Search results for: time consuming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18313

Search results for: time consuming

17113 A Simple Recursive Framework to Generate Gray Codes for Weak Orders in Constant Amortized Time

Authors: Marsden Jacques, Dennis Wong

Abstract:

A weak order is a way to rank n objects where ties are allowed. In this talk, we present a recursive framework to generate Gray codes for weak orders. We then describe a simple algorithm based on the framework that generates 2-Gray codes for weak orders in constant amortized time per string. This framework can easily be modified to generate other Gray codes for weak orders. We provide an example on using the framework to generate the first Shift Gray code for weak orders, also in constant amortized time, where consecutive strings differ by a shift or a symbol change.

Keywords: weak order, Cayley permutation, Gray code, shift Gray code

Procedia PDF Downloads 172
17112 Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer

Authors: Hao-Su Liu, Jun-Qing Lei

Abstract:

This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces.

Keywords: time-domain expressions, bridge self-excited aerodynamic forces, modified particle swarm optimizer, long-span highway-railway truss bridge

Procedia PDF Downloads 313
17111 Congestion Mitigation on an Urban Arterial through Infrastructure Intervention

Authors: Attiq Ur Rahman Dogar, Sohaib Ishaq

Abstract:

Pakistan had experienced rapid motorization in the last decade. Due to the soft leasing schemes of banks and increase in average household income, even the middle class can now afford cars. The public transit system is inadequate and sparse. Due to these reasons, traffic demand on urban arterials has increased manifold. Poor urban transit planning and aging transportation systems have resulted in traffic congestion. The focus of this study is to improve traffic flow on a section of N-5 passing through the Rawalpindi downtown. Present efforts aim to carry out the analysis of traffic conditions on this section and to investigate the impact of traffic signal co-ordination on travel time. In addition to signal co-ordination, we also examined the effect of different infrastructure improvements on the travel time. After the economic analysis of alternatives and discussions, the improvement plan for Rawalpindi downtown urban arterial section is proposed for implementation.

Keywords: signal coordination, infrastructure intervention, infrastructure improvement, cycle length, fuel consumption cost, travel time cost, economic analysis, travel time, Rawalpindi, Pakistan, traffic signals

Procedia PDF Downloads 315
17110 Impact of a Locally-Prepared Fermented Alcoholic Beverage from Jaggery on the Gut Bacterial Profile of the Tea-Tribal Populations of Assam, India

Authors: Rupamoni Thakur, Madhusmita Dehingia, Narayan C. Talukdar, Mojibur R. Khan

Abstract:

The human gut is an extremely active fermentation site and is inhabited by diverse bacterial species. Consumption of alcoholic beverages has been shown to substantially modulate the human gut bacterial profile (GBP) of an individual. Assam, a major north-eastern state of India, is home to a number of tribal populations of which the tea-tribes form a major community. These tea-tribal communities are known to prepare and consume a locally-prepared alcoholic beverage from fermented jaggery, whose chemical composition is unknown. In this study, we demonstrate the effect of daily intake of the locally-prepared alcoholic beverage on the GBP of the tea-tribal communities and correlate it with the changes in the biochemical biomarkers of the population. The fecal bacterial diversity of 40 drinkers and 35 non-drinking healthy individuals were analyzed by polymerase chain reaction (PCR)–denaturing gradient gel electrophoresis (DGGE). The results suggested that the GBP was significantly modulated in the fermented-beverage consuming subjects. Significant difference was also observed in the serum biochemical parameters such as triglyceride, total cholesterol and the liver marker enzymes (ASAT/ALAT and GGT). Further studies to identify the GBP of drinkers vs non-drinkers through Next-generation Sequencing (NGS) analysis and to correlate the changes with the biochemical biomarkers of the population is underway.

Keywords: alcoholic beverage, gut bacterial profile, PCR-DGGE analysis, tea-tribes of India

Procedia PDF Downloads 323
17109 The Location-Routing Problem with Pickup Facilities and Heterogeneous Demand: Formulation and Heuristics Approach

Authors: Mao Zhaofang, Xu Yida, Fang Kan, Fu Enyuan, Zhao Zhao

Abstract:

