Search results for: cost tradeoffs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6117

Search results for: cost tradeoffs

4887 Adsorption of 17a-Ethinylestradiol on Activated Carbon Based on Sewage Sludge in Aqueous Medium

Authors: Karoline Reis de Sena

Abstract:

Endocrine disruptors are unregulated or not fully regulated compounds, even in the most developed countries, and which can be a danger to the environment and human health. They pass untreated through the secondary stage of conventional wastewater treatment plants, then the effluent from the wastewater treatment plants is discharged into the rivers, upstream and downstream from the drinking water treatment plants that use the same river water as the tributary. Long-term consumption of drinking water containing low concentrations of these compounds can cause health problems; these are persistent in nature and difficult to remove. In this way, research on emerging pollutants is expanding and is fueled by progress in finding the appropriate method for treating wastewater. Adsorption is the most common separation process, it is a simple and low-cost operation, but it is not eco-efficient. Concomitant to this, biosorption arises, which is a subcategory of adsorption where the biosorbent is biomass and which presents numerous advantages when compared to conventional treatment methods, such as low cost, high efficiency, minimization of the use of chemicals, absence of need for additional nutrients, biosorbent regeneration capacity and the biomass used in the production of biosorbents are found in abundance in nature. Thus, the use of alternative materials, such as sewage sludge, for the synthesis of adsorbents has proved to be an economically viable alternative, together with the importance of valuing the generated by-product flows, as well as managing the problem of their correct disposal. In this work, an alternative for the management of sewage sludge is proposed, transforming it into activated carbon and using it in the adsorption process of 17a-ethinylestradiol.

Keywords: 17α-ethinylestradiol, adsorption, activated carbon, sewage sludge, micropollutants

Procedia PDF Downloads 99
4886 Aerodynamic Heating and Drag Reduction of Pegasus-XL Satellite Launch Vehicle

Authors: Syed Muhammad Awais Tahir, Syed Hossein Raza Hamdani

Abstract:

In the last two years, there has been a substantial increase in the rate of satellite launches. To keep up with the technology, it is imperative that the launch cost must be made affordable, especially in developing and underdeveloped countries. Launch cost is directly affected by the launch vehicle’s aerodynamic performance. Pegasus-XL SLV (Satellite Launch Vehicle) has been serving as a commercial SLV for the last 26 years, commencing its commercial flight operation from the six operational sites all around the US and Europe, and the Marshal Islands. Aerodynamic heating and drag contribute largely to Pegasus’s flight performance. The objective of this study is to reduce the aerodynamic heating and drag on Pegasus’s body significantly for supersonic and hypersonic flight regimes. Aerodynamic data for Pegasus’s first flight has been validated through CFD (Computational Fluid Dynamics), and then drag and aerodynamic heating is reduced by using a combination of a forward-facing cylindrical spike and a conical aero-disk at the actual operational flight conditions. CFD analysis using ANSYS fluent will be carried out for Mach no. ranges from 0.83 to 7.8, and AoA (Angle of Attack) ranges from -4 to +24 degrees for both simple and spiked-configuration, and then the comparison will be drawn using a variety of graphs and contours. Expected drag reduction for supersonic flight is to be around 15% to 25%, and for hypersonic flight is to be around 30% to 50%, especially for AoA < 15⁰. A 5% to 10% reduction in aerodynamic heating is expected to be achieved for hypersonic regions. In conclusion, the aerodynamic performance of air-launched Pegasus-XL SLV can be further enhanced, leading to its optimal fuel usage to achieve a more economical orbital flight.

Keywords: aerodynamics, pegasus-XL, drag reduction, aerodynamic heating, satellite launch vehicle, SLV, spike, aero-disk

Procedia PDF Downloads 113
4885 Water Vapor Oxidization of NiO for a Hole Transport Layer in All Inorganic QD-LED

Authors: Jaeun Park, Daekyoung Kim, Ho Kyoon Chung, Heeyeop Chae

Abstract:

Quantum dots light-emitting diodes (QD-LEDs) have been considered as the next generation display and lighting devices due to their excellent color purity, photo-stability solution process possibility and good device stability. Currently typical quantum dot light emitting diodes contain organic layers such as PEDOT:PSS and PVK for charge transport layers. To make quantum dot light emitting diodes (QD-LED) more stable, it is required to replace those acidic and relatively unstable organic charge transport layers with inorganic materials. Therefore all inorganic and solution processed quantum dot light emitting diodes can potentially be a solution to stable and cost-effective display devices. We studied solution processed NiO films to replace organic charge transport layers that are required for stable all-inorganic based light emitting diodes. The transition metal oxides can be made by various vacuum and solution processes, but the solution processes are considered more cost-effective than vacuum processes. In this work we investigated solution processed NiOx for a hole transport layer (HTL). NiOx, has valence band energy levels of 5.3eV and they are easy to make sol-gel solutions. Water vapor oxidation process was developed and applied to solution processed all-inorganic QD-LED. Turn-on voltage, luminance and current efficiency of QD in this work were 5V, 1800Cd/m2 and 0.5Cd/A, respectively.

