Search results for: soil texture prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5618

Search results for: soil texture prediction

4418 Effect of Different Processing Methods on the Proximate, Functional, Sensory, and Nutritional Properties of Weaning Foods Formulated from Maize (Zea mays) and Soybean (Glycine max) Flour Blends

Authors: C. O. Agu, C. C. Okafor

Abstract:

Maize and soybean flours were produced using different methods of processing which include fermentation (FWF), roasting (RWF) and malting (MWF). Products from the different methods were mixed in the ratio 60:40 maize/soybean, respectively. These composites mixed with other ingredients such as sugar, vegetable oil, vanilla flavour and vitamin mix were analyzed for proximate composition, physical/functional, sensory and nutritional properties. The results for the protein content ranged between 6.25% and 16.65% with sample RWF having the highest value. Crude fibre values ranged from 3.72 to 10.0%, carbohydrate from 58.98% to 64.2%, ash from 1.27 to 2.45%. Physical and functional properties such as bulk density, wettability, gelation capacity have values between 0.74 and 0.76g/ml, 20.33 and 46.33 min and 0.73 to 0.93g/ml, respectively. On the sensory quality colour, flavour, taste, texture and general acceptability were determined. In terms of colour and flavour there was no significant difference (P < 0.05) while the values for taste ranged between 4.89 and 7.1 l, texture 5.50 to 8.38 and general acceptability 6.09 and 7.89. Nutritionally there is no significant difference (P < 0.05) between sample RWF and the control in all parameters considered. Samples FWF and MWF showed significantly (P < 0.5) lower values in all parameters determined. In the light of the above findings, roasting method is highly recommend in the production of weaning foods.

Keywords: fermentation, malting, ratio, roasting, wettability

Procedia PDF Downloads 305
4417 Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment

Authors: Qurbanov Huseyn Nuraddin

Abstract:

The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory.

Keywords: combined plough, mineral fertilizers, sprinkle fluently, fertilizer rate, cereals

Procedia PDF Downloads 73
4416 Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants

Authors: Hong Li, Tingxian Li, Xudong Wang, Qinghuo Lin

Abstract:

Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress.

Keywords: atmospheric N fixation, root nodulation, soil Fe co-variance, stem ureide, yardlong-bean plants

Procedia PDF Downloads 290
4415 Two-Dimensional Seismic Response of Concrete Gravity Dams Including Base Sliding

Authors: Djamel Ouzandja, Boualem Tiliouine

Abstract:

The safety evaluation of the concrete gravity dams subjected to seismic excitations is really very complex as the earthquake response of the concrete gravity dam depends upon its contraction joints with foundation soil. This paper presents the seismic response of concrete gravity dams considering friction contact and welded contact. Friction contact is provided using contact elements. Two-dimensional (2D) finite element model of Oued Fodda concrete gravity dam, located in Chlef at the west of Algeria, is used for this purpose. Linear and nonlinear analyses considering dam-foundation soil interaction are performed using ANSYS software. The reservoir water is modeled as added mass using the Westergaard approach. The Drucker-Prager model is preferred for dam and foundation rock in nonlinear analyses. The surface-to-surface contact elements based on the Coulomb's friction law are used to describe the friction. These contact elements use a target surface and a contact surface to form a contact pair. According to this study, the seismic analysis of concrete gravity dams including base sliding. When the friction contact is considered in joints, the base sliding displacement occurs along the dam-foundation soil contact interface. Besides, the base sliding may generally decrease the principal stresses in the dam.

Keywords: concrete gravity dam, dynamic soil-structure interaction, friction contact, sliding

Procedia PDF Downloads 408
4414 Effect of Thistle Ecotype in the Physical-Chemical and Sensorial Properties of Serra da Estrela Cheese

Authors: Raquel P. F. Guiné, Marlene I. C. Tenreiro, Ana C. Correia, Paulo Barracosa, Paula M. R. Correia

Abstract:

The objective of this study was to evaluate the physical and chemical characteristics of Serra da Estrela cheese and compare these results with those of the sensory analysis. For the study were taken six samples of Serra da Estrela cheese produced with 6 different ecotypes of thistle in a dairy situated in Penalva do Castelo. The chemical properties evaluated were moisture content, protein, fat, ash, chloride and pH; the physical properties studied were color and texture; and finally a sensory evaluation was undertaken. The results showed moisture varying in the range 40-48%, protein in the range 15-20%, fat between 41-45%, ash between 3.9-5.0% and chlorides varying from 1.2 to 3.0%. The pH varied from 4.8 to 5.4. The textural properties revealed that the crust hardness is relatively low (maximum 7.3 N), although greater than flesh firmness (maximum 1.7 N), and also that these cheeses are in fact soft paste type, with measurable stickiness and intense adhesiveness. The color analysis showed that the crust is relatively light (L* over 50), and with a predominant yellow coloration (b* around 20 or over) although with a slight greenish tone (a* negative). The results of the sensory analysis did not show great variability for most of the attributes measured, although some differences were found in attributes such as crust thickness, crust uniformity, and creamy flesh.

Keywords: chemical composition, color, sensorial analysis, Serra da Estrela cheese, texture

Procedia PDF Downloads 301
4413 A Model of Foam Density Prediction for Expanded Perlite Composites

Authors: M. Arifuzzaman, H. S. Kim

Abstract:

Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15–0.5 g/cm3) produced with a range of compaction ratios (1.5-3.5), a range of sodium silicate contents (0.05–0.35 g/ml) in dilution, a range of expanded perlite particle sizes (1-4 mm), and various perlite densities (such as skeletal, material, bulk, and envelope densities). A close agreement between predictions and experimental results was found.

Keywords: expanded perlite, flotation method, foam density, model, prediction, sodium silicate

Procedia PDF Downloads 408
4412 Satellite Statistical Data Approach for Upwelling Identification and Prediction in South of East Java and Bali Sea

Authors: Hary Aprianto Wijaya Siahaan, Bayu Edo Pratama

Abstract:

Sea fishery's potential to become one of the nation's assets which very contributed to Indonesia's economy. This fishery potential not in spite of the availability of the chlorophyll in the territorial waters of Indonesia. The research was conducted using three methods, namely: statistics, comparative and analytical. The data used include MODIS sea temperature data imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, MODIS data of chlorophyll-a imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, and Imaging results data ASCAT on MetOp and NOAA satellites with 27 km resolution in 2002-2015. The results of the processing of the data show that the incidence of upwelling in the south of East Java Sea began to happen in June identified with sea surface temperature anomaly below normal, the mass of the air that moves from the East to the West, and chlorophyll-a concentrations are high. In July the region upwelling events are increasingly expanding towards the West and reached its peak in August. Chlorophyll-a concentration prediction using multiple linear regression equations demonstrate excellent results to chlorophyll-a concentrations prediction in 2002 until 2015 with the correlation of predicted chlorophyll-a concentration indicate a value of 0.8 and 0.3 with RMSE value. On the chlorophyll-a concentration prediction in 2016 indicate good results despite a decline in the value of the correlation, where the correlation of predicted chlorophyll-a concentration in the year 2016 indicate a value 0.6, but showed improvement in RMSE values with 0.2.

Keywords: satellite, sea surface temperature, upwelling, wind stress

Procedia PDF Downloads 158
4411 Simplified Empirical Method for Predicting Liquefaction Potential and Its Application to Kaohsiung Areas in Taiwan

Authors: Darn H. Hsiao, Zhu-Yun Zheng

Abstract:

Since Taiwan is located between the Eurasian and Filipino plates and earthquakes often thus occur. The coastal plains in western Taiwan are alluvial plains, and the soils of the alluvium are mostly from the Lao-Shan belt in the central mountainous area of ​​southern Taiwan. It could come mostly from sand/shale and slate. The previous investigation found that the soils in the Kaohsiung area of ​​southern Taiwan are mainly composed of slate, shale, quartz, low-plastic clay, silt, silty sand and so on. It can also be found from the past earthquakes that the soil in Kaohsiung is highly susceptible to soil subsidence due to liquefaction. Insufficient bearing capacity of building will cause soil liquefaction disasters. In this study, the boring drilling data from nine districts among the Love River Basin in the city center, and some factors affecting liquefaction include the content of fines (FC), standard penetration test N value (SPT N), the thickness of clay layer near ground-surface, and the thickness of possible liquefied soil were further discussed for liquefaction potential as well as groundwater level. The results show that the liquefaction potential is higher in the areas near the riverside, the backfill area, and the west area of ​​the study area. This paper also uses the old paleo-geological map, soil particle distribution curve, compared with LPI map calculated from the analysis results. After all the parameters finally were studied for five sub zones in the Love River Basin by maximum-minimum method, it is found that both of standard penetration test N value and the thickness of the clay layer will be most influential.