Nowadays, last-mile distribution plays an increasingly important role in the whole industrial chain delivery link and accounts for a large proportion of the whole distribution process cost. Promoting the upgrading of logistics networks and improving the layout of final distribution points has become one of the trends in the development of modern logistics. Due to the discrete and heterogeneous needs and spatial distribution of customer demand, which will lead to a higher delivery failure rate and lower vehicle utilization, last-mile delivery has become a time-consuming and uncertain process. As a result, courier companies have introduced a range of innovative parcel storage facilities, including pick-up points and lockers. The introduction of pick-up points and lockers has not only improved the users’ experience but has also helped logistics and courier companies achieve large-scale economy. Against the backdrop of the COVID-19 of the previous period, contactless delivery has become a new hotspot, which has also created new opportunities for the development of collection services. Therefore, a key issue for logistics companies is how to design/redesign their last-mile distribution network systems to create integrated logistics and distribution networks that consider pick-up points and lockers. This paper focuses on the introduction of self-pickup facilities in new logistics and distribution scenarios and the heterogeneous demands of customers. In this paper, we consider two types of demand, including ordinary products and refrigerated products, as well as corresponding transportation vehicles. We consider the constraints associated with self-pickup points and lockers and then address the location-routing problem with self-pickup facilities and heterogeneous demands (LRP-PFHD). To solve this challenging problem, we propose a mixed integer linear programming (MILP) model that aims to minimize the total cost, which includes the facility opening cost, the variable transport cost, and the fixed transport cost. Due to the NP-hardness of the problem, we propose a hybrid adaptive large-neighbourhood search algorithm to solve LRP-PFHD. We evaluate the effectiveness and efficiency of the proposed algorithm by using instances generated based on benchmark instances. The results demonstrate that the hybrid adaptive large neighbourhood search algorithm is more efficient than MILP solvers such as Gurobi for LRP-PFHD, especially for large-scale instances. In addition, we made a comprehensive analysis of some important parameters (e.g., facility opening cost and transportation cost) to explore their impacts on the results and suggested helpful managerial insights for courier companies.

Keywords: city logistics, last-mile delivery, location-routing, adaptive large neighborhood search

Procedia PDF Downloads 78
17108 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems

Authors: Yong-Kyu Jung

Abstract:

The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).

Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity

Procedia PDF Downloads 77
17107 Impact of Global Warming on the Total Flood Duration and Flood Recession Time in the Meghna Basin Using Hydrodynamic Modelling

Authors: Karan Gupta

Abstract:

The floods cause huge loos each year, and their impact gets manifold with the increase of total duration of flood as well as recession time. Moreover, floods have increased in recent years due to climate change in floodplains. In the context of global climate change, the agreement in Paris convention (2015) stated to keep the increase in global average temperature well below 2°C and keep it at the limit of 1.5°C. Thus, this study investigates the impact of increasing temperature on the stage, discharge as well as total flood duration and recession time in the Meghna River basin in Bangladesh. This study considers the 100-year return period flood flows in the Meghna river under the specific warming levels (SWLs) of 1.5°C, 2°C, and 4°C. The results showed that the rate of increase of duration of flood is nearly 50% lesser at ∆T = 1.5°C as compared to ∆T = 2°C, whereas the rate of increase of duration of recession is 75% lower at ∆T = 1.5°C as compared to ∆T = 2°C. Understanding the change of total duration of flood as well as recession time of the flood gives a better insight to effectively plan for flood mitigation measures.

Keywords: flood, climate change, Paris convention, Bangladesh, inundation duration, recession duration

Procedia PDF Downloads 139
17106 Inventory Control for Purchased Part under Long Lead Time and Uncertain Demand: MRP vs Demand-Driven MRP Approach

Authors: M. J. Shofa, A. Hidayatno, O. M. Armand

Abstract:

MRP as a production control system is appropriate for the deterministic environment. Unfortunately, most production systems such as customer demands are stochastic. Demand-Driven MRP (DDMRP) is a new approach for inventory control system, and it deals with demand uncertainty. The objective of this paper is to compare the MRP and DDMRP work for a long lead time and uncertain demand in terms of on-hand inventory levels. The evaluation is conducted through a discrete event simulation using purchased part data from an automotive company. The result is MRP gives 50,759 pcs / day while DDMRP gives 34,835 pcs / day (reduce 32%), it means DDMRP is more effective inventory control than MRP in terms of on-hand inventory levels.

Keywords: Demand-Driven MRP, long lead time, MRP, uncertain demand

Procedia PDF Downloads 300
17105 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank

Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang

Abstract:

Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

Keywords: stormwater runoff, stormwater storage tank, real-time control, fuzzy control

Procedia PDF Downloads 198
17104 Data-Mining Approach to Analyzing Industrial Process Information for Real-Time Monitoring

Authors: Seung-Lock Seo

Abstract:

This work presents a data-mining empirical monitoring scheme for industrial processes with partially unbalanced data. Measurement data of good operations are relatively easy to gather, but in unusual special events or faults it is generally difficult to collect process information or almost impossible to analyze some noisy data of industrial processes. At this time some noise filtering techniques can be used to enhance process monitoring performance in a real-time basis. In addition, pre-processing of raw process data is helpful to eliminate unwanted variation of industrial process data. In this work, the performance of various monitoring schemes was tested and demonstrated for discrete batch process data. It showed that the monitoring performance was improved significantly in terms of monitoring success rate of given process faults.