Keywords: QD-LED, metal oxide solution, NiO, all-inorganic QD-LED device

Procedia PDF Downloads 757
4884 Tailoring of ECSS Standard for Space Qualification Test of CubeSat Nano-Satellite

Authors: B. Tiseo, V. Quaranta, G. Bruno, G. Sisinni

Abstract:

There is an increasing demand of nano-satellite development among universities, small companies, and emerging countries. Low-cost and fast-delivery are the main advantages of such class of satellites achieved by the extensive use of commercial-off-the-shelf components. On the other side, the loss of reliability and the poor success rate are limiting the use of nano-satellite to educational and technology demonstration and not to the commercial purpose. Standardization of nano-satellite environmental testing by tailoring the existing test standard for medium/large satellites is then a crucial step for their market growth. Thus, it is fundamental to find the right trade-off between the improvement of reliability and the need to keep their low-cost/fast-delivery advantages. This is particularly even more essential for satellites of CubeSat family. Such miniaturized and standardized satellites have 10 cm cubic form and mass no more than 1.33 kilograms per 1 unit (1U). For this class of nano-satellites, the qualification process is mandatory to reduce the risk of failure during a space mission. This paper reports the description and results of the space qualification test campaign performed on Endurosat’s CubeSat nano-satellite and modules. Mechanical and environmental tests have been carried out step by step: from the testing of the single subsystem up to the assembled CubeSat nano-satellite. Functional tests have been performed during all the test campaign to verify the functionalities of the systems. The test duration and levels have been selected by tailoring the European Space Agency standard ECSS-E-ST-10-03C and GEVS: GSFC-STD-7000A.

Keywords: CubeSat, nano-satellite, shock, testing, vibration

Procedia PDF Downloads 191
4883 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 129
4882 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain

Procedia PDF Downloads 294
4881 Electroforming of 3D Digital Light Processing Printed Sculptures Used as a Low Cost Option for Microcasting

Authors: Cecile Meier, Drago Diaz Aleman, Itahisa Perez Conesa, Jose Luis Saorin Perez, Jorge De La Torre Cantero

Abstract:

In this work, two ways of creating small-sized metal sculptures are proposed: the first by means of microcasting and the second by electroforming from models printed in 3D using an FDM (Fused Deposition Modeling‎) printer or using a DLP (Digital Light Processing) printer. It is viable to replace the wax in the processes of the artistic foundry with 3D printed objects. In this technique, the digital models are manufactured with resin using a low-cost 3D FDM printer in polylactic acid (PLA). This material is used, because its properties make it a viable substitute to wax, within the processes of artistic casting with the technique of lost wax through Ceramic Shell casting. This technique consists of covering a sculpture of wax or in this case PLA with several layers of thermoresistant material. This material is heated to melt the PLA, obtaining an empty mold that is later filled with the molten metal. It is verified that the PLA models reduce the cost and time compared with the hand modeling of the wax. In addition, one can manufacture parts with 3D printing that are not possible to create with manual techniques. However, the sculptures created with this technique have a size limit. The problem is that when printed pieces with PLA are very small, they lose detail, and the laminar texture hides the shape of the piece. DLP type printer allows obtaining more detailed and smaller pieces than the FDM. Such small models are quite difficult and complex to melt using the lost wax technique of Ceramic Shell casting. But, as an alternative, there are microcasting and electroforming, which are specialized in creating small metal pieces such as jewelry ones. The microcasting is a variant of the lost wax that consists of introducing the model in a cylinder in which the refractory material is also poured. The molds are heated in an oven to melt the model and cook them. Finally, the metal is poured into the still hot cylinders that rotate in a machine at high speed to properly distribute all the metal. Because microcasting requires expensive material and machinery to melt a piece of metal, electroforming is an alternative for this process. The electroforming uses models in different materials; for this study, micro-sculptures printed in 3D are used. These are subjected to an electroforming bath that covers the pieces with a very thin layer of metal. This work will investigate the recommended size to use 3D printers, both with PLA and resin and first tests are being done to validate use the electroforming process of microsculptures, which are printed in resin using a DLP printer.