Keywords: liquefaction, western Taiwan, liquefaction potential map, high liquefaction potential areas

Procedia PDF Downloads 119
4410 Early Design Prediction of Submersible Maneuvers

Authors: Hernani Brinati, Mardel de Conti, Moyses Szajnbok, Valentina Domiciano

Abstract:

This study brings a mathematical model and examples for the numerical prediction of submersible maneuvers in the horizontal and in the vertical planes. The geometry of the submarine is here taken as a body of revolution plus a sail, two horizontal and two vertical rudders. The model includes the representation of the hull resistance and of the propeller thrust and torque, what enables to consider the variation of the longitudinal component of the velocity of the ship when maneuvering. The hydrodynamic forces are represented through power series expansions of the acceleration and velocity components. The hydrodynamic derivatives for the body of revolution are mostly estimated based on fundamental principles applicable to the flow around airplane fuselages in the subsonic regime. The hydrodynamic forces for the sail and rudders are estimated based on a finite aspect ratio wing theory. The objective of this study is to build an expedite model for submarine maneuvers prediction, based on fundamental principles, which may be convenient in the early stages of the ship design. This model is tested against available numerical and experimental data.

Keywords: submarine maneuvers, submarine, maneuvering, dynamics

Procedia PDF Downloads 638
4409 Response of Onion to FTM and Inorganic Fertilizers Application on Growth, Yield and Nutrient Uptake in Lateritic Soil of Konkan

Authors: Rupali Thorat, S. B. Dodake, V. N. Palsande, S. D. Patil

Abstract:

A field experiment was conducted to study the “Response of onion to FYM and inorganic fertilizers application on growth, yield and nutrient uptake in lateritic soil of Konkan” at the farm of Pangari block of Irrigation of Scheme, Central Experimentation Station, Wakawali during Rabi 2009-10. There were 12 treatment combinations, comprising of 3 levels of NPK fertilizers (C1 ,C2-125 kg N, 62.5 kg P205 and 62.5 kg K20 ha-1 and C3-150 kg N, 75 kg P205 and 75 kg K20 ha-1) and 4 levels of FYM (F1-10 t FYM ha-1, F2 - 15 t FYM ha-1, F3-20 t FYM ha-1, F4-25 t FYM ha-1) replicated thrice using Factorial Randomized Block Design. The observations on plant height, number of leaves, girth of plant, polar and equatorial diameter of bulb as well as dry matter yield, onion bulb yield recorded during the course of field study were subjected to statistical analysis. Similarly nutrient content and uptake, quality parameters of bulb and soil properties were also determined and their data were also analyzed statistically. It is revealed from the study that the growth attributes, dry matter yield, onion bulb yield, nutrient content, nutrient uptake, quality parameters were improved significantly due to application of NPK @ 150:75:75 kg ha-1 along with FYM @ 20 t ha-1(C3F3). Application of NPK @ 150:75:75 kg ha-1 along with FYM @ 20 t ha-1 (C3F3) registered highest onion bulb yield (t ha-1). The quality of onion as well as availability of N, P, K, Fe, Mn, Zn and Cu in the soil was improved due to application of NPK @ 150:75:75 kg ha-1 and FYM @ 20 t ha-1.

Keywords: onion, FYM, yield, nutrient uptake and fertilizer

Procedia PDF Downloads 488
4408 Blood Glucose Measurement and Analysis: Methodology

Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali

Abstract:

There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.

Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system

Procedia PDF Downloads 461
4407 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: artificial neural networks, biodiesel, iodine value, prediction

Procedia PDF Downloads 607