Keywords: data mining, process data, monitoring, safety, industrial processes

Procedia PDF Downloads 395
17103 Resistance Training Contribution to the Aerobic Component of the International Physical Activity Guidelines in Adults

Authors: Neha Bharti, Martin Sénéchal, Danielle R. Bouchard

Abstract:

Mostly attributed to lack of time, only 15% of adults currently reach the International Physical Activity Guidelines, which state that every adult should achieve minimum of 150 minutes of aerobic exercise per week at moderate to vigorous intensity in minimum bouts of 10 minutes each, in addition to two days of resistance training. Recent studies have suggested that any bout of aerobic exercise reaching moderate intensity has potential to improve health. If one could reach moderate intensity while doing resistance training, this could reduce the total weekly time involvement to reach the International Physical Activity Guidelines. Objectives: 1) To determine whether overweight and older adults can reach a minimum of moderate intensity while doing resistance training compared with young non-overweight adults, 2) To identify if the proportion of time spent at moderate to vigorous intensity is different in overweight adults and older adults when compared with young non-overweight adults when lifting 70% or 80% of maximal load, 3) To determine variables associated with proportion of time spent at moderate to vigorous intensity while doing resistance training. Methods: Sixty participants already doing resistance training were recruited (20 young non-overweight adults, 20 overweight adults, and 20 older adults). Participants visited fitness facility three times, separated by at least 48 hours, and performed eight resistance exercises each time. First visit was to collect baseline measurements and to measure maximal load for each of the eight exercises. Second and third visits were performed wearing a heart rate monitor to record heart rate and to measure exercise intensity. The two exercise sessions were performed at 70% and 80% of maximal capacity. Moderate intensity was defined as 40% of heart rate reserve. Results: The proportion of time spent at moderate to vigorous intensity ranged from 51% to 93% among the three groups. No difference was observed between the young group and the overweight adults group in the proportion of time spent at moderate to vigorous intensity, 82.6% (69.2-94.6) vs 92.5% (73.3-99.1). However, older adults spent lower proportion of time at moderate to vigorous intensity for both sessions 51.5% (22.0-86.6); P < .01. When doing resistance training at 70% and 80% of maximal capacity, the proportion of time spent at moderate to vigorous intensity was 82.3% (56.1-94.7) and 82.0% (59.2-98.0) with no significant difference (P=.83). Conclusion: This study suggests that overweight adults and older adults can reach moderate intensity for at least 51% of the time spent doing resistance training. However, time spent at moderate to vigorous intensity was lower for older adults compared to young non-overweight adults. For adults aged 60 or less, three resistance training sessions of 60 minutes weekly could be enough to reach both aerobic and resistance training components of the International Physical Activity Guidelines. Further research is needed to test if resistance training at moderate to vigorous intensity can have the same health benefits compared with adults completing the International Physical Activity Guidelines as currently suggested.

Keywords: aerobic exercise, international physical activity guidelines, moderate to vigorous intensity, resistance training

Procedia PDF Downloads 536
17102 Memory Types in Hemodialysis (HD) Patients; A Study Based on Hemodialysis Duration, Zahedan: South East of Iran

Authors: Behnoush Sabayan, Ali Alidadi, Saeid Ebarhimi, N. M. Bakhshani

Abstract:

Hemodialysis (HD) patients are at a high risk of atherosclerotic and vascular disease; also little information is available for the HD impact on brain structure of these patients. We studied the brain abnormalities in HD patients. The aim of this study was to investigate the effect of long term HD on brain structure of HD patients. Non-contrast MRI was used to evaluate imaging findings. Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% were female. According to study, HD patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had small vessel ischemia than the HD patients who underwent HD for a shorter term, which the median time was 3 to 5 months. Most of the small vessel ischemia was located in pre-ventricular, subcortical and white matter (1.33± .471, 1.23± .420 and 1.39±.490). However, the other brain damages like: central pons abnormality, global brain atrophy, thinning of corpus callosum and frontal lobe atrophy were found (P<0.01). The present study demonstrated that HD patients who were under HD for a longer time had small vessel ischemia and we conclude that this small vessel ischemia might be a causative mechanism of brain atrophy in chronic hemodialysis patients. However, additional researches are needed in this area.