Keywords: sculptures, DLP 3D printer, microcasting, electroforming, fused deposition modeling

Procedia PDF Downloads 139
4880 Synergistic Effect of Zr-Modified Cu-ZnO-Al₂O₃ and Bio-Templated HZSM-5 Catalysts in CO₂ Hydrogenation to Methanol and DME

Authors: Abrar Hussain, Kuen-Song Lin, Sayed Maeen Badshah, Jamshid Hussain

Abstract:

The conversion of CO₂ into versatile, useful compounds such as fuels and other chemicals remains a challenging frontier in research, demanding the innovation of increasingly effective catalysts. In the present work, a catalyst-incorporating zirconium (Zr) modification within CuO–ZnO–Al₂O₃ (CZA) was synthesized via a co-precipitation method to convert CO₂ into methanol. Furthermore, bio-HZSM-5 was used to promote methanol dehydration to produce dimethyl ether (DME). We prepared the porous hierarchy bio-HZSM-5 with remarkable pore connectivity by utilizing an economical loofah sponge and rice husks as biotemplates. The synthesized catalysts were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), X–ray diffraction (XRD), N₂ adsorption (BET), temperature-programmed desorption (NH₃-TPD) and thermogravimetric analysis (TGA). The Zr addition improved the performance of the CZZA catalyst as a structural promoter, leading to increased DME selectivity and total carbon conversion by enhancing active sites, surface area, and the synergistic interfaces between CuO and ZnO. The presence of silicon in the biomass, notably from the loofah sponge (0.016 wt %) and rice husks (8.3 wt %), also performed a pivotal role in the preparation of bio-HZSM-5. Furthermore, contrasted to the CZZA/com-ZSM-5 catalyst, the integration of CZZA with bio-HZSM-5-L bifunctional catalyst achieved the highest DME yield (12.1 %), DME selectivity (58.6%), CO₂ conversion (22.5%) at 280 °C and 30 bar. The payback time for 5 and 10-tons per day (5 and10-TPD) DME formation using the catalytic process of CO₂ from petrochemical refinery plant waste gas emissions was 2.98 and 2.44 years, respectively.

Keywords: Cost assessment, Dimethyl ether, low-cost bio-HZSM-5, CZZA catalyst, CO₂ hydrogenation

Procedia PDF Downloads 20
4879 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 307
4878 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction

Procedia PDF Downloads 160
4877 A Cost Effective Approach to Develop Mid-Size Enterprise Software Adopted the Waterfall Model

Authors: Mohammad Nehal Hasnine, Md Kamrul Hasan Chayon, Md Mobasswer Rahman

Abstract:

Organizational tendencies towards computer-based information processing have been observed noticeably in the third-world countries. Many enterprises are taking major initiatives towards computerized working environment because of massive benefits of computer-based information processing. However, designing and developing information resource management software for small and mid-size enterprises under budget costs and strict deadline is always challenging for software engineers. Therefore, we introduced an approach to design mid-size enterprise software by using the Waterfall model, which is one of the SDLC (Software Development Life Cycles), in a cost effective way. To fulfill research objectives, in this study, we developed mid-sized enterprise software named “BSK Management System” that assists enterprise software clients with information resource management and perform complex organizational tasks. Waterfall model phases have been applied to ensure that all functions, user requirements, strategic goals, and objectives are met. In addition, Rich Picture, Structured English, and Data Dictionary have been implemented and investigated properly in engineering manner. Furthermore, an assessment survey with 20 participants has been conducted to investigate the usability and performance of the proposed software. The survey results indicated that our system featured simple interfaces, easy operation and maintenance, quick processing, and reliable and accurate transactions.

Keywords: end-user application development, enterprise software design, information resource management, usability

Procedia PDF Downloads 443
4876 Evaluating Value of Users' Personal Information Based on Cost-Benefit Analysis

Authors: Jae Hyun Park, Sangmi Chai, Minkyun Kim

Abstract:

As users spend more time on the Internet, the probability of their personal information being exposed has been growing. This research has a main purpose of investigating factors and examining relationships when Internet users recognize their value of private information with a perspective of an economic asset. The study is targeted on Internet users, and the value of their private information will be converted into economic figures. Moreover, how economic value changes in relation with individual attributes, dealer’s traits, circumstantial properties will be studied. In this research, the changes in factors on private information value responding to different situations will be analyzed in an economic perspective. Additionally, this study examines the associations between users’ perceived risk and value of their personal information. By using the cost-benefit analysis framework, the hypothesis that the user’s sense in private information value can be influenced by individual attributes and situational properties will be tested. Therefore, this research will attempt to provide answers for three research objectives. First, this research will identify factors that affect value recognition of users’ personal information. Second, it provides evidences that there are differences on information system users’ economic value of information responding to personal, trade opponent, and situational attributes. Third, it investigates the impact of those attributes on individuals’ perceived risk. Based on the assumption that personal, trade opponent and situation attributes make an impact on the users’ value recognition on private information, this research will present the understandings on the different impacts of those attributes in recognizing the value of information with the economic perspective and prove the associative relationships between perceived risk and decision on the value of users’ personal information. In order to validate our research model, this research used the regression methodology. Our research results support that information breach experience and information security systems is associated with users’ perceived risk. Information control and uncertainty are also related to users’ perceived risk. Therefore, users’ perceived risk is considered as a significant factor on evaluating the value of personal information. It can be differentiated by trade opponent and situational attributes. This research presents new perspective on evaluating the value of users’ personal information in the context of perceived risk, personal, trade opponent and situational attributes. It fills the gap in the literature by providing how users’ perceived risk are associated with personal, trade opponent and situation attitudes in conducting business transactions with providing personal information. It adds to previous literature that the relationship exists between perceived risk and the value of users’ private information in the economic perspective. It also provides meaningful insights to the managers that in order to minimize the cost of information breach, managers need to recognize the value of individuals’ personal information and decide the proper amount of investments on protecting users’ online information privacy.

Keywords: private information, value, users, perceived risk, online information privacy, attributes

Procedia PDF Downloads 243
4875 Approximation of a Wanted Flow via Topological Sensitivity Analysis

Authors: Mohamed Abdelwahed

Abstract:

We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.

Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations

Procedia PDF Downloads 542
4874 Sorption Properties of Biological Waste for Lead Ions from Aqueous Solutions

Authors: Lucia Rozumová, Ivo Šafařík, Jana Seidlerová, Pavel Kůs

Abstract:

Biosorption by biological waste materials from agriculture industry could be a cost-effective technique for removing metal ions from wastewater. The performance of new biosorbent systems, consisting of the waste matrixes which were magnetically modified by iron oxide nanoparticles, for the removal of lead ions from an aqueous solution was tested. The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods. This article deals with the removal of metal ions from aqueous solutions by modified waste products - orange peels, sawdust, peanuts husks, used tea leaves and ground coffee sediment. Magnetically modified waste materials were suspended in methanol and then was added ferrofluid (magnetic iron oxide nanoparticles). This modification process gives the predictions for the formation of the smart materials with new properties. Prepared material was characterized by using scanning electron microscopy, specific surface area and pore size analyzer. Studies were focused on the sorption and desorption properties. The changes of iron content in magnetically modified materials after treatment were observed as well. Adsorption process has been modelled by adsorption isotherms. The results show that magnetically modified materials during the dynamic sorption and desorption are stable at the high adsorbed amount of lead ions. The results of this study indicate that the biological waste materials as sorbent with new properties are highly effective for the treatment of wastewater.

Keywords: biological waste, sorption, metal ions, ferrofluid

Procedia PDF Downloads 147
4873 Economic Impact of Drought on Agricultural Society: Evidence Based on a Village Study in Maharashtra, India

Authors: Harshan Tee Pee

Abstract:

Climate elements include surface temperatures, rainfall patterns, humidity, type and amount of cloudiness, air pressure and wind speed and direction. Change in one element can have an impact on the regional climate. The scientific predictions indicate that global climate change will increase the number of extreme events, leading to more frequent natural hazards. Global warming is likely to intensify the risk of drought in certain parts and also leading to increased rainfall in some other parts. Drought is a slow advancing disaster and creeping phenomenon– which accumulate slowly over a long period of time. Droughts are naturally linked with aridity. But droughts occur over most parts of the world (both wet and humid regions) and create severe impacts on agriculture, basic household welfare and ecosystems. Drought condition occurs at least every three years in India. India is one among the most vulnerable drought prone countries in the world. The economic impacts resulting from extreme environmental events and disasters are huge as a result of disruption in many economic activities. The focus of this paper is to develop a comprehensive understanding about the distributional impacts of disaster, especially impact of drought on agricultural production and income through a panel study (drought year and one year after the drought) in Raikhel village, Maharashtra, India. The major findings of the study indicate that cultivating area as well as the number of cultivating households reduced after the drought, indicating a shift in the livelihood- households moved from agriculture to non-agriculture. Decline in the gross cropped area and production of various crops depended on the negative income from these crops in the previous agriculture season. All the landholding categories of households except landlords had negative income in the drought year and also the income disparities between the households were higher in that year. In the drought year, the cost of cultivation was higher for all the landholding categories due to the increased cost for irrigation and input cost. In the drought year, agriculture products (50 per cent of the total products) were used for household consumption rather than selling in the market. It is evident from the study that livelihood which was based on natural resources became less attractive to the people to due to the risk involved in it and people were moving to less risk livelihood for their sustenance.

Keywords: climate change, drought, agriculture economics, disaster impact

Procedia PDF Downloads 121
4872 Study on the Effects of Indigenous Biological Face Treatment

Authors: Saron Adisu Gezahegn

Abstract:

Commercial cosmetic has been affecting human health due to their contents and dosage composition. Chemical base cosmetics exposes users to unnecessary health problems and financial cost. Some of the cosmetics' interaction with the environment has negative impacts on health such as burning, cracking, coloring, and so on. The users are looking for a temporary service without evaluating the side effects of cosmetics that contain chemical compositions that result in irritation, burning, allergies, cracking, and the nature of the face. Every cosmetic contains a heavy metal such as lead, zinc, cadmium, silicon, and other heavy cosmetics materials. The users may expose at the end of the day to untreatable diseases like cancer. The objective of the research is to study the effects of indigenous biological face treatment without any additives like chemicals. In ancient times this thought was highly tremendous in the world but things were changing bit by bit and reached chemical base cosmetics to maintain the beauty of hair, skin, and faces. The side effects of the treatment on the face were minimum and the side effects with the interaction of the environment were almost nil. But this thought is changed and replaces the indigenous substances with chemical substances by adding additives like heavy chemical lead and cadmium in the sense of preservation, pigments, dye, and shining. Various studies indicated that cosmetics have dangerous side effects that expose users to health problems and expensive financial loss. This study focuses on a local indigenous plant called Kulkual. Kulkual is available everywhere in a study area and sustainable products can harvest to use as indigenous face treatment materials.25 men and 25 women were selected as a sample population randomly to conduct the study effectively.The plant is harvested from the guard in the productive season. The plant was exposed to the sun dry for a week. Then the peel was removed from the plant fruit and the peels were taken to a bath filled with water to soak for three days. Then the flesh of the peel was avoided from the fruit and ready to use as a face treatment. The fleshy peel was smeared on each sample for almost a week and continued for a week. The result indicated that the effects of the treatment were a positive response with minimum cost and minimum side effects due to the environment. The beauty shines, smoothness, and color are better than chemical base cosmetics. Finally, the study is recommended that all users prefer a biological method of treatment with minimum cost and minimums side effects on health with the interaction of the environment.

Keywords: cosmetic, indigneous, heavymetals, toxic

Procedia PDF Downloads 112
4871 Organic Farming Profitability: Evidence from South Korea

Authors: Saem Lee, Thanh Nguyen, Hio-Jung Shin, Thomas Koellner

Abstract:

Land-use management has an influence on the provision of ecosystem service in dynamic, agricultural landscapes. Agricultural land use is important for maintaining the productivity and sustainability of agricultural ecosystems. However, in Korea, intensive farming activities in this highland agricultural zone, the upper stream of Soyang has led to contaminated soil caused by over-use pesticides and fertilizers. This has led to decrease in water and soil quality, which has consequences for ecosystem services and human wellbeing. Conventional farming has still high percentage in this area and there is no special measure to prevent low water quality caused by farming activities. Therefore, the adoption of environmentally friendly farming has been considered one of the alternatives that lead to improved water quality and increase in biomass production. Concurrently, farm households with environmentally friendly farming have occupied still low rates. Therefore, our research involved a farm household survey spanning conventional farming, the farm in transition and organic farming in Soyang watershed. Another purpose of our research was to compare economic advantage of the farmers adopting environmentally friendly farming and non-adaptors and to investigate the different factors by logistic regression analysis with socio-economic and benefit-cost ratio variables. The results found that farmers with environmentally friendly farming tended to be younger than conventional farming and farmer in transition. They are similar in terms of gender which was predominately male. Farmers with environmentally friendly farming were more educated and had less farming experience than conventional farming and farmer in transition. Based on the benefit-cost analysis, total costs that farm in transition farmers spent for one year are about two times as much as the sum of costs in environmentally friendly farming. The benefit of organic farmers was assessed with 2,800 KRW per household per year. In logistic regression, the factors having statistical significance are subsidy and district, residence period and benefit-cost ratio. And district and residence period have the negative impact on the practice of environmentally friendly farming techniques. The results of our research make a valuable contribution to provide important information to describe Korean policy-making for agricultural and water management and to consider potential approaches to policy that would substantiate ways beneficial for sustainable resource management.

Keywords: organic farming, logistic regression, profitability, agricultural land-use

Procedia PDF Downloads 406
4870 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 72
4869 Jelly and Beans: Appropriate Use of Ultrasound in Acute Kidney Injury

Authors: Raja Ezman Raja Shariff

Abstract:

Acute kidney injury (AKI) is commonly seen in inpatients, and places a great cost on the NHS and patients. Timely and appropriate management is both nephron sparing and potentially life-saving. Ultrasound scanning (USS) is a well-recognised method for stratifying patients. Subsequently, the NICE AKI guidance has defined groups in whom scanning is recommended within 6 hours of request (pyonephrosis), within 24 hours (obstruction/cause unknown), and in whom routine scanning isn't recommended (cause for AKI identified). The audit looks into whether Stockport NHS Trust USS practice was in line with such recommendations. The audit evaluated 92 patients with AKI who had USS, between 01/01/14 to 30/04/14. Data collection was divided into 2 parts. Firstly, radiology request cards and the online imaging software (PACS) were evaluated. Then, the electronic case notes (ADVANTIS) was evaluated further. Based on request cards, 10% of requests were for pyonephrosis. Only 33% were scanned within 6hours and a further 33% within 24hours. 75% were requested for possible obstructions and unknown cause collectively. Of those due to possible obstruction, 71% of patients were scanned within 24 hours. Of those with unknown cause, 50% were scanned within 24 hours. 15% of requests had a cause declared and so potentially did not require scanning. Evaluation of the patients’ notes suggested further interesting findings. Firstly, potentially 39% of patients had a known cause for AKI, therefore, did not need USS. Subsequently, the cohort of unknown cause and possible obstruction was collectively reduced to 45%. Alarmingly the patient cohort with possible pyonephrosis went up to 16%, suggesting an under-recognition of this life-threatening condition. We plan to highlight these findings within our institution and make changes to encourage more appropriate requesting and timely scanning. Time will tell if we manage to save or increase our costs in this cost-conscious NHS. Patient benefits, though, seem to be guaranteed.

Keywords: AKI, ARF, kidney, renal

Procedia PDF Downloads 403
4868 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives

Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši

Abstract:

Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).

Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids

Procedia PDF Downloads 351
4867 Sustainable and Efficient Recovery of Polyhydroxyalkanoate Polymer from Cupriavidus necator Using Environment Friendly Solvents

Authors: Geeta Gahlawat, Sanjeev Kumar Soni

Abstract:

An imprudent use of environmentally hazardous petrochemical-based plastics and limited availability of fossil fuels have provoked research interests towards production of biodegradable plastics - polyhydroxyalkanoate (PHAs). However, the industrial application of PHAs based products is primarily restricted by their high cost of recovery and extraction protocols. Moreover, solvents used for the extraction and purification are toxic and volatile which causes adverse environmental hazards. Development of efficient downstream recovery strategies along with utilization of non-toxic solvents will accelerate their commercialization. In this study, various extraction strategies were designed for sustainable and cost-effective recovery of PHAs from Cupriavidus necator using non-toxic environment friendly solvents viz. 1,2-propylene carbonate, ethyl acetate, isoamyl alcohol, butyl acetate. The effect of incubation time i.e. 10, 30 and 50 min and temperature i.e. 60, 80, 100, 120°C was tested to identify the most suitable solvent. PHAs extraction using a recyclable solvent, 1,2 propylene carbonate, showed the highest recovery yield (90%) and purity (93%) at 120°C and 30 min incubation. Ethyl acetate showed the better capacity to recover PHAs from cells than butyl acetate. Extraction with ethyl acetate exhibited high recovery yield and purity of 96% and 92%, respectively at 100°C. Effect of non-toxic surfactant such as linear alkylbenzene sulfonic acid (LAS) was also studied at 40, 60 and 80°C, and detergent pH range of 3.0, 5.0, 7.0 and 9.0 for the extraction of PHAs from the cells. LAS gave highest yield of 86% and purity of 88% at temperature 80°C and 5.0 pH.

Keywords: polyhydroxyalkanoates, Cupriavidus necator, extraction, recovery yield

Procedia PDF Downloads 512
4866 Space Debris: An Environmental Hazard

Authors: Anwesha Pathak

Abstract:

Space law refers to all legal provisions that may regulate or apply to space travel, as well as to space-related activity. Although there is undoubtedly a core corpus of “space law,” rather than designating a conceptually distinct single kind of law, the phrase can be seen as a label applied to a bucket that includes a variety of different laws and regulations. Similar to ‘family law' or ‘environmental law' "space law" refers to a variety of laws that are identified by the subject matter they address rather than by the logical extension of a single legal concept. The word "space law" refers to the Law of Space, which can cover anything from the specifics of an insurance agreement for a specific space launch to the most general guidelines that direct state behaviour in space. Space debris, often referred to as space junk, space pollution, space waste, space trash, or space garbage, is a term used to describe abandoned human-made objects in space, primarily in Earth orbit. These include disused spacecraft, discarded launch vehicle stages, mission-related detritus, and fragmentation material from the destruction of disused rocket bodies and spacecraft, which is particularly prevalent in Earth orbit. Other types of space debris, besides abandoned human-made objects in orbit, include pieces left over from collisions, erosion, and disintegration, or even paint specks, solidified liquids ejected from spacecraft, and unburned components from solid rocket engines. The initial action of launching or using a spacecraft in near-Earth orbit imposes an external cost on others that is typically not taken into account or fully accounted for in the cost by the launcher or payload owner.

Keywords: space, outer space treaty, geostationary orbit, satellites, spacecrafts

Procedia PDF Downloads 100
4865 Sustainable Radiation Curable Palm Oil-Based Products for Advanced Materials Applications

Authors: R. Tajau, R. Rohani, M. S. Alias, N. H. Mudri, K. A. Abdul Halim, M. H. Harun, N. Mat Isa, R. Che Ismail, S. Muhammad Faisal, M. Talib, M. R. Mohamed Zin

Abstract:

Bio-based polymeric materials are increasingly used for a variety of applications, including surface coating, drug delivery systems, and tissue engineering. These polymeric materials are ideal for the aforementioned applications because they are derived from natural resources, non-toxic, low-cost, biocompatible, and biodegradable, and have promising thermal and mechanical properties. The nature of hydrocarbon chains, carbon double bonds, and ester bonds allows various sources of oil (edible), such as soy, sunflower, olive, and oil palm, to fine-tune their particular structures in the development of innovative materials. Palm oil can be the most eminent raw material used for manufacturing new and advanced natural polymeric materials involving radiation techniques, such as coating resins, nanoparticles, scaffold, nanotubes, nanocomposites, and lithography for different branches of the industry in countries where oil palm is abundant. The radiation technique is among the most versatile, cost-effective, simple, and effective methods. Crosslinking, reversible addition-fragmentation chain transfer (RAFT), polymerisation, grafting, and degradation are among the radiation mechanisms. Exposure to gamma, EB, UV, or laser irradiation, which are commonly used in the development of polymeric materials, is used in these mechanisms. Therefore, this review focuses on current radiation processing technologies for the development of various radiation-curable bio-based polymeric materials with a promising future in biomedical and industrial applications. The key focus of this review is on radiation curable palm oil-based products, which have been published frequently in recent studies.

Keywords: palm oil, radiation processing, surface coatings, VOC

Procedia PDF Downloads 186
4864 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images

Authors: Masood Varshosaz, Kamyar Hasanpour

Abstract:

In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.

Keywords: human recognition, deep learning, drones, disaster mitigation

Procedia PDF Downloads 101
4863 Applying (1, T) Ordering Policy in a Multi-Vendor-Single-Buyer Inventory System with Lost Sales and Poisson Demand

Authors: Adel Nikfarjam, Hamed Tayebi, Sadoullah Ebrahimnejad

Abstract:

This paper considers a two-echelon inventory system with a number of warehouses and a single retailer. The retailer replenishes its required items from warehouses, and assembles them into a single final product. We assume that each warehouse supplies only one kind of the raw material for the retailer. The demand process of the final product is assumed to be Poissson, and unsatisfied demand of the final product will be lost. The retailer applies one-for-one-period ordering policy which is also known as (1, T) ordering policy. In this policy the retailer orders to each warehouse a fixed quantity of each item at fixed time intervals, which the fixed quantity is equal to the utilization of the item in the final product. Since, this policy eliminates all demand uncertainties at the upstream echelon, the standard lot sizing model can be applied at all warehouses. In this paper, we calculate the total cost function of the inventory system. Then, based on this function, we present a procedure to obtain the optimal time interval between two consecutive order placements from retailer to the warehouses, and the optimal order quantities of warehouses (assuming that there are positive ordering costs at warehouses). Finally, we present some numerical examples, and conduct numerical sensitivity analysis for cost parameters.

Keywords: two-echelon supply chain, multi-vendor-single-buyer inventory system, lost sales, Poisson demand, one-for-one-period policy, lot sizing model

Procedia PDF Downloads 317
4862 Big Data and Cardiovascular Healthcare Management: Recent Advances, Future Potential and Pitfalls

Authors: Maariyah Irfan

Abstract:

Intro: Current cardiovascular (CV) care faces challenges such as low budgets and high hospital admission rates. This review aims to evaluate Big Data in CV healthcare management through the use of wearable devices in atrial fibrillation (AF) detection. AF may present intermittently, thus it is difficult for a healthcare professional to capture and diagnose a symptomatic rhythm. Methods: The iRhythm ZioPatch, AliveCor portable electrocardiogram (ECG), and Apple Watch were chosen for review due to their involvement in controlled clinical trials, and their integration with smartphones. The cost-effectiveness and AF detection of these devices were compared against the 12-lead ambulatory ECG (Holter monitor) that the NHS currently employs for the detection of AF. Results: The Zio patch was found to detect more arrhythmic events than the Holter monitor over a 2-week period. When patients presented to the emergency department with palpitations, AliveCor portable ECGs detected 6-fold more symptomatic events compared to the standard care group over 3-months. Based off preliminary results from the Apple Heart Study, only 0.5% of participants received irregular pulse notifications from the Apple Watch. Discussion: The Zio Patch and AliveCor devices have promising potential to be implemented into the standard duty of care offered by the NHS as they compare well to current routine measures. Nonetheless, companies must address the discrepancy between their target population and current consumers as those that could benefit the most from the innovation may be left out due to cost and access.

Keywords: atrial fibrillation, big data, cardiovascular healthcare management, wearable devices

Procedia PDF Downloads 136
4861 Effect of Fast Fashion on Urban Indian Consumer

Authors: Neha Dimri, Varsha Gupta

Abstract:

Purpose: Fast Fashion trend promotes consumption of low cost high fashion garments at a rapid rate. Frequent change in fashion trend results in higher disposability of Fast Fashion products. To cater for the Fast Fashion appetite of the present day consumer, fashion giants have ramped up production of garments, thus imposing a massive strain on the planet’s natural resources. Also, ethical issues related to cheaper methods of production are of concern. India being a large consumer base has a major role to play in proliferation of the Fast Fashion trend. This paper is an attempt to study the effect of fast fashion trends on the Indian consumer’s behaviour. It also attempts to ascertain the awareness of the consumer about the detrimental effect that the fast fashion trends manifest on the environment. Design /methodology/approach: The survey was conducted using a questionnaire targeted at a set of urban Indian consumers of varied age, profession and socio economic backgrounds. Trends regarding frequency of purchase, expenditure on clothing, disposal methods and awareness about environmental issues were analyzed using the obtained data. Findings: The result of the study indicates that urban Indian consumer has a strong affinity towards fast fashion trends, but is largely unaware of its detrimental effect on the environment and strain on natural resources. Research Limitation/implications: The sample size for survey was only of a hundred consumers, and the same could be expanded for a better estimate of trends. Also, the sample consumers were mostly urban. A big chunk of Indian fashion consumers reside in small towns and the same could be included in the survey. Practical implications: As the true cost of Fast Fashion in terms of environmental and ethical aspects is getting realized worldwide, a big market like India cannot remain isolated from this phenomenon. Globally there has been an increase in demand of ethically produced clothing. It is imperative that the Indian consumer be made aware about the unsustainable nature of Fast Fashion so that he can contribute towards conservation of natural resources and ethical production of garments. Originality/value The research attempts to ascertain consumption pattern of the Indian fashion consumer and also his awareness about the true cost and consequences of Fast Fashion. The inferences may be used by fashion giants to use ‘Green Marketing’ and ‘Social Marketing’ techniques to make the Indian consumer more aware about sustainable fashion and to market their own products as ‘Sustainable, Green and Ethical’.

Keywords: consumption, disposable, fast fashion, Indian consumer

Procedia PDF Downloads 317
4860 Development of a Table-Top Composite Wire Fabrication System for Additive Manufacturing

Authors: Krishna Nand, Mohammad Taufik

Abstract:

Fused Filament Fabrication (FFF) is one of the most popular additive manufacturing (AM) technology. In FFF technology, a wire form material (filament) is fed inside a heated chamber, where it gets converted into semi-solid form and extruded out of a nozzle to be deposited on the build platform to fabricate the part. FFF technology is expanding and covering the market at a very rapid rate, so the need of raw materials for 3D printing is also increasing. The cost of 3D printing is directly affected by filament cost. To make 3D printing more economic, a compact and portable filament/wire extrusion system is needed. Wire extrusion systems to extrude ordinary wire/filament made of a single material are available in the market. However, extrusion system to make a composite wire/filament are not available. Hence, in this study, initial efforts have been made to develop a table-top composite wire extruder. The developed system is consisted of mechanical parts, electronics parts, and a control system. A multiple channel hopper, extrusion screw, melting chamber and nozzle, cooling zone, and spool winder are some mechanical parts. While motors, heater, temperature sensor, cooling fans are some electronics parts, which are used to develop this system. A control board has been used to control the various process parameters like – temperature and speed of motors. For the production of composite wire/filament, two different materials could be fed through two channels of hopper, which will be mixed and carried to the heated zone by extrusion screw. The extrusion screw is rotated by a motor, and the speed of this motor will be controlled by the controller as per the requirement of material extrusion rate. In the heated zone, the material will melt with the help of a heating element and extruded out of the nozzle in the form of wire. The developed system occupies less floor space due to the vertical orientation of its heating chamber. It is capable to extrude ordinary filament as well as composite filament, which are compatible with 3D printers available in the market. Further, the developed system could be employed in the research and development of materials, processing, and characterization for 3D printer. The developed system presented in this study could be a better choice for hobbyists and researchers dealing with the fused filament fabrication process to reduce the 3D printing cost significantly by recycling the waste material into 3D printer feed material. Further, it could also be explored as a better alternative for filament production at the commercial level.

Keywords: additive manufacturing, 3D Printing, filament extrusion, pellet extrusion

Procedia PDF Downloads 171
4859 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads

Authors: Gaurav Kumar Sinha

Abstract:

In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.

Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies

Procedia PDF Downloads 73
4858 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric

Procedia PDF Downloads 422