Search results for: GHRM performance appraisal
622 Developing a Roadmap by Integrating of Environmental Indicators with the Nitrogen Footprint in an Agriculture Region, Hualien, Taiwan
Authors: Ming-Chien Su, Yi-Zih Chen, Nien-Hsin Kao, Hideaki Shibata
Abstract:
The major component of the atmosphere is nitrogen, yet atmospheric nitrogen has limited availability for biological use. Human activities have produced different types of nitrogen related compounds such as nitrogen oxides from combustion, nitrogen fertilizers from farming, and the nitrogen compounds from waste and wastewater, all of which have impacted the environment. Many studies have indicated the N-footprint is dominated by food, followed by housing, transportation, and goods and services sectors. To solve the impact issues from agricultural land, nitrogen cycle research is one of the key solutions. The study site is located in Hualien County, Taiwan, a major rice and food production area of Taiwan. Importantly, environmentally friendly farming has been promoted for years, and an environmental indicator system has been established by previous authors based on the concept of resilience capacity index (RCI) and environmental performance index (EPI). Nitrogen management is required for food production, as excess N causes environmental pollution. Therefore it is very important to develop a roadmap of the nitrogen footprint, and to integrate it with environmental indicators. The key focus of the study thus addresses (1) understanding the environmental impact caused by the nitrogen cycle of food products and (2) uncovering the trend of the N-footprint of agricultural products in Hualien, Taiwan. The N-footprint model was applied, which included both crops and energy consumption in the area. All data were adapted from government statistics databases and crosschecked for consistency before modeling. The actions involved with agricultural production were evaluated and analyzed for nitrogen loss to the environment, as well as measuring the impacts to humans and the environment. The results showed that rice makes up the largest share of agricultural production by weight, at 80%. The dominant meat production is pork (52%) and poultry (40%); fish and seafood were at similar levels to pork production. The average per capita food consumption in Taiwan is 2643.38 kcal capita−1 d−1, primarily from rice (430.58 kcal), meats (184.93 kcal) and wheat (ca. 356.44 kcal). The average protein uptake is 87.34 g capita−1 d−1, and 51% is mainly from meat, milk, and eggs. The preliminary results showed that the nitrogen footprint of food production is 34 kg N per capita per year, congruent with the results of Shibata et al. (2014) for Japan. These results provide a better understanding of the nitrogen demand and loss in the environment, and the roadmap can furthermore support the establishment of nitrogen policy and strategy. Additionally, the results serve to develop a roadmap of the nitrogen cycle of an environmentally friendly farming area, thus illuminating the nitrogen demand and loss of such areas.Keywords: agriculture productions, energy consumption, environmental indicator, nitrogen footprint
Procedia PDF Downloads 303621 Techno Economic Analysis for Solar PV and Hydro Power for Kafue Gorge Power Station
Authors: Elvis Nyirenda
Abstract:
This research study work was done to evaluate and propose an optimum measure to enhance the uptake of clean energy technologies such as solar photovoltaics, the study also aims at enhancing the country’s energy mix from the overdependence on hydro power which is susceptible to droughts and climate change challenges The country in the years 2015 - 2016 and 2018 - 2019 had received rainfall below average due to climate change and a shift in the weather pattern; this resulted in prolonged power outages and load shedding for more than 10 hours per day. ZESCO Limited, the utility company that owns infrastructure in the generation, transmission, and distribution of electricity (state-owned), is seeking alternative sources of energy in order to reduce the over-dependence on hydropower stations. One of the alternative sources of energy is Solar Energy from the sun. However, solar power is intermittent in nature and to smoothen the load curve, investment in robust energy storage facilities is of great importance to enhance security and reliability of electricity supply in the country. The methodology of the study looked at the historical performance of the Kafue gorge upper power station and utilised the hourly generation figures as input data for generation modelling in Homer software. The average yearly demand was derived from the available data on the system SCADA. The two dams were modelled as natural battery with the absolute state of charging and discharging determined by the available water resource and the peak electricity demand. The software Homer Energy System is used to simulate the scheme incorporating a pumped storage facility and Solar photovoltaic systems. The pumped hydro scheme works like a natural battery for the conservation of water, with the only losses being evaporation and water leakages from the dams and the turbines. To address the problem of intermittency on the solar resource and the non-availability of water for hydropower generation, the study concluded that utilising the existing Hydro power stations, Kafue Gorge upper and Kafue Gorge Lower to work conjunctively with Solar energy will reduce power deficits and increase the security of supply for the country. An optimum capacity of 350MW of solar PV can be integrated while operating Kafue Gorge power station in both generating and pumping mode to enable efficient utilisation of water at Kafue Gorge upper Dam and Kafue Gorge Lower dam.Keywords: hydropower, solar power systems, energy storage, photovoltaics, solar irradiation, pumped hydro storage system, supervisory control and data acquisition, Homer energy
Procedia PDF Downloads 118620 MBES-CARIS Data Validation for the Bathymetric Mapping of Shallow Water in the Kingdom of Bahrain on the Arabian Gulf
Authors: Abderrazak Bannari, Ghadeer Kadhem
Abstract:
The objectives of this paper are the validation and the evaluation of MBES-CARIS BASE surface data performance for bathymetric mapping of shallow water in the Kingdom of Bahrain. The latter is an archipelago with a total land area of about 765.30 km², approximately 126 km of coastline and 8,000 km² of marine area, located in the Arabian Gulf, east of Saudi Arabia and west of Qatar (26° 00’ N, 50° 33’ E). To achieve our objectives, bathymetric attributed grid files (X, Y, and depth) generated from the coverage of ship-track MBSE data with 300 x 300 m cells, processed with CARIS-HIPS, were downloaded from the General Bathymetric Chart of the Oceans (GEBCO). Then, brought into ArcGIS and converted into a raster format following five steps: Exportation of GEBCO BASE surface data to the ASCII file; conversion of ASCII file to a points shape file; extraction of the area points covering the water boundary of the Kingdom of Bahrain and multiplying the depth values by -1 to get the negative values. Then, the simple Kriging method was used in ArcMap environment to generate a new raster bathymetric grid surface of 30×30 m cells, which was the basis of the subsequent analysis. Finally, for validation purposes, 2200 bathymetric points were extracted from a medium scale nautical map (1:100 000) considering different depths over the Bahrain national water boundary. The nautical map was scanned, georeferenced and overlaid on the MBES-CARIS generated raster bathymetric grid surface (step 5 above), and then homologous depth points were selected. Statistical analysis, expressed as a linear error at the 95% confidence level, showed a strong correlation coefficient (R² = 0.96) and a low RMSE (± 0.57 m) between the nautical map and derived MBSE-CARIS depths if we consider only the shallow areas with depths of less than 10 m (about 800 validation points). When we consider only deeper areas (> 10 m) the correlation coefficient is equal to 0.73 and the RMSE is equal to ± 2.43 m while if we consider the totality of 2200 validation points including all depths, the correlation coefficient is still significant (R² = 0.81) with satisfactory RMSE (± 1.57 m). Certainly, this significant variation can be caused by the MBSE that did not completely cover the bottom in several of the deeper pockmarks because of the rapid change in depth. In addition, steep slopes and the rough seafloor probably affect the acquired MBSE raw data. In addition, the interpolation of missed area values between MBSE acquisition swaths-lines (ship-tracked sounding data) may not reflect the true depths of these missed areas. However, globally the results of the MBES-CARIS data are very appropriate for bathymetric mapping of shallow water areas.Keywords: bathymetry mapping, multibeam echosounder systems, CARIS-HIPS, shallow water
Procedia PDF Downloads 381619 Assessment of the Environmental Compliance at the Jurassic Production Facilities towards HSE MS Procedures and Kuwait Environment Public Authority Regulations
Authors: Fatemah Al-Baroud, Sudharani Shreenivas Kshatriya
Abstract:
Kuwait Oil Company (KOC) is one of the companies for gas & oil production in Kuwait. The oil and gas industry is truly global; with operations conducted in every corner of the globe, the global community will rely heavily on oil and gas supplies. KOC has made many commitments to protect all due to KOC’s operations and operational releases. As per KOC’s strategy, the substantial increase in production activities will bring many challenges in managing various environmental hazards and stresses in the company. In order to handle those environmental challenges, the need of implementing effectively the health, safety, and environmental management system (HSEMS) is significant. And by implementing the HSEMS system properly, the environmental aspects of the activities, products, and services were identified, evaluated, and controlled in order to (i) Comply with local regulatory and other obligatory requirements; (ii) Comply with company policy and business requirements; and (iii) Reduce adverse environmental impact, including adverse impact to company reputation. Assessments for the Jurassic Production Facilities are being carried out as a part of the KOC HSEMS procedural requirement and monitoring the implementation of the relevant HSEMS procedures in the facilities. The assessments have been done by conducting series of theme audits using KOC’s audit protocol at JPFs. The objectives of the audits are to evaluate the compliance of the facilities towards the implementation of environmental procedures and the status of the KEPA requirement at all JPFs. The list of the facilities that were covered during the theme audit program are the following: (1) Jurassic Production Facility (JPF) – Sabriya (2) Jurassic Production Facility (JPF) – East Raudhatian (3) Jurassic Production Facility (JPF) – West Raudhatian (4)Early Production Facility (EPF 50). The auditing process comprehensively focuses on the application of KOC HSE MS procedures at JPFs and their ability to reduce the resultant negative impacts on the environment from the operations. Number of findings and observations were noted and highlighted in the audit reports and sent to all concerned controlling teams. The results of these audits indicated that the facilities, in general view, were in line with KOC HSE Procedures, and there were commitments in documenting all the HSE issues in the right records and plans. Further, implemented several control measures at JPFs that minimized/reduced the environmental impact, such as SRU were installed for sulphur recovery. Future scope and monitoring audit after a sufficient period of time will be carried out in conjunction with the controlling teams in order to verify the current status of the recommendations and evaluate the contractors' performance towards the required actions in preserving the environment.Keywords: assessment of the environmental compliance, environmental and social impact assessment, kuwait environment public authority regulations, health, safety and environment management procedures, jurassic production facilities
Procedia PDF Downloads 187618 Modeling Sorption and Permeation in the Separation of Benzene/ Cyclohexane Mixtures through Styrene-Butadiene Rubber Crosslinked Membranes
Authors: Hassiba Benguergoura, Kamal Chanane, Sâad Moulay
Abstract:
Pervaporation (PV), a membrane-based separation technology, has gained much attention because of its energy saving capability and low-cost, especially for separation of azeotropic or close-boiling liquid mixtures. There are two crucial issues for industrial application of pervaporation process. The first is developing membrane material and tailoring membrane structure to obtain high pervaporation performances. The second is modeling pervaporation transport to better understand of the above-mentioned structure–pervaporation relationship. Many models were proposed to predict the mass transfer process, among them, solution-diffusion model is most widely used in describing pervaporation transport including preferential sorption, diffusion and evaporation steps. For modeling pervaporation transport, the permeation flux, which depends on the solubility and diffusivity of components in the membrane, should be obtained first. Traditionally, the solubility was calculated according to the Flory–Huggins theory. Separation of the benzene (Bz)/cyclohexane (Cx) mixture is industrially significant. Numerous papers have been focused on the Bz/Cx system to assess the PV properties of membrane materials. Membranes with both high permeability and selectivity are desirable for practical application. Several new polymers have been prepared to get both high permeability and selectivity. Styrene-butadiene rubbers (SBR), dense membranes cross-linked by chloromethylation were used in the separation of benzene/cyclohexane mixtures. The impact of chloromethylation reaction as a new method of cross-linking SBR on the pervaporation performance have been reported. In contrast to the vulcanization with sulfur, the cross-linking takes places on styrene units of polymeric chains via a methylene bridge. The partial pervaporative (PV) fluxes of benzene/cyclohexane mixtures in styrene-butadiene rubber (SBR) were predicted using Fick's first law. The predicted partial fluxes and the PV separation factor agreed well with the experimental data by integrating Fick's law over the benzene concentration. The effects of feed concentration and operating temperature on the predicted permeation flux by this proposed model are investigated. The predicted permeation fluxes are in good agreement with experimental data at lower benzene concentration in feed, but at higher benzene concentration, the model overestimated permeation flux. The predicted and experimental permeation fluxes all increase with operating temperature increasing. Solvent sorption levels for benzene/ cyclohexane mixtures in a SBR membrane were determined experimentally. The results showed that the solvent sorption levels were strongly affected by the feed composition. The Flory- Huggins equation generates higher R-square coefficient for the sorption selectivity.Keywords: benzene, cyclohexane, pervaporation, permeation, sorption modeling, SBR
Procedia PDF Downloads 328617 From Primer Generation to Chromosome Identification: A Primer Generation Genotyping Method for Bacterial Identification and Typing
Authors: Wisam H. Benamer, Ehab A. Elfallah, Mohamed A. Elshaari, Farag A. Elshaari
Abstract:
A challenge for laboratories is to provide bacterial identification and antibiotic sensitivity results within a short time. Hence, advancement in the required technology is desirable to improve timing, accuracy and quality. Even with the current advances in methods used for both phenotypic and genotypic identification of bacteria the need is there to develop method(s) that enhance the outcome of bacteriology laboratories in accuracy and time. The hypothesis introduced here is based on the assumption that the chromosome of any bacteria contains unique sequences that can be used for its identification and typing. The outcome of a pilot study designed to test this hypothesis is reported in this manuscript. Methods: The complete chromosome sequences of several bacterial species were downloaded to use as search targets for unique sequences. Visual basic and SQL server (2014) were used to generate a complete set of 18-base long primers, a process started with reverse translation of randomly chosen 6 amino acids to limit the number of the generated primers. In addition, the software used to scan the downloaded chromosomes using the generated primers for similarities was designed, and the resulting hits were classified according to the number of similar chromosomal sequences, i.e., unique or otherwise. Results: All primers that had identical/similar sequences in the selected genome sequence(s) were classified according to the number of hits in the chromosomes search. Those that were identical to a single site on a single bacterial chromosome were referred to as unique. On the other hand, most generated primers sequences were identical to multiple sites on a single or multiple chromosomes. Following scanning, the generated primers were classified based on ability to differentiate between medically important bacterial and the initial results looks promising. Conclusion: A simple strategy that started by generating primers was introduced; the primers were used to screen bacterial genomes for match. Primer(s) that were uniquely identical to specific DNA sequence on a specific bacterial chromosome were selected. The identified unique sequence can be used in different molecular diagnostic techniques, possibly to identify bacteria. In addition, a single primer that can identify multiple sites in a single chromosome can be exploited for region or genome identification. Although genomes sequences draft of isolates of organism DNA enable high throughput primer design using alignment strategy, and this enhances diagnostic performance in comparison to traditional molecular assays. In this method the generated primers can be used to identify an organism before the draft sequence is completed. In addition, the generated primers can be used to build a bank for easy access of the primers that can be used to identify bacteria.Keywords: bacteria chromosome, bacterial identification, sequence, primer generation
Procedia PDF Downloads 193616 The Display of Environmental Information to Promote Energy Saving Practices: Evidence from a Massive Behavioral Platform
Authors: T. Lazzarini, M. Imbiki, P. E. Sutter, G. Borragan
Abstract:
While several strategies, such as the development of more efficient appliances, the financing of insulation programs or the rolling out of smart meters represent promising tools to reduce future energy consumption, their implementation relies on people’s decisions-actions. Likewise, engaging with consumers to reshape their behavior has shown to be another important way to reduce energy usage. For these reasons, integrating the human factor in the energy transition has become a major objective for researchers and policymakers. Digital education programs based on tangible and gamified user interfaces have become a new tool with potential effects to reduce energy consumption4. The B2020 program, developed by the firm “Économie d’Énergie SAS”, proposes a digital platform to encourage pro-environmental behavior change among employees and citizens. The platform integrates 160 eco-behaviors to help saving energy and water and reducing waste and CO2 emissions. A total of 13,146 citizens have used the tool so far to declare the range of eco-behaviors they adopt in their daily lives. The present work seeks to build on this database to identify the potential impact of adopted energy-saving behaviors (n=62) to reduce the use of energy in buildings. To this end, behaviors were classified into three categories regarding the nature of its implementation (Eco-habits: e.g., turning-off the light, Eco-actions: e.g., installing low carbon technology such as led light-bulbs and Home-Refurbishments: e.g., such as wall-insulation or double-glazed energy efficient windows). General Linear Models (GLM) disclosed the existence of a significantly higher frequency of Eco-habits when compared to the number of home-refurbishments realized by the platform users. While this might be explained in part by the high financial costs that are associated with home renovation works, it also contrasts with the up to three times larger energy-savings that can be accomplished by these means. Furthermore, multiple regression models failed to disclose the expected relationship between energy-savings and frequency of adopted eco behaviors, suggesting that energy-related practices are not necessarily driven by the correspondent energy-savings. Finally, our results also suggested that people adopting more Eco-habits and Eco-actions were more likely to engage in Home-Refurbishments. Altogether, these results fit well with a growing body of scientific research, showing that energy-related practices do not necessarily maximize utility, as postulated by traditional economic models, and suggest that other variables might be triggering them. Promoting home refurbishments could benefit from the adoption of complementary energy-saving habits and actions.Keywords: energy-saving behavior, human performance, behavioral change, energy efficiency
Procedia PDF Downloads 201615 Global-Scale Evaluation of Two Satellite-Based Passive Microwave Soil Moisture Data Sets (SMOS and AMSR-E) with Respect to Modelled Estimates
Authors: A. Alyaaria, b, J. P. Wignerona, A. Ducharneb, Y. Kerrc, P. de Rosnayd, R. de Jeue, A. Govinda, A. Al Bitarc, C. Albergeld, J. Sabaterd, C. Moisya, P. Richaumec, A. Mialonc
Abstract:
Global Level-3 surface soil moisture (SSM) maps from the passive microwave soil moisture and Ocean Salinity satellite (SMOSL3) have been released. To further improve the Level-3 retrieval algorithm, evaluation of the accuracy of the spatio-temporal variability of the SMOS Level 3 products (referred to here as SMOSL3) is necessary. In this study, a comparative analysis of SMOSL3 with a SSM product derived from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) computed by implementing the Land Parameter Retrieval Model (LPRM) algorithm, referred to here as AMSRM, is presented. The comparison of both products (SMSL3 and AMSRM) were made against SSM products produced by a numerical weather prediction system (SM-DAS-2) at ECMWF (European Centre for Medium-Range Weather Forecasts) for the 03/2010-09/2011 period at global scale. The latter product was considered here a 'reference' product for the inter-comparison of the SMOSL3 and AMSRM products. Three statistical criteria were used for the evaluation, the correlation coefficient (R), the root-mean-squared difference (RMSD), and the bias. Global maps of these criteria were computed, taking into account vegetation information in terms of biome types and Leaf Area Index (LAI). We found that both the SMOSL3 and AMSRM products captured well the spatio-temporal variability of the SM-DAS-2 SSM products in most of the biomes. In general, the AMSRM products overestimated (i.e., wet bias) while the SMOSL3 products underestimated (i.e., dry bias) SSM in comparison to the SM-DAS-2 SSM products. In term of correlation values, the SMOSL3 products were found to better capture the SSM temporal dynamics in highly vegetated biomes ('Tropical humid', 'Temperate Humid', etc.) while best results for AMSRM were obtained over arid and semi-arid biomes ('Desert temperate', 'Desert tropical', etc.). When removing the seasonal cycles in the SSM time variations to compute anomaly values, better correlation with the SM-DAS-2 SSM anomalies were obtained with SMOSL3 than with AMSRM, in most of the biomes with the exception of desert regions. Eventually, we showed that the accuracy of the remotely sensed SSM products is strongly related to LAI. Both the SMOSL3 and AMSRM (slightly better) SSM products correlate well with the SM-DAS2 products over regions with sparse vegetation for values of LAI < 1 (these regions represent almost 50% of the pixels considered in this global study). In regions where LAI>1, SMOSL3 outperformed AMSRM with respect to SM-DAS-2: SMOSL3 had almost consistent performances up to LAI = 6, whereas AMSRM performance deteriorated rapidly with increasing values of LAI.Keywords: remote sensing, microwave, soil moisture, AMSR-E, SMOS
Procedia PDF Downloads 357614 Boussinesq Model for Dam-Break Flow Analysis
Authors: Najibullah M, Soumendra Nath Kuiry
Abstract:
Dams and reservoirs are perceived for their estimable alms to irrigation, water supply, flood control, electricity generation, etc. which civilize the prosperity and wealth of society across the world. Meantime the dam breach could cause devastating flood that can threat to the human lives and properties. Failures of large dams remain fortunately very seldom events. Nevertheless, a number of occurrences have been recorded in the world, corresponding in an average to one to two failures worldwide every year. Some of those accidents have caused catastrophic consequences. So it is decisive to predict the dam break flow for emergency planning and preparedness, as it poses high risk to life and property. To mitigate the adverse impact of dam break, modeling is necessary to gain a good understanding of the temporal and spatial evolution of the dam-break floods. This study will mainly deal with one-dimensional (1D) dam break modeling. Less commonly used in the hydraulic research community, another possible option for modeling the rapidly varied dam-break flows is the extended Boussinesq equations (BEs), which can describe the dynamics of short waves with a reasonable accuracy. Unlike the Shallow Water Equations (SWEs), the BEs taken into account the wave dispersion and non-hydrostatic pressure distribution. To capture the dam-break oscillations accurately it is very much needed of at least fourth-order accurate numerical scheme to discretize the third-order dispersion terms present in the extended BEs. The scope of this work is therefore to develop an 1D fourth-order accurate in both space and time Boussinesq model for dam-break flow analysis by using finite-volume / finite difference scheme. The spatial discretization of the flux and dispersion terms achieved through a combination of finite-volume and finite difference approximations. The flux term, was solved using a finite-volume discretization whereas the bed source and dispersion term, were discretized using centered finite-difference scheme. Time integration achieved in two stages, namely the third-order Adams Basforth predictor stage and the fourth-order Adams Moulton corrector stage. Implementation of the 1D Boussinesq model done using PYTHON 2.7.5. Evaluation of the performance of the developed model predicted as compared with the volume of fluid (VOF) based commercial model ANSYS-CFX. The developed model is used to analyze the risk of cascading dam failures similar to the Panshet dam failure in 1961 that took place in Pune, India. Nevertheless, this model can be used to predict wave overtopping accurately compared to shallow water models for designing coastal protection structures.Keywords: Boussinesq equation, Coastal protection, Dam-break flow, One-dimensional model
Procedia PDF Downloads 232613 Studying the Beginnings of Strategic Behavior
Authors: Taher Abofol, Yaakov Kareev, Judith Avrahami, Peter M. Todd
Abstract:
Are children sensitive to their relative strength in competitions against others? Performance on tasks that require cooperation or coordination (e.g. the Ultimatum Game) indicates that early precursors of adult-like notions of fairness and reciprocity, as well as altruistic behavior, are evident at an early age. However, not much is known regarding developmental changes in interactive decision-making, especially in competitive interactions. Thus, it is important to study the developmental aspects of strategic behavior in these situations. The present research focused on cognitive-developmental changes in a competitive interaction. Specifically, it aimed at revealing how children engage in strategic interactions that involve the allocation of limited resources over a number of fields of competition, by manipulating relative strength. Relative strength refers to situations in which player strength changes midway through the game: the stronger player becomes the weaker one, while the weaker player becomes the stronger one. An experiment was conducted to find out if the behavior of children of different age groups differs in the following three aspects: 1. Perception of relative strength. 2. Ability to learn while gaining experience. 3. Ability to adapt to change in relative strength. The task was composed of a resource allocation game. After the players allocated their resources (privately and simultaneously), a competition field was randomly chosen for each player. The player who allocated more resources to the field chosen was declared the winner of that round. The resources available to the two competitors were unequal (or equal, for control). The theoretical solution for this game is that the weaker player should give up on a certain number of fields, depending on the stronger opponent’s relative strength, in order to be able to compete with the opponent on equal footing in the remaining fields. Participants were of three age groups, first-graders (N = 36, mean age = 6), fourth-graders (N = 36, mean age = 10), and eleventh-graders (N = 72, mean age = 16). The games took place between players of the same age and lasted for 16 rounds. There were two experimental conditions – a control condition, in which players were of equal strength, and an experimental condition, in which players differed in strength. In the experimental condition, players' strength was changed midway through the session. Results indicated that players in all age groups were sensitive to their relative strength, and played in line with the theoretical solution: the weaker players gave up on more fields than the stronger ones. This understanding, as well as the consequent difference in allocation between weak and strong players, was more pronounced among older participants. Experience led only to minimal behavioral change. Finally, the children from the two older groups, particularly the eleventh graders adapted quickly to the midway switch in relative strength. In contrast, the first-graders hardly changed their behavior with the change in their relative strength, indicating a limited ability to adapt. These findings highlight young children’s ability to consider their relative strength in strategic interactions and its boundaries.Keywords: children, competition, decision making, developmental changes, strategic behavior
Procedia PDF Downloads 312612 Performance Improvement of a Single-Flash Geothermal Power Plant Design in Iran: Combining with Gas Turbines and CHP Systems
Authors: Morteza Sharifhasan, Davoud Hosseini, Mohammad. R. Salimpour
Abstract:
The geothermal energy is considered as a worldwide important renewable energy in recent years due to rising environmental pollution concerns. Low- and medium-grade geothermal heat (< 200 ºC) is commonly employed for space heating and in domestic hot water supply. However, there is also much interest in converting the abundant low- and medium-grade geothermal heat into electrical power. The Iranian Ministry of Power - through the Iran Renewable Energy Organization (SUNA) – is going to build the first Geothermal Power Plant (GPP) in Iran in the Sabalan area in the Northwest of Iran. This project is a 5.5 MWe single flash steam condensing power plant. The efficiency of GPPs is low due to the relatively low pressure and temperature of the saturated steam. In addition to GPPs, Gas Turbines (GTs) are also known by their relatively low efficiency. The Iran ministry of Power is trying to increase the efficiency of these GTs by adding bottoming steam cycles to the GT to form what is known as combined gas/steam cycle. One of the most effective methods for increasing the efficiency is combined heat and power (CHP). This paper investigates the feasibility of superheating the saturated steam that enters the steam turbine of the Sabalan GPP (SGPP-1) to improve the energy efficiency and power output of the GPP. This purpose is achieved by combining the GPP with two 3.5 MWe GTs. In this method, the hot gases leaving GTs are utilized through a superheater similar to that used in the heat recovery steam generator of combined gas/steam cycle. Moreover, brine separated in the separator, hot gases leaving GTs and superheater are used for the supply of domestic hot water (in this paper, the cycle combined of GTs and CHP systems is named the modified SGPP-1) . In this research, based on the Heat Balance presented in the basic design documents of the SGPP-1, mathematical/numerical model of the power plant are developed together with the mentioned GTs and CHP systems. Based on the required hot water, the amount of hot gasses needed to pass through CHP section directly can be adjusted. For example, during summer when hot water is less required, the hot gases leaving both GTs pass through the superheater and CHP systems respectively. On the contrary, in order to supply the required hot water during the winter, the hot gases of one of the GTs enter the CHP section directly, without passing through the super heater section. The results show that there is an increase in thermal efficiency up to 40% through using the modified SGPP-1. Since the gross efficiency of SGPP-1 is 9.6%, the achieved increase in thermal efficiency is significant. The power output of SGPP-1 is increased up to 40% in summer (from 5.5MW to 7.7 MW) while the GTs power output remains almost unchanged. Meanwhile, the combined-cycle power output increases from the power output of the two separate plants of 12.5 MW [5.5+ (2×3.5)] to the combined-cycle power output of 14.7 [7.7+(2×3.5)]. This output is more than 17% above the output of the two separate plants. The modified SGPP-1 is capable of producing 215 T/Hr hot water ( 90 ºC ) for domestic use in the winter months.Keywords: combined cycle, chp, efficiency, gas turbine, geothermal power plant, gas turbine, power output
Procedia PDF Downloads 322611 Invisible Feminists: An Autonomist Marxist Perspective of Digital Labour and Resistance Within the Online Sex Industry
Authors: Josie West
Abstract:
This paper focuses on the conflicts and utility of Marxist Feminist frames for sex work research, drawing on findings uncovered through in-depth interviews with online sex workers, alongside critical discourse analysis of media and political commentary. It brings the critical perspective of women into digital workerism and gig economy dialogue who, despite their significant presence within online work, have been overlooked. The autonomist Marxist concept of class composition is adopted to unpack the social, technical and political composition of this often-invisible segment of the service sector. Autonomism makes visible the perspective of workers engaged in processes of mobilization and demobilizaiton. This allows researchers to find everyday forms of resistance which occur within and outside trade unions. On the other hand, Marxist feminist arguments about invisibility politics can generate unhelpful allegories about sex work as domestic labour within the reproductive sphere. Nick Srnicek’s development of Marx’s notion of infrastructure rents helps theorize experiences of unpaid labour within online sex work. Moreover, debates about anti-work politics can cause conflict among sex workers fighting for the labour movement and those rejecting the capitalist work ethic. This illuminates’ tensions caused by white privilege and differing experiences of sex work. The monopolistic and competitive nature of sex work platforms within platform capitalism, and the vulnerable position of marginalised workers within stigmatized/criminalised markets, complicates anti-work politics further. This paper is situated within the feminist sex wars and the intensely divisive question of whether sex workers are victims of the patriarchy or symbols of feminist resistance. Camgirls are shown to engage in radical tactics of resistance against their technical composition on popular sex work platforms. They also engage in creative acts of resistance through performance art, in an attempt to draw attention to stigma and anti-criminalization politics. This sector offers a fascinating window onto grassroots class-action, alongside education about ‘whorephobia.’ A case study of resistance against Only Fans, and a small workers co-operative which emerged during the pandemic, showcases how workers engage in socialist and political acts without the aid of unions. Workers are victims of neoliberalism and simultaneous adopters of neoliberal strategies of survival. The complex dynamics within unions are explored, including tensions with grass-roots resistance, financial pressures and intersecting complications of class, gender and race.Keywords: autonomist marxism, digital labor, feminism, neoliberalism, sex work, platform capitalism
Procedia PDF Downloads 92610 Characterization of Main Phenolic Compounds in Eleusine indica L. (Poaceae) by HPLC-DAD and 1H NMR
Authors: E. M. Condori-Peñaloza, S. S. Costa
Abstract:
Eleusine indica L, known as goose-grass, is considered a troublesome weed that can cause important economic losses in the agriculture worldwide. However, this grass is used as a medicinal plant in some regions of Brazil to treat influenza and pneumonia. In Africa and Asia, it is used to treat malaria and as diuretic, anti-helminthic, among other uses. Despite its therapeutic potential, little is known about the chemical composition and bioactive compounds of E. indica. Hitherto, two major flavonoids, schaftoside and vitexin, were isolated from aerial part of the species and showed inhibitory activity on lung neutrophil influxes in mice, suggesting a beneficial effect on airway inflammation. Therefore, the aim of this study was to analyze the chemical profile of aqueous extracts from aerial parts of Eleusine indica specimens using high performance liquid chromatography (HPLC-DAD) and 1H nuclear magnetic resonance spectroscopy (NMR), with emphasis on phenolic compounds. Specimens of E. indica were collected in Minas Gerais state, Brazil. Aerial parts of fresh plants were extracted by decoction (10% p/v). After spontaneous precipitation of the aqueous extract at 10-12°C for 24 hours, the supernatant obtained was frozen and lyophilized. After that, 1 g of the extract was dissolved into 25 mL of water and fractionated on a reverse phase chromatography column (RP-2), eluted with a gradient of H2O/EtOH. Five fractions were obtained. The extract and fractions had their chemical profile analyzed by using HPLC-DAD (C-18 column: 20 μL, 256 -365 nm; gradient water 0.01% phosphoric acid/ acetonitrile. The extract was also analyzed by NMR (1H, 500 MHz, D2O) in order to access its global chemical composition. HPLC-DAD analyses of crude extract allowed the identification of ten phenolic compounds. Fraction 1, eluted with 100% water, was poor in phenolic compounds and no major peak was detected. In fraction 2, eluted with 100% water, it was possible to observe one major peak at retention time (RT) of 23.75 minutes compatible with flavonoid; fraction 3, also eluted with 100% water, showed four peaks at RT= 21.47, 23.52, 24.33 and 25.84 minutes, all of them compatible with flavonoid. In fraction 4, eluted with 50%/ethanol/50% water, it was possible to observe 3 peaks compatible with flavonoids at RT=24.65, 26.81, 27.49 minutes, and one peak (28.83 min) compatible with a phenolic acid derivative. Finally, in fraction 5, eluted with 100% ethanol, no phenolic substance was detected. The UV spectra of all flavonoids detected were compatible with the flavone subclass (λ= 320-345 nm). The 1H NMR spectra of aerial parts extract showed signals in three regions: δ 0.8-3.0 ppm (aliphatic compounds), δ 3.0-5.5 ppm corresponding to carbohydrates (signals most abundant and overlapped), and δ 6.0-8.5 ppm (aromatic compounds). Signals compatible with flavonoids (rings A and B) could also be detected in the crude extract spectra. These results suggest the presence of several flavonoids in E. indica, which reinforces their therapeutic potential. The pharmacological activities of Eleusine indica extracts and fractions will be further evaluated.Keywords: flavonoids, HPLC, NMR, phenolic compounds
Procedia PDF Downloads 319609 Factors Mitigating against the Use of Alternative to Antibiotics (Phytobiotics) In Poultry Production among Farming Households in Nigeria
Authors: Akinola Helen Olufunke, Soetan Olatunbosun Jonathan, Adeleye Oludamola
Abstract:
Introduction: Antibiotic resistance has grown significantly, which is a major cause for concern. There have not been many significant developments in antibiotics over the past few decades, and practically all of the ones that are currently in use are losing effectiveness against pathogenic germs. Researchers are starting to focus more on the physiologically active compounds found in plants, particularly phytobiotics in poultry production. Consumption of chicken products is among the greatest in the country, but numerous nations, including Nigeria, use excessive amounts of necessary antibiotics in poultry farming, endangering the safety of such goods (through antimicrobial residues). Drug resistance has become a widespread issue as a result of the risky use of antibiotics in the chicken production industry. In order to replace antibiotics, biotic or natural products like phytobiotics (also known as botanicals or phytogenics) have drawn a lot of interest. Phytobiotics or their components are thought to be a relatively recent category of natural herbs that have acquired acceptance and favor among chicken farmers. The addition of several phytobiotic additions to poultry feed has demonstrated its capacity to improve both the broiler and layer populations' productivity. Design: Experimental research design and cross-sectional study was carried out at every 300 purposively selected farming household in the six-geopolitical zone in Nigeria. Data Analysis: A semi-structured questionnaire was administered to each farmer, and quantitative data were analyzed using Statistical Package for Social Science (SPSS) while the Chi-square test was used to analyze factors mitigating the use of Phytobiotics. Result: The result shows that the benefits associated with the use of phytobiotics are contributed to growth promotion in chickens and enhancement of productive performance of broiler and layer, which could be attributed to their antioxidant activity. The result further revealed that factors mitigating the use of phytobiotics were lack of knowledge in the use of phytobiotics, overdose or underdose usage, and seasonal availability of the phytobiotics. Others are the educational level of the farmers, intrinsic motivation, income poultry farming experience, price of phytobiotics based additives feeds, and intensity of extension agents in visiting them. Conclusion: The difficulties associated with using phytobiotics in chicken farms limit their willingness to boost productivity. The study found that most farmers were ignorant, which prevented them from handling this notion and turning their poultry into a viable enterprise while also allowing them to be creative. They believed that packing phytobiotics-based additive feed was expensive, and lastly, the seasonal availability of some phytobiotics. Recommendation: Further research in phytobiotics use in Nigeria should be carried out in order to establish its efficiency, safety, and awareness.Keywords: mitigating, antibiotics, phytobiotics, poultry farming
Procedia PDF Downloads 173608 Modification of Unsaturated Fatty Acids Derived from Tall Oil Using Micro/Mesoporous Materials Based on H-ZSM-22 Zeolite
Authors: Xinyu Wei, Mingming Peng, Kenji Kamiya, Eika Qian
Abstract:
Iso-stearic acid as a saturated fatty acid with a branched chain shows a low pour point, high oxidative stability and great biodegradability. The industrial production of iso-stearic acid involves first isomerizing unsaturated fatty acids into branched-chain unsaturated fatty acids (BUFAs), followed by hydrogenating the branched-chain unsaturated fatty acids to obtain iso-stearic acid. However, the production yield of iso-stearic acid is reportedly less than 30%. In recent decades, extensive research has been conducted on branched fatty acids. Most research has replaced acidic clays with zeolites due to their high selectivity, good thermal stability, and renewability. It was reported that isomerization of unsaturated fatty acid occurred mainly inside the zeolite channel. In contrast, the production of by-products like dimer acid mainly occurs at acid sites outside the surface of zeolite. Further, the deactivation of catalysts is attributed to the pore blockage of zeolite. In the present study, micro/mesoporous ZSM-22 zeolites were developed. It is clear that the synthesis of a micro/mesoporous ZSM-22 zeolite is regarded as the ideal strategy owing to its ability to minimize coke formation. Different mesoporosities micro/mesoporous H-ZSM-22 zeolites were prepared through recrystallization of ZSM-22 using sodium hydroxide solution (0.2-1M) with cetyltrimethylammonium bromide template (CTAB). The structure, morphology, porosity, acidity, and isomerization performance of the prepared catalysts were characterized and evaluated. The dissolution and recrystallization process of the H-ZSM-22 microporous zeolite led to the formation of approximately 4 nm-sized mesoporous channels on the outer surface of the microporous zeolite, resulting in a micro/mesoporous material. This process increased the weak Brønsted acid sites at the pore mouth while reducing the total number of acid sites in ZSM-22. Finally, an activity test was conducted using oleic acid as a model compound in a fixed-bed reactor. The activity test results revealed that micro/mesoporous H-ZSM-22 zeolites exhibited a high isomerization activity, reaching >70% selectivity and >50% yield of BUFAs. Furthermore, the yield of oligomers was limited to less than 20%. This demonstrates that the presence of mesopores in ZSM-22 enhances contact between the feedstock and the active sites within the catalyst, thereby increasing catalyst activity. Additionally, a portion of the dissolved and recrystallized silica adhered to the catalyst's surface, covering the surface-active sites, which reduced the formation of oligomers. This study offers distinct insights into the production of iso-stearic acid using a fixed-bed reactor, paving the way for future research in this area.Keywords: Iso-stearic acid, oleic acid, skeletal isomerization, micro/mesoporous, ZSM-22
Procedia PDF Downloads 26607 Relaxor Ferroelectric Lead-Free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ Ceramic: Giant Electromechanical Response with Intrinsic Polarization and Resistive Leakage Analyses
Authors: Abid Hussain, Binay Kumar
Abstract:
Environment-friendly lead-free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ (NKLNTS) ceramic was synthesized by solid-state reaction method in search of a potential candidate to replace lead-based ceramics such as PbZrO₃-PbTiO₃ (PZT), Pb(Mg₁/₃Nb₂/₃)O₃-PbTiO₃ (PMN-PT) etc., for various applications. The ceramic was calcined at temperature 850 ᵒC and sintered at 1090 ᵒC. The powder X-Ray Diffraction (XRD) pattern revealed the formation of pure perovskite phase having tetragonal symmetry with space group P4mm of the synthesized ceramic. The surface morphology of the ceramic was studied using Field Emission Scanning Electron Microscopy (FESEM) technique. The well-defined grains with homogeneous microstructure were observed. The average grain size was found to be ~ 0.6 µm. A very large value of piezoelectric charge coefficient (d₃₃ ~ 754 pm/V) was obtained for the synthesized ceramic which indicated its potential for use in transducers and actuators. In dielectric measurements, a high value of ferroelectric to paraelectric phase transition temperature (Tm~305 ᵒC), a high value of maximum dielectric permittivity ~ 2110 (at 1 kHz) and a very small value of dielectric loss ( < 0.6) were obtained which suggested the utility of NKLNTS ceramic in high-temperature ferroelectric devices. Also, the degree of diffuseness (γ) was found to be 1.61 which confirmed a relaxor ferroelectric behavior in NKLNTS ceramic. P-E hysteresis loop was traced and the value of spontaneous polarization was found to be ~11μC/cm² at room temperature. The pyroelectric coefficient was obtained to be very high (p ∼ 1870 μCm⁻² ᵒC⁻¹) for the present case indicating its applicability in pyroelectric detector applications including fire and burglar alarms, infrared imaging, etc. NKLNTS ceramic showed fatigue free behavior over 107 switching cycles. Remanent hysteresis task was performed to determine the true-remanent (or intrinsic) polarization of NKLNTS ceramic by eliminating non-switchable components which showed that a major portion (83.10 %) of the remanent polarization (Pr) is switchable in the sample which makes NKLNTS ceramic a suitable material for memory switching devices applications. Time-Dependent Compensated (TDC) hysteresis task was carried out which revealed resistive leakage free nature of the ceramic. The performance of NKLNTS ceramic was found to be superior to many lead based piezoceramics and hence can effectively replace them for use in piezoelectric, pyroelectric and long duration ferroelectric applications.Keywords: dielectric properties, ferroelectric properties , lead free ceramic, piezoelectric property, solid state reaction, true-remanent polarization
Procedia PDF Downloads 136606 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 157605 Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways
Authors: Anirudh Lahiri
Abstract:
Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology.Keywords: material science, biological engineering, mechanical engineering, neuromorphic computing, spintronics, energy efficiency, computational scalability, synaptic plasticity.
Procedia PDF Downloads 49604 Branched Chain Amino Acid Kinesio PVP Gel Tape from Extract of Pea (Pisum sativum L.) Based on Ultrasound-Assisted Extraction Technology
Authors: Doni Dermawan
Abstract:
Modern sports competition as a consequence of the increase in the value of the business and entertainment in the field of sport has been demanding athletes to always have excellent physical endurance performance. Physical exercise is done in a long time, and intensive may pose a risk of muscle tissue damage caused by the increase of the enzyme creatine kinase. Branched Chain Amino Acids (BCAA) is an essential amino acid that is composed of leucine, isoleucine, and valine which serves to maintain muscle tissue, keeping the immune system, and prevent further loss of coordination and muscle pain. Pea (Pisum sativum L.) is a kind of leguminous plants that are rich in Branched Chain Amino Acids (BCAA) where every one gram of protein pea contains 82.7 mg of leucine; 56.3 mg isoleucine; and 56.0 mg of valine. This research aims to develop Branched Chain Amino Acids (BCAA) from pea extract is applied in dosage forms Gel PVP Kinesio Tape technology using Ultrasound-assisted Extraction. The method used in the writing of this paper is the Cochrane Collaboration Review that includes literature studies, testing the quality of the study, the characteristics of the data collection, analysis, interpretation of results, and clinical trials as well as recommendations for further research. Extraction of BCAA in pea done using ultrasound-assisted extraction technology with optimization variables includes the type of solvent extraction (NaOH 0.1%), temperature (20-250C), time (15-30 minutes) power (80 watt) and ultrasonic frequency (35 KHz). The advantages of this extraction method are the level of penetration of the solvent into the membrane of the cell is high and can increase the transfer period so that the BCAA substance separation process more efficient. BCAA extraction results are then applied to the polymer PVP (Polyvinylpyrrolidone) Gel powder composed of PVP K30 and K100 HPMC dissolved in 10 mL of water-methanol (1: 1) v / v. Preparations Kinesio Tape Gel PVP is the BCAA in the gel are absorbed into the muscle tissue, and joints through tensile force then provides stimulation to the muscle circulation with variable pressure so that the muscle can increase the biomechanical movement and prevent damage to the muscle enzyme creatine kinase. Analysis and evaluation of test preparation include interaction, thickness, weight uniformity, humidity, water vapor permeability, the levels of the active substance, content uniformity, percentage elongation, stability testing, release profile, permeation in vitro and in vivo skin irritation testing.Keywords: branched chain amino acid, BCAA, Kinesio tape, pea, PVP gel, ultrasound-assisted extraction
Procedia PDF Downloads 289603 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst
Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon
Abstract:
Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.Keywords: carbon dioxide, dry reforming, supports, core shell catalyst
Procedia PDF Downloads 181602 Item-Trait Pattern Recognition of Replenished Items in Multidimensional Computerized Adaptive Testing
Authors: Jianan Sun, Ziwen Ye
Abstract:
Multidimensional computerized adaptive testing (MCAT) is a popular research topic in psychometrics. It is important for practitioners to clearly know the item-trait patterns of administered items when a test like MCAT is operated. Item-trait pattern recognition refers to detecting which latent traits in a psychological test are measured by each of the specified items. If the item-trait patterns of the replenished items in MCAT item pool are well detected, the interpretability of the items can be improved, which can further promote the abilities of the examinees who attending the MCAT to be accurately estimated. This research explores to solve the item-trait pattern recognition problem of the replenished items in MCAT item pool from the perspective of statistical variable selection. The popular multidimensional item response theory model, multidimensional two-parameter logistic model, is assumed to fit the response data of MCAT. The proposed method uses the least absolute shrinkage and selection operator (LASSO) to detect item-trait patterns of replenished items based on the essential information of item responses and ability estimates of examinees collected from a designed MCAT procedure. Several advantages of the proposed method are outlined. First, the proposed method does not strictly depend on the relative order between the replenished items and the selected operational items, so it allows the replenished items to be mixed into the operational items in reasonable order such as considering content constraints or other test requirements. Second, the LASSO used in this research improves the interpretability of the multidimensional replenished items in MCAT. Third, the proposed method can exert the advantage of shrinkage method idea for variable selection, so it can help to check item quality and key dimension features of replenished items and saves more costs of time and labors in response data collection than traditional factor analysis method. Moreover, the proposed method makes sure the dimensions of replenished items are recognized to be consistent with the dimensions of operational items in MCAT item pool. Simulation studies are conducted to investigate the performance of the proposed method under different conditions for varying dimensionality of item pool, latent trait correlation, item discrimination, test lengths and item selection criteria in MCAT. Results show that the proposed method can accurately detect the item-trait patterns of the replenished items in the two-dimensional and the three-dimensional item pool. Selecting enough operational items from the item pool consisting of high discriminating items by Bayesian A-optimality in MCAT can improve the recognition accuracy of item-trait patterns of replenished items for the proposed method. The pattern recognition accuracy for the conditions with correlated traits is better than those with independent traits especially for the item pool consisting of comparatively low discriminating items. To sum up, the proposed data-driven method based on the LASSO can accurately and efficiently detect the item-trait patterns of replenished items in MCAT.Keywords: item-trait pattern recognition, least absolute shrinkage and selection operator, multidimensional computerized adaptive testing, variable selection
Procedia PDF Downloads 131601 The Influence of Ibuprofen, Diclofenac and Naproxen on Composition and Ultrastructural Characteristics of Atriplex patula and Spinacia oleracea
Authors: Ocsana Opris, Ildiko Lung, Maria L. Soran, Alexandra Ciorita, Lucian Copolovici
Abstract:
The effects assessment of environmental stress factors on both crop and wild plants of nutritional value are a very important research topic. Continuously worldwide consumption of drugs leads to significant environmental pollution, thus generating environmental stress. Understanding the effects of the important drugs on plant composition and ultrastructural modification is still limited, especially at environmentally relevant concentrations. The aim of the present work was to investigate the influence of three non-steroidal anti-inflammatory drugs (NSAIDs) on chlorophylls content, carotenoids content, total polyphenols content, antioxidant capacity, and ultrastructure of orache (Atriplex patula L.) and spinach (Spinacia oleracea L.). All green leafy vegetables selected for this study were grown in controlled conditions and treated with solutions of different concentrations (0.1‒1 mg L⁻¹) of diclofenac, ibuprofen, and naproxen. After eight weeks of exposure of the plants to NSAIDs, the chlorophylls and carotenoids content were analyzed by high-performance liquid chromatography coupled with photodiode array and mass spectrometer detectors, total polyphenols and antioxidant capacity by ultraviolet-visible spectroscopy. Also, the ultrastructural analyses of the vegetables were performed using transmission electron microscopy in order to assess the influence of the selected NSAIDs on cellular organisms, mainly photosynthetic organisms (chloroplasts), energy supply organisms (mitochondria) and nucleus as a cellular metabolism coordinator. In comparison with the control plants, decreases in the content of chlorophylls were observed in the case of the Atriplex patula L. plants treated with ibuprofen (11-34%) and naproxen (25-52%). Also, the chlorophylls content from Spinacia oleracea L. was affected, the lowest decrease (34%) being obtained in the case of the treatment with naproxen (1 mg L⁻¹). Diclofenac (1 mg L⁻¹) affected the total polyphenols content (a decrease of 45%) of Atriplex patula L. and ibuprofen (1 mg L⁻¹) affected the total polyphenols content (a decrease of 20%) of Spinacia oleracea L. The results obtained also indicate a moderate reduction of carotenoids and antioxidant capacity in the treated plants, in comparison with the controls. The investigations by transmission electron microscopy demonstrated that the green leafy vegetables were affected by the selected NSAIDs. Thus, this research contributes to a better understanding of the adverse effects of these drugs on studied plants. Important to mention is that the dietary intake of these drugs contaminated plants, plants with important nutritional value, may also presume a risk to human health, but currently little is known about the fate of the drugs in plants and their effect on or risk to the ecosystem.Keywords: abiotic stress, green leafy vegetables, pigments content, ultra structure
Procedia PDF Downloads 126600 Support for Refugee Entrepreneurs Through International Aid
Authors: Julien Benomar
Abstract:
The World Bank report published in April 2023 called “Migrants, Refugees and Society” allows us to first distinguish migrants in search of economic opportunities and refugees that flee a situation of danger and choose their destination based on their immediate need for safety. Amongst those two categories, the report distinguished people having professional skills adapted to the labor market of the host country and those who have not. Out of that distinction of four categories, we choose to focus our research on refugees that do not have professional skills adapted to the labor market of the host country. Given that refugees generally have no recourse to public assistance schemes and cannot count on the support of their entourage or support network, we propose to examine the extent to which external assistance, such as international humanitarian action, is likely to accompany refugees' transition to financial empowerment through entrepreneurship. To this end, we propose to carry out a case study structured in three stages: (i) an exchange with a Non-Governmental Organisation (NGO) active in supporting refugee populations from Congo and Burundi to Rwanda, enabling us to (i.i) define together a financial empowerment income, and (i. ii) learn about the content of the support measures taken for the beneficiaries of the humanitarian project; (ii) monitor the population of 118 beneficiaries, including 73 refugees and 45 Rwandans (reference population); (iii) conduct a participatory analysis to identify the level of performance of the project and areas for improvement. The case study thus involved the staff of an international NGO active in helping refugees from Rwanda since 2015 and the staff of a Luxembourg NGO that has been funding this economic aid project through entrepreneurship since 2021. The case study thus involved the staff of an international NGO active in helping refugees from Rwanda since 2015 and the staff of a Luxembourg NGO, which has been funding this economic aid through an entrepreneurship project since 2021, and took place over a 48-day period between April and May 2023. The main results are of two types: (i) the need to associate indicators for monitoring the impact of the project on the indirect beneficiaries of the project (refugee community) and (ii) the identification of success factors making it possible to bring concrete and relevant responses to the constraints encountered. The first result thus made it possible to identify the following indicators: Indicator of community potential ((jobs, training or mentoring) promoted by the activity of the entrepreneur), Indicator of social contribution (tax paid by the entrepreneur), Indicator of resilience (savings and loan capacity generated, and finally impact on social cohesion. The second result made it possible to identify that among the 7 success factors tested, the sector of activity chosen and the level of experience in the sector of the future activity are those that stand out the most clearly.Keywords: entrepreuneurship, refugees, financial empowerment, international aid
Procedia PDF Downloads 81599 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)
Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé
Abstract:
Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)
Procedia PDF Downloads 92598 Multiple Intelligences to Improve Pronunciation
Authors: Jean Pierre Ribeiro Daquila
Abstract:
This paper aims to analyze the use of the Theory of Multiple Intelligences as a tool to facilitate students’ learning. This theory, proposed by the American psychologist and educator Howard Gardner, was first established in 1983 and advocates that human beings possess eight intelligence and not only one, as defended by psychologists prior to his theory. These intelligence are bodily-kinesthetic intelligence, musical, linguistic, logical-mathematical, spatial, interpersonal, intrapersonal, and naturalist. This paper will focus on bodily-kinesthetic intelligence. Spatial and bodily-kinesthetic intelligences are sensed by athletes, dancers, and others who use their bodies in ways that exceed normal abilities. These are intelligences that are closely related. A quarterback or a ballet dancer needs to have both an awareness of body motions and abilities as well as a sense of the space involved in the action. Nevertheless, there are many reasons which make classical ballet dance more integrated with other intelligences. Ballet dancers make it look effortless as they move across the stage, from the lifts to the toe points; therefore, there is acting both in the performance of the repertoire and in hiding the pain or physical stress. The ballet dancer has to have great mathematical intelligence to perform a fast allegro; for instance, each movement has to be executed in a specific millisecond. Flamenco dancers need to rely as well on their mathematic abilities, as the footwork requires the ability to make half, two, three, four or even six movements in just one beat. However, the precision of the arm movements is freer than in ballet dance; for this reason, ballet dancers need to be more holistically aware of their movements; therefore, our experiment will test whether this greater attention required by ballet dancers makes them acquire better results in the training sessions when compared to flamenco dancers. An experiment will be carried out in this study by training ballet dancers through dance (four years of experience dancing minimum – experimental group 1); a group of flamenco dancers (four years of experience dancing minimum – experimental group 2). Both experimental groups will be trained in two different domains – phonetics and chemistry – to examine whether there is a significant improvement in these areas compared to the control group (a group of regular students who will receive the same training through a traditional method). However, this paper will focus on phonetic training. Experimental group 1 will be trained with the aid of classical music plus bodily work. Experimental group 2 will be trained with flamenco rhythm and kinesthetic work. We would like to highlight that this study takes dance as an example of a possible area of strength; nonetheless, other types of arts can and should be used to support students, such as drama, creative writing, music and others. The main aim of this work is to suggest that other intelligences, in the case of this study, bodily-kinesthetic, can be used to help improve pronunciation.Keywords: multiple intelligences, pronunciation, effective pronunciation trainings, short drills, musical intelligence, bodily-kinesthetic intelligence
Procedia PDF Downloads 97597 X-Ray Detector Technology Optimization In CT Imaging
Authors: Aziz Ikhlef
Abstract:
Most of multi-slices CT scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80kVp and 140kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts
Procedia PDF Downloads 274596 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability
Procedia PDF Downloads 107595 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach
Authors: Sina Kazemi, Farshid Torabi, Todd Peterson
Abstract:
Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity
Procedia PDF Downloads 87594 Investigating the Algorithm to Maintain a Constant Speed in the Wankel Engine
Authors: Adam Majczak, Michał Bialy, Zbigniew Czyż, Zdzislaw Kaminski
Abstract:
Increasingly stringent emission standards for passenger cars require us to find alternative drives. The share of electric vehicles in the sale of new cars increases every year. However, their performance and, above all, range cannot be today successfully compared to those of cars with a traditional internal combustion engine. Battery recharging lasts hours, which can be hardly accepted due to the time needed to refill a fuel tank. Therefore, the ways to reduce the adverse features of cars equipped with electric motors only are searched for. One of the methods is a combination of an electric engine as a main source of power and a small internal combustion engine as an electricity generator. This type of drive enables an electric vehicle to achieve a radically increased range and low emissions of toxic substances. For several years, the leading automotive manufacturers like the Mazda and the Audi together with the best companies in the automotive industry, e.g., AVL have developed some electric drive systems capable of recharging themselves while driving, known as a range extender. An electricity generator is powered by a Wankel engine that has seemed to pass into history. This low weight and small engine with a rotating piston and a very low vibration level turned out to be an excellent source in such applications. Its operation as an energy source for a generator almost entirely eliminates its disadvantages like high fuel consumption, high emission of toxic substances, or short lifetime typical of its traditional application. The operation of the engine at a constant rotational speed enables a significant increase in its lifetime, and its small external dimensions enable us to make compact modules to drive even small urban cars like the Audi A1 or the Mazda 2. The algorithm to maintain a constant speed was investigated on the engine dynamometer with an eddy current brake and the necessary measuring apparatus. The research object was the Aixro XR50 rotary engine with the electronic power supply developed at the Lublin University of Technology. The load torque of the engine was altered during the research by means of the eddy current brake capable of giving any number of load cycles. The parameters recorded included speed and torque as well as a position of a throttle in an inlet system. Increasing and decreasing load did not significantly change engine speed, which means that control algorithm parameters are correctly selected. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: electric vehicle, power generator, range extender, Wankel engine
Procedia PDF Downloads 157593 Cognition in Context: Investigating the Impact of Persuasive Outcomes across Face-to-Face, Social Media and Virtual Reality Environments
Authors: Claire Tranter, Coral Dando
Abstract:
Gathering information from others is a fundamental goal for those concerned with investigating crime, and protecting national and international security. Persuading an individual to move from an opposing to converging viewpoint, and an understanding on the cognitive style behind this change can serve to increase understanding of traditional face-to-face interactions, as well as synthetic environments (SEs) often used for communication across varying geographical locations. SEs are growing in usage, and with this increase comes an increase in crime being undertaken online. Communication technologies can allow people to mask their real identities, supporting anonymous communication which can raise significant challenges for investigators when monitoring and managing these conversations inside SEs. To date, the psychological literature concerning how to maximise information-gain in SEs for real-world interviewing purposes is sparse, and as such this aspect of social cognition is not well understood. Here, we introduce an overview of a novel programme of PhD research which seeks to enhance understanding of cross-cultural and cross-gender communication in SEs for maximising information gain. Utilising a dyadic jury paradigm, participants interacted with a confederate who attempted to persuade them to the opposing verdict across three distinct environments: face-to-face, instant messaging, and a novel virtual reality environment utilising avatars. Participants discussed a criminal scenario, acting as a two-person (male; female) jury. Persuasion was manipulated by the confederate claiming an opposing viewpoint (guilty v. not guilty) to the naïve participants from the outset. Pre and post discussion data, and observational digital recordings (voice and video) of participant’ discussion performance was collected. Information regarding cognitive style was also collected to ascertain participants need for cognitive closure and biases towards jumping to conclusions. Findings revealed that individuals communicating via an avatar in a virtual reality environment reacted in a similar way, and thus equally persuasive, when compared to individuals communicating face-to-face. Anonymous instant messaging however created a resistance to persuasion in participants, with males showing a significant decline in persuasive outcomes compared to face to face. The findings reveal new insights particularly regarding the interplay of persuasion on gender and modality, with anonymous instant messaging enhancing resistance to persuasion attempts. This study illuminates how varying SE can support new theoretical and applied understandings of how judgments are formed and modified in response to advocacy.Keywords: applied cognition, persuasion, social media, virtual reality
Procedia PDF Downloads 145