Keywords: Hemodialysis Patients, Duration of Hemodialysis, MRI, Zahedan

Procedia PDF Downloads 212
17101 Machine Learning Based Digitalization of Validated Traditional Cognitive Tests and Their Integration to Multi-User Digital Support System for Alzheimer’s Patients

Authors: Ramazan Bakir, Gizem Kayar

Abstract:

It is known that Alzheimer and Dementia are the two most common types of Neurodegenerative diseases and their visibility is getting accelerated for the last couple of years. As the population sees older ages all over the world, researchers expect to see the rate of this acceleration much higher. However, unfortunately, there is no known pharmacological cure for both, although some help to reduce the rate of cognitive decline speed. This is why we encounter with non-pharmacological treatment and tracking methods more for the last five years. Many researchers, including well-known associations and hospitals, lean towards using non-pharmacological methods to support cognitive function and improve the patient’s life quality. As the dementia symptoms related to mind, learning, memory, speaking, problem-solving, social abilities and daily activities gradually worsen over the years, many researchers know that cognitive support should start from the very beginning of the symptoms in order to slow down the decline. At this point, life of a patient and caregiver can be improved with some daily activities and applications. These activities include but not limited to basic word puzzles, daily cleaning activities, taking notes. Later, these activities and their results should be observed carefully and it is only possible during patient/caregiver and M.D. in-person meetings in hospitals. These meetings can be quite time-consuming, exhausting and financially ineffective for hospitals, medical doctors, caregivers and especially for patients. On the other hand, digital support systems are showing positive results for all stakeholders of healthcare systems. This can be observed in countries that started Telemedicine systems. The biggest potential of our system is setting the inter-user communication up in the best possible way. In our project, we propose Machine Learning based digitalization of validated traditional cognitive tests (e.g. MOCA, Afazi, left-right hemisphere), their analyses for high-quality follow-up and communication systems for all stakeholders. R. Bakir and G. Kayar are with Gefeasoft, Inc, R&D – Software Development and Health Technologies company. Emails: ramazan, gizem @ gefeasoft.com This platform has a high potential not only for patient tracking but also for making all stakeholders feel safe through all stages. As the registered hospitals assign corresponding medical doctors to the system, these MDs are able to register their own patients and assign special tasks for each patient. With our integrated machine learning support, MDs are able to track the failure and success rates of each patient and also see general averages among similarly progressed patients. In addition, our platform also supports multi-player technology which helps patients play with their caregivers so that they feel much safer at any point they are uncomfortable. By also gamifying the daily household activities, the patients will be able to repeat their social tasks and we will provide non-pharmacological reminiscence therapy (RT – life review therapy). All collected data will be mined by our data scientists and analyzed meaningfully. In addition, we will also add gamification modules for caregivers based on Naomi Feil’s Validation Therapy. Both are behaving positively to the patient and keeping yourself mentally healthy is important for caregivers. We aim to provide a therapy system based on gamification for them, too. When this project accomplishes all the above-written tasks, patients will have the chance to do many tasks at home remotely and MDs will be able to follow them up very effectively. We propose a complete platform and the whole project is both time and cost-effective for supporting all stakeholders.

Keywords: alzheimer’s, dementia, cognitive functionality, cognitive tests, serious games, machine learning, artificial intelligence, digitalization, non-pharmacological, data analysis, telemedicine, e-health, health-tech, gamification

Procedia PDF Downloads 135
17100 Effects of Soil Neutron Irradiation in Soil Carbon Neutron Gamma Analysis

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

The carbon sequestration question of modern times requires the development of an in-situ method of measuring soil carbon over large landmasses. Traditional chemical analytical methods used to evaluate large land areas require extensive soil sampling prior to processing for laboratory analysis; collectively, this is labor-intensive and time-consuming. An alternative method is to apply nuclear physics analysis, primarily in the form of pulsed fast-thermal neutron-gamma soil carbon analysis. This method is based on measuring the gamma-ray response that appears upon neutron irradiation of soil. Specific gamma lines with energies of 4.438 MeV appearing from neutron irradiation can be attributed to soil carbon nuclei. Based on measuring gamma line intensity, assessments of soil carbon concentration can be made. This method can be done directly in the field using a specially developed pulsed fast-thermal neutron-gamma system (PFTNA system). This system conducts in-situ analysis in a scanning mode coupled with GPS, which provides soil carbon concentration and distribution over large fields. The system has radiation shielding to minimize the dose rate (within radiation safety guidelines) for safe operator usage. Questions concerning the effect of neutron irradiation on soil health will be addressed. Information regarding absorbed neutron and gamma dose received by soil and its distribution with depth will be discussed in this study. This information was generated based on Monte-Carlo simulations (MCNP6.2 code) of neutron and gamma propagation in soil. Received data were used for the analysis of possible induced irradiation effects. The physical, chemical and biological effects of neutron soil irradiation were considered. From a physical aspect, we considered neutron (produced by the PFTNA system) induction of new isotopes and estimated the possibility of increasing the post-irradiation gamma background by comparisons to the natural background. An insignificant increase in gamma background appeared immediately after irradiation but returned to original values after several minutes due to the decay of short-lived new isotopes. From a chemical aspect, possible radiolysis of water (presented in soil) was considered. Based on stimulations of radiolysis of water, we concluded that the gamma dose rate used cannot produce gamma rays of notable rates. Possible effects of neutron irradiation (by the PFTNA system) on soil biota were also assessed experimentally. No notable changes were noted at the taxonomic level, nor was functional soil diversity affected. Our assessment suggested that the use of a PFTNA system with a neutron flux of 1e7 n/s for soil carbon analysis does not notably affect soil properties or soil health.

Keywords: carbon sequestration, neutron gamma analysis, radiation effect on soil, Monte-Carlo simulation

Procedia PDF Downloads 141
17099 A Study of Mode Choice Model Improvement Considering Age Grouping

Authors: Young-Hyun Seo, Hyunwoo Park, Dong-Kyu Kim, Seung-Young Kho

Abstract:

The purpose of this study is providing an improved mode choice model considering parameters including age grouping of prime-aged and old age. In this study, 2010 Household Travel Survey data were used and improper samples were removed through the analysis. Chosen alternative, date of birth, mode, origin code, destination code, departure time, and arrival time are considered from Household Travel Survey. By preprocessing data, travel time, travel cost, mode, and ratio of people aged 45 to 55 years, 55 to 65 years and over 65 years were calculated. After the manipulation, the mode choice model was constructed using LIMDEP by maximum likelihood estimation. A significance test was conducted for nine parameters, three age groups for three modes. Then the test was conducted again for the mode choice model with significant parameters, travel cost variable and travel time variable. As a result of the model estimation, as the age increases, the preference for the car decreases and the preference for the bus increases. This study is meaningful in that the individual and households characteristics are applied to the aggregate model.

Keywords: age grouping, aging, mode choice model, multinomial logit model

Procedia PDF Downloads 321
17098 Belarus Rivers Runoff: Current State, Prospects

Authors: Aliaksandr Volchak, Мaryna Barushka

Abstract:

The territory of Belarus is studied quite well in terms of hydrology but runoff fluctuations over time require more detailed research in order to forecast changes in rivers runoff in future. Generally, river runoff is shaped by natural climatic factors, but man-induced impact has become so big lately that it can be compared to natural processes in forming runoffs. In Belarus, a heavy man load on the environment was caused by large-scale land reclamation in the 1960s. Lands of southern Belarus were reclaimed most, which contributed to changes in runoff. Besides, global warming influences runoff. Today we observe increase in air temperature, decrease in precipitation, changes in wind velocity and direction. These result from cyclic climate fluctuations and, to some extent, the growth of concentration of greenhouse gases in the air. Climate change affects Belarus’s water resources in different ways: in hydropower industry, other water-consuming industries, water transportation, agriculture, risks of floods. In this research we have done an assessment of river runoff according to the scenarios of climate change and global climate forecast presented in the 4th and 5th Assessment Reports conducted by Intergovernmental Panel on Climate Change (IPCC) and later specified and adjusted by experts from Vilnius Gediminas Technical University with the use of a regional climatic model. In order to forecast changes in climate and runoff, we analyzed their changes from 1962 up to now. This period is divided into two: from 1986 up to now in comparison with the changes observed from 1961 to 1985. Such a division is a common world-wide practice. The assessment has revealed that, on the average, changes in runoff are insignificant all over the country, even with its irrelevant increase by 0.5 – 4.0% in the catchments of the Western Dvina River and north-eastern part of the Dnieper River. However, changes in runoff have become more irregular both in terms of the catchment area and inter-annual distribution over seasons and river lengths. Rivers in southern Belarus (the Pripyat, the Western Bug, the Dnieper, the Neman) experience reduction of runoff all year round, except for winter, when their runoff increases. The Western Bug catchment is an exception because its runoff reduces all year round. Significant changes are observed in spring. Runoff of spring floods reduces but the flood comes much earlier. There are different trends in runoff changes in spring, summer, and autumn. Particularly in summer, we observe runoff reduction in the south and west of Belarus, with its growth in the north and north-east. Our forecast of runoff up to 2035 confirms the trend revealed in 1961 – 2015. According to it, in the future, there will be a strong difference between northern and southern Belarus, between small and big rivers. Although we predict irrelevant changes in runoff, it is quite possible that they will be uneven in terms of seasons or particular months. Especially, runoff can change in summer, but decrease in the rest seasons in the south of Belarus, whereas in the northern part the runoff is predicted to change insignificantly.

Keywords: assessment, climate fluctuation, forecast, river runoff

Procedia PDF Downloads 120
17097 Analysis of Waiting Time and Drivers Fatigue at Manual Toll Plaza and Suggestion of an Automated Toll Tax Collection System

Authors: Muhammad Dawood Idrees, Maria Hafeez, Arsalan Ansari

Abstract:

Toll tax collection is the earliest method of tax collection and revenue generation. This revenue is utilized for the development of roads networks, maintenance, and connecting to roads and highways across the country. Pakistan is one of the biggest countries, covers a wide area of land, roads networks, and motorways are important source of connecting cities. Every day millions of people use motorways, and they have to stop at toll plazas to pay toll tax as majority of toll plazas are manually collecting toll tax. The purpose of this study is to calculate the waiting time of vehicles at Karachi Hyderabad (M-9) motorway. As Karachi is the biggest city of Pakistan and hundreds of thousands of people use this route to approach other cities. Currently, toll tax collection is manual system which is a major cause for long time waiting at toll plaza. This study calculates the waiting time of vehicles, fuel consumed in waiting time, manpower employed at toll plaza as all process is manual, and it also leads to mental and physical fatigue of driver. All wastages of sources are also calculated, and a most feasible automatic toll tax collection system is proposed which is not only beneficial to reduce waiting time but also beneficial in reduction of fuel, reduction of manpower employed, and reduction in physical and mental fatigue. A cost comparison in terms of wastages is also shown between manual and automatic toll tax collection system (E-Z Pass). Results of this study reveal that, if automatic tool collection system is implemented at Karachi to Hyderabad motorway (M-9), there will be a significance reduction in waiting time of vehicles, which leads to reduction of fuel consumption, environmental pollution, mental and physical fatigue of driver. All these reductions are also calculated in terms of money (Pakistani rupees) and it is obtained that millions of rupees can be saved by using automatic tool collection system which will lead to improve the economy of country.

Keywords: toll tax collection, waiting time, wastages, driver fatigue

Procedia PDF Downloads 146
17096 Production of Bioethanol through Hydrolysis of Agro-Industrial Banana Crop Residues

Authors: Sánchez Acuña, Juan Camilo, Granados Gómez, Mildred Magaly, Navarrete Rodríguez, Luisa Fernanda

Abstract:

Nowadays, the main biofuels source production as bioethanol is food crops. This means a high competition between foods and energy production. For this reason, it is necessary to take into account the use of new raw materials friendly to the environment. The main objective of this paper is to evaluate the potential of the agro-industrial banana crop residues in the production of bioethanol. A factorial design of 24 was used, the design has variables such as pH, time and concentration of hydrolysis, another variable is the time of fermentation that is of 7 or 15 days. In the hydrolysis phase, the pH is acidic (H2SO4) or basic (NaOH), the time is 30 or 15 minutes and the concentration is 0.1 or 0.5 M. It was observed that basic media, low concentrations, fermentation, and higher pretreatment times produced better performance in terms of biofuel obtained.

Keywords: bioethanol, biofuels, banana waste, hydrolysis

Procedia PDF Downloads 425
17095 Hotel Deposit Contract and Coverage of Risks Resulting, through Insurance Contracts, in Tourism within the HoReCa Domain: Alternative Dispute Resolution Methods on These Contracts

Authors: Laura Ramona Nae

Abstract:

The issue of risks faced by companies providing tourist and hotel services in the HoReCa field, related to the goods belonging to consumer tourists left in hotel storage, has acquired a new dimension in the context of the economic and geo-political influences that have recently intervened at the global level. Thus, hoteliers and not only had to create contractual mechanisms regarding the risks and to protect the businesses in this field of activity. This situation has led to a reassessment of the importance of insurance, in particular with regard to hotel liability insurance-premises liability, safety, and security of goods. Interpretation of clauses in contracts concluded between hoteliers and tourists consuming hotel services and products, all the more so in the current pandemic context of Covid 19, stressed the increase in the number of disputes generated by them. This article presents a general picture of the significance of the risks related to the activity carried out in the hospitality industry, tourism, respectively within the HoReCa field. The study mainly marks the specificities of the hotel deposit contract, as well as the related insurance specific to the field, as a way to cover these risks. The article also refers to alternative methods of out-of-court settlement of disputes (ADR) in the HoReCa domain, generally used in both Romania and the European Union.

Keywords: consumer tourist, disputes and ADR methods, deposit contract, hotel warehouse and hotelier insurance, hotel services and tourist products, HoReCa

Procedia PDF Downloads 56
17094 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images

Authors: Shenlun Chen, Leonard Wee

Abstract:

Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.

Keywords: colorectal cancer, differentiation, survival analysis, tumor grading

Procedia PDF Downloads 133
17093 Bilateral Telecontrol of AutoMerlin Mobile Robot Using Time Domain Passivity Control

Authors: Aamir Shahzad, Hubert Roth

Abstract:

This paper is presenting the bilateral telecontrol of AutoMerlin Mobile Robot having communication delay. Passivity Observers has been designed to monitor the net energy at both ports of a two port network and if any or both ports become active making net energy negative, then the passivity controllers dissipate the proper energy to make the overall system passive in the presence of time delay. The environment force is modeled and sent back to human operator so that s/he can feel it and has additional information about the environment in the vicinity of mobile robot. The experimental results have been presented to show the performance and stability of bilateral controller. The results show the whenever the passivity observers observe active behavior then the passivity controller come into action to neutralize the active behavior to make overall system passive.

Keywords: bilateral control, human operator, haptic device, communication network, time domain passivity control, passivity observer, passivity controller, time delay, mobile robot, environment force

Procedia PDF Downloads 390
17092 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System

Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale

Abstract:

In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.

Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine

Procedia PDF Downloads 69
17091 Information Retrieval from Internet Using Hand Gestures

Authors: Aniket S. Joshi, Aditya R. Mane, Arjun Tukaram

Abstract:

In the 21st century, in the era of e-world, people are continuously getting updated by daily information such as weather conditions, news, stock exchange market updates, new projects, cricket updates, sports and other such applications. In the busy situation, they want this information on the little use of keyboard, time. Today in order to get such information user have to repeat same mouse and keyboard actions which includes time and inconvenience. In India due to rural background many people are not much familiar about the use of computer and internet also. Also in small clinics, small offices, and hotels and in the airport there should be a system which retrieves daily information with the minimum use of keyboard and mouse actions. We plan to design application based project that can easily retrieve information with minimum use of keyboard and mouse actions and make our task more convenient and easier. This can be possible with an image processing application which takes real time hand gestures which will get matched by system and retrieve information. Once selected the functions with hand gestures, the system will report action information to user. In this project we use real time hand gesture movements to select required option which is stored on the screen in the form of RSS Feeds. Gesture will select the required option and the information will be popped and we got the information. A real time hand gesture makes the application handier and easier to use.

Keywords: hand detection, hand tracking, hand gesture recognition, HSV color model, Blob detection

Procedia PDF Downloads 287
17090 Real-Time Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Human Papillomavirus 16 in Oral Squamous Cell Carcinoma

Authors: Suharni Mohamad Suharni Mohamad, Nurul Izzati Hamzan Nurul Izzati Hamzan, Norhayu Abdul Rahman Norhayu Abdul Rahman, Siti Suraiya Md Noor Siti Suraiya Md Noor

Abstract:

Human papillomavirus (HPV) is an important risk factor for development of oral cancer. HPV16 is the most common type found in HPV-positive squamous cell carcinoma. In the present study, we established a real-time loop-mediated isothermal amplification (real-time LAMP) for detection of HPV16. A set of six primers was specially designed to recognize eight distinct sequences of HPV16-E6. Detection and quantification was achieved by real-time monitoring using a real-time turbidimeter based on threshold time required for turbidity in the LAMP reaction. LAMP reagents (MgSO4, dNTPs, Bst polymerase concentrations) and various incubation times and temperatures were optimized. The sensitivity was determined using 10-fold serial dilutions of HPV16 standard strain. The specificity of was evaluated using other HPV genotypes. The optimized method was established with specifically designed primers by real-time detection in approximately 30 min at 65°C. The limit of detection of HPV16 using the LAMP assay was 10 pg/ml that could be detected in 30 min. The LAMP assay was 10 times more sensitive than the conventional PCR in detecting HPV16. No cross-reactivity with other HPV genotypes was observed. This quantitative real-time LAMP assay may improve diagnostic potential for the detection and quantification of HPV16 in clinical samples and epidemiological studies due to its rapidity, simplicity, high sensitivity and specificity. This assay will be further evaluated with HPV DNAs of saliva from patients with oral squamous cell carcinoma. Acknowledgement: This study was financially supported by the ScienceFund Grant, Ministry of Science, Technology and Innovation (305/PPSG/6113219).

Keywords: Oral Squamous Cell Carcinoma (OSCC), Human Papillomavirus 16 (HPV16), Loop-Mediated Isothermal Amplification (LAMP), rapid detection

Procedia PDF Downloads 404
17089 Assessment of Heavy Metals in Vegetables Grown on Irrigated Land in Butura, Bokkos LGA, Plateau State, Nigeria

Authors: Ogbole Alexandra Simi, Wuyep Solomon Zitta, Monday Seri Nentok, Boilif Yilni Edward, Ocheri Maxwell Idoko

Abstract:

Vegetables have positive antioxidative properties and are abundant in vitamins, minerals, and fiber. However, if consumed in large quantities, it may be harmful to human health. Therefore, this study assessed the effects of heavy metals on irrigated pepper, cabbage, and Irish potatoes grown in Butura. Atomic absorption spectrophotometry (AA240FS) was used to analyze cadmium (Cd), cobalt (Co), nickel (Ni), lead (Pb), zinc (Zn), copper (Cu), chromium (Cr), and arsenic (As) levels. Three samples were selected from each of the vegetables grown on nine selected farms at distances of 0 m, 10 m, and 30 m. This forms a composite sample of vegetables at each farm. The study showed that the concentrations of cobalt, chromium, cadmium, copper, arsenic, zinc and nickel were within the standard limits set by the FAO/WHO, except for lead, which is higher than the allowable limits for vegetables. These may have behavioral problems, neurological complications, and hematologic disorders for consumers. Thus, these findings could lead to a risk for the human population consuming these vegetables. It is recommended that irrigation water and agricultural soils be constantly monitored to determine the concentration of metals accumulated by crop plants to ensure that crop plants are safe for consumption by humans.

Keywords: vegetable, cabbage, heavy metals, irrigated, Irish potato, Bokkos, pepper

Procedia PDF Downloads 20
17088 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 60
17087 A Real Time Ultra-Wideband Location System for Smart Healthcare

Authors: Mingyang Sun, Guozheng Yan, Dasheng Liu, Lei Yang

Abstract:

Driven by the demand of intelligent monitoring in rehabilitation centers or hospitals, a high accuracy real-time location system based on UWB (ultra-wideband) technology was proposed. The system measures precise location of a specific person, traces his movement and visualizes his trajectory on the screen for doctors or administrators. Therefore, doctors could view the position of the patient at any time and find them immediately and exactly when something emergent happens. In our design process, different algorithms were discussed, and their errors were analyzed. In addition, we discussed about a , simple but effective way of correcting the antenna delay error, which turned out to be effective. By choosing the best algorithm and correcting errors with corresponding methods, the system attained a good accuracy. Experiments indicated that the ranging error of the system is lower than 7 cm, the locating error is lower than 20 cm, and the refresh rate exceeds 5 times per second. In future works, by embedding the system in wearable IoT (Internet of Things) devices, it could provide not only physical parameters, but also the activity status of the patient, which would help doctors a lot in performing healthcare.

Keywords: intelligent monitoring, ultra-wideband technology, real-time location, IoT devices, smart healthcare

Procedia PDF Downloads 137
17086 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 73
17085 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data

Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.

Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query

Procedia PDF Downloads 160
17084 Effect of Quenching Medium on the Hardness of Dual Phase Steel Heat Treated at a High Temperature

Authors: Tebogo Mabotsa, Tamba Jamiru, David Ibrahim

Abstract:

Dual phase(DP) steel consists essentially of fine grained equiaxial ferrite and a dispersion of martensite. Martensite is the primary precipitate in DP steels, it is the main resistance to dislocation motion within the material. The objective of this paper is to present a relation between the intercritical annealing holding time and the hardness of a dual phase steel. The initial heat treatment involved heating the specimens to 1000oC and holding the sample at that temperature for 30 minutes. After the initial heat treatment, the samples were heated to 770oC and held for a varying amount of time at constant temperature. The samples were held at 30, 60, and 90 minutes respectively. After heating and holding the samples at the austenite-ferrite phase field, the samples were quenched in water, brine, and oil for each holding time. The experimental results proved that an equation for predicting the hardness of a dual phase steel as a function of the intercritical holding time is possible. The relation between intercritical annealing holding time and hardness of a dual phase steel heat treated at high temperatures is parabolic in nature. Theoretically, the model isdependent on the cooling rate because the model differs for each quenching medium; therefore, a universal hardness equation can be derived where the cooling rate is a variable factor.

Keywords: quenching medium, annealing temperature, dual phase steel, martensite

Procedia PDF Downloads 81