selected to represent challenging stain scenarios, ensuring a realistic assessment of washing performance. Experiments conducted under different temperatures and program conditions successfully demonstrate the practical applicability of the advanced oxidation process for treating household wastewater. It is important to note that both adherence to standards and the use of real-life stain types contribute to the broad applicability of the findings. In conclusion, this study strongly supports the effectiveness of treating household wastewater with the advanced oxidation process in terms of washing performance under both standard and practical application conditions. The study underlines the importance of alternative solutions for sustainable water resource management and highlights the potential of the advanced oxidation process in the treatment of household water, contributing significantly to optimizing water usage and developing sustainable water management solutions.

Keywords: advanced oxidation process, household water usage, household appliance waste water, modelling, water reuse

Procedia PDF Downloads 65
14181 Hot Deformability of Si-Steel Strips Containing Al

Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar

Abstract:

The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a  was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.

Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.

Procedia PDF Downloads 245
14180 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process

Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis

Abstract:

This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.

Keywords: aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion

Procedia PDF Downloads 306
14179 The Roles of Parental Involvement in the Teaching-Learning Process of Students with Special Needs: Perceptions of Special Needs Education Teachers

Authors: Chassel T. Paras, Tryxzy Q. Dela Cruz, Ma. Carmela Lousie V. Goingco, Pauline L. Tolentino, Carmela S. Dizon

Abstract:

In implementing inclusive education, parental involvement is measured to be an irreplaceable contributing factor. Parental involvement is described as an indispensable aspect of the teaching-learning process and has a remarkable effect on the student's academic performance. However, there are still differences in the viewpoints, expectations, and needs of both parents and teachers that are not yet fully conveyed in their relationship; hence, the perceptions of SNED teachers are essential in their collaboration with parents. This qualitative study explored how SNED teachers perceive the roles of parental involvement in the teaching-learning process of students with special needs. To answer this question, one-on-one face-to-face semi-structured interviews with three SNED teachers in a selected public school in Angeles City, Philippines, that offer special needs education services were conducted. The gathered data are then analyzed using Interpretative Phenomenological Analysis (IPA). The results revealed four superordinate themes, which include: (1) roles of parental involvement, (2) parental involvement opportunities, (3) barriers to parental involvement, and (4) parent-teacher collaboration practices. These results indicate that SNED teachers are aware of the roles and importance of parental involvement; however, despite parent-teacher collaboration, there are still barriers that impede parental involvement. Also, SNED teachers acknowledge the big roles of parents as they serve as main figures in the teaching-learning process of their children with special needs. Lastly, these results can be used as input in developing a school-facilitated parenting involvement framework that encompasses the contribution of SNED teachers in planning, developing, and evaluating parental involvement programs, which future researchers can also use in their studies

Keywords: parental involvement, special needs education, teaching-learning process, teachers’ perceptions, special needs education teachers, interpretative phenomenological analysis

Procedia PDF Downloads 112
14178 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid

Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan

Abstract:

In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.

Keywords: acid treatment, chemical extraction, sludge, waste management

Procedia PDF Downloads 198
14177 Biological Treatment of Tannery Wastewater Using Pseudomonas Strains

Authors: A. Benhadji, R. Maachi

Abstract:

Environmental protection has become a major economic development issues. Indeed, the environment has become both market growth factor and element of competition. It is now an integral part of all industrial strategies. Ecosystem protection is based on the reduction of the pollution load in the treatment of liquid waste. The physicochemical techniques are commonly used which a transfer of pollution is generally found. Alternative to physicochemical methods is the use of microorganisms for cleaning up the waste waters. The objective of this research is the evaluation of the effects of exogenous added Pseudomonas strains on pollutants biodegradation. The influence of the critical parameters such as inoculums concentration and duration treatment are studied. The results show that Pseudomonas putida is found to give a maximum reduction in chemical organic demand (COD) in 4 days of incubation. However, toward to protect biological pollution of environment, the treatment is achieved by electro coagulation process using aluminium electrodes. The results indicate that this process allows disinfecting the water and improving the electro coagulated sludge quality.

Keywords: tannery, pseudomonas, biological treatment, electrocoagulation process, sludge quality

Procedia PDF Downloads 369
14176 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems

Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims

Abstract:

The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.

Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification

Procedia PDF Downloads 555
14175 Deep Q-Network for Navigation in Gazebo Simulator

Authors: Xabier Olaz Moratinos

Abstract:

Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.

Keywords: machine learning, DQN, Gazebo, navigation

Procedia PDF Downloads 78
14174 Integration Process and Analytic Interface of different Environmental Open Data Sets with Java/Oracle and R

Authors: Pavel H. Llamocca, Victoria Lopez

Abstract:

The main objective of our work is the comparative analysis of environmental data from Open Data bases, belonging to different governments. This means that you have to integrate data from various different sources. Nowadays, many governments have the intention of publishing thousands of data sets for people and organizations to use them. In this way, the quantity of applications based on Open Data is increasing. However each government has its own procedures to publish its data, and it causes a variety of formats of data sets because there are no international standards to specify the formats of the data sets from Open Data bases. Due to this variety of formats, we must build a data integration process that is able to put together all kind of formats. There are some software tools developed in order to give support to the integration process, e.g. Data Tamer, Data Wrangler. The problem with these tools is that they need data scientist interaction to take part in the integration process as a final step. In our case we don’t want to depend on a data scientist, because environmental data are usually similar and these processes can be automated by programming. The main idea of our tool is to build Hadoop procedures adapted to data sources per each government in order to achieve an automated integration. Our work focus in environment data like temperature, energy consumption, air quality, solar radiation, speeds of wind, etc. Since 2 years, the government of Madrid is publishing its Open Data bases relative to environment indicators in real time. In the same way, other governments have published Open Data sets relative to the environment (like Andalucia or Bilbao). But all of those data sets have different formats and our solution is able to integrate all of them, furthermore it allows the user to make and visualize some analysis over the real-time data. Once the integration task is done, all the data from any government has the same format and the analysis process can be initiated in a computational better way. So the tool presented in this work has two goals: 1. Integration process; and 2. Graphic and analytic interface. As a first approach, the integration process was developed using Java and Oracle and the graphic and analytic interface with Java (jsp). However, in order to open our software tool, as second approach, we also developed an implementation with R language as mature open source technology. R is a really powerful open source programming language that allows us to process and analyze a huge amount of data with high performance. There are also some R libraries for the building of a graphic interface like shiny. A performance comparison between both implementations was made and no significant differences were found. In addition, our work provides with an Official Real-Time Integrated Data Set about Environment Data in Spain to any developer in order that they can build their own applications.

Keywords: open data, R language, data integration, environmental data

Procedia PDF Downloads 315
14173 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model

Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong

Abstract:

This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.

Keywords: defective autoparts products, Bayesian framework, generalized linear mixed model (GLMM), risk factors

Procedia PDF Downloads 570
14172 Secure E-Voting Using Blockchain Technology

Authors: Barkha Ramteke, Sonali Ridhorkar

Abstract:

An election is an important event in all countries. Traditional voting has several drawbacks, including the expense of time and effort required for tallying and counting results, the cost of papers, arrangements, and everything else required to complete a voting process. Many countries are now considering online e-voting systems, but the traditional e-voting systems suffer a lack of trust. It is not known if a vote is counted correctly, tampered or not. A lack of transparency means that the voter has no assurance that his or her vote will be counted as they voted in elections. Electronic voting systems are increasingly using blockchain technology as an underlying storage mechanism to make the voting process more transparent and assure data immutability as blockchain technology grows in popularity. The transparent feature, on the other hand, may reveal critical information about applicants because all system users have the same entitlement to their data. Furthermore, because of blockchain's pseudo-anonymity, voters' privacy will be revealed, and third parties involved in the voting process, such as registration institutions, will be able to tamper with data. To overcome these difficulties, we apply Ethereum smart contracts into blockchain-based voting systems.

Keywords: blockchain, AMV chain, electronic voting, decentralized

Procedia PDF Downloads 138
14171 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin

Authors: Hillary Mwongyera

Abstract:

The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.

Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring

Procedia PDF Downloads 532
14170 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes

Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker

Abstract:

The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.

Keywords: automation, battery production, carrier, advanced process control, cyber-physical system

Procedia PDF Downloads 339
14169 Evaluation of a Reconditioning Procedure for Batteries: Case Study on Li-Ion Batteries

Authors: I.-A. Ciobotaru, I.-E. Ciobotaru, D.-I. Vaireanu

Abstract:

Currently, an ascending trend of battery use may be observed, together with an increase of the generated amount of waste. Efforts have been focused on the recycling of batteries; however, extending their lifetime may be a more adequate alternative, and the development of such methods may prove to be more cost efficient as compared to recycling. In this context, this paper presents the analysis of a proposed process for the reconditioning of some lithium-ions batteries. The analysis is performed based on two criteria, the first one referring to the technical aspect of the reconditioning process and the second to the economic aspects. The main technical parameters taken into consideration are the values of capacitance and internal resistance of the lithium-ion batteries. The economic criterion refers to the evaluation of the efficiency of the reconditioning procedure reported to its total cost for the investigated lithium-ion batteries. Based on the cost analysis, one introduced a novel coefficient that correlates the efficiency of the aforementioned process and its corresponding costs. The reconditioning procedure for the lithium-ion batteries proposed in this paper proved to be valid, efficient, and with reasonable costs.

Keywords: cost assessment, lithium-ion battery, reconditioning coefficient, reconditioning procedure

Procedia PDF Downloads 138
14168 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method

Authors: Mohammed T. Hayajneh

Abstract:

Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.

Keywords: composite, fuzzy, tool life, wear

Procedia PDF Downloads 296
14167 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 435
14166 Can 3D Virtual Prototyping Conquers the Apparel Industry?

Authors: Evridiki Papachristou, Nikolaos Bilalis

Abstract:

Imagine an apparel industry where fashion design does not begin with a paper-and-pen drawing which is then translated into pattern and later to a 3D model where the designer tries out different fabrics, colours and contrasts. Instead, imagine a fashion designer in the future who produces that initial fashion drawing in a three-dimensional space and won’t leave that environment until the product is done, communicating his/her ideas with the entire development team in true to life 3D. Three-dimensional (3D) technology - while well established in many other industrial sectors like automotive, aerospace, architecture and industrial design, has only just started to open up a whole range of new opportunities for apparel designers. The paper will discuss the process of 3D simulation technology enhanced by high quality visualization of data and its capability to ensure a massive competitiveness in the market. Secondly, it will underline the most frequent problems & challenges that occur in the process chain when various partners in the production of textiles and apparel are working together. Finally, it will offer a perspective of how the Virtual Prototyping Technology will make the global textile and apparel industry change to a level where designs will be visualized on a computer and various scenarios modeled without even having to produce a physical prototype. This state-of-the-art 3D technology has been described as transformative and“disruptive”comparing to the process of the way apparel companies develop their fashion products today. It provides the benefit of virtual sampling not only for quick testing of design ideas, but also reducing process steps and having more visibility.A so called“digital asset” that can be used for other purposes such as merchandising or marketing.

Keywords: 3D visualization, apparel, virtual prototyping, prototyping technology

Procedia PDF Downloads 591
14165 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis

Authors: D. Kuvshinov, A. Siswanto, W. Zimmerman

Abstract:

A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil can also be used as a food stock due to its significant nutrition content. The limitations for utilizing the oil as a food stock are mainly due to a toxicity of PE. Nowadays a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence. Ozone is considered as a strong oxidative agent. It reaction with PE it attacks the carbon double bond of PE. This modification of PE molecular structure results into nontoxic ester with high lipid content. This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is a simultaneous application of new microscale plasma unit for ozone production and patented gas oscillation technology. In combination with a reactor design the technology permits ozone injection to the water-TPA mixture in form of microbubbles. The efficacy of a heterogeneous process depends on diffusion coefficient which can be controlled by contact time and interface area. The low velocity of rising microbubbles and high surface to volume ratio allow fast mass transfer to be achieved during the process. Direct injection of ozone is the most efficient process for a highly reactive and short lived chemical. Data on the plasma unit behavior are presented and influence of the gas oscillation technology to the microbubbles production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.

Keywords: microbubble, ozonolysis, synthetic phorbol ester, chemical engineering

Procedia PDF Downloads 217
14164 Oil Water Treatment by Nutshell and Dates Pits

Authors: Abdalrahman D. Alsulaili, Sheikha Y. Aljeraiwi, Athba N. Almanaie, Raghad Y. Alhajeri, Mariam Z. Almijren

Abstract:

The water accompanying oil in the oil production process is increasing and due to its increasing rates a problem with handling it occurred. Current solutions like discharging into the environment, dumping water in evaporation pits, usage in the industry and reinjection in oil reservoirs to enhance oil production are used worldwide. The water injection method has been introduced to the oil industry with a process that either immediately injects water to the reservoir or goes to the filtration process before injection all depending on the porosity of the soil. Reinjection of unfiltered effluent water with high Total Suspended Solid (TSS) and Oil in Water (O/W) into soils with low porosity cause a blockage of pores, whereas soils with high porosity do not need high water quality. Our study mainly talks about the filtration and adsorption of the water using organic media as the adsorbent. An adsorbent is a substance that has the ability to physically hold another substance in its surface. Studies were done on nutshell and date pits with different surface areas and flow rates by using a 10inch filter connected with three tanks to perform as one system for the filtration process. Our approach in the filtration process using different types of medias went as follow: starting first with crushed nutshell, second with ground nutshell, and third using carbonized date pits with medium flow rate then high flow rate to compare different results. The result came out nearly as expected from our study where both O/W and TSS were reduced from our oily water sample by using this organic material. The effect of specific area was noticed when using nutshell as the filter media, where the crushed nutshell gave us better results than ground nutshell. The effect of flow rate was noticed when using carbonized date pits as the filter media whereas the treated water became more acceptable when the flow rate was on the medium level.

Keywords: date pits, nutshell, oil water, TSS

Procedia PDF Downloads 156
14163 Application of Life Cycle Assessment “LCA” Approach for a Sustainable Building Design under Specific Climate Conditions

Authors: Djeffal Asma, Zemmouri Noureddine

Abstract:

In order for building designer to be able to balance environmental concerns with other performance requirements, they need clear and concise information. For certain decisions during the design process, qualitative guidance, such as design checklists or guidelines information may not be sufficient for evaluating the environmental benefits between different building materials, products and designs. In this case, quantitative information, such as that generated through a life cycle assessment, provides the most value. LCA provides a systematic approach to evaluating the environmental impacts of a product or system over its entire life. In the case of buildings life cycle includes the extraction of raw materials, manufacturing, transporting and installing building components or products, operating and maintaining the building. By integrating LCA into building design process, designers can evaluate the life cycle impacts of building design, materials, components and systems and choose the combinations that reduce the building life cycle environmental impact. This article attempts to give an overview of the integration of LCA methodology in the context of building design, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. A multiple case study was conducted in order to assess the benefits of the LCA as a decision making aid tool during the first stages of the building design under specific climate conditions of the North East region of Algeria. It is clear that the LCA methodology can help to assess and reduce the impact of a building design and components on the environment even if the process implementation is rather long and complicated and lacks of global approach including human factors. It is also demonstrated that using LCA as a multi objective optimization of building process will certainly facilitates the improvement in design and decision making for both new design and retrofit projects.

Keywords: life cycle assessment, buildings, sustainability, elementary schools, environmental impacts

Procedia PDF Downloads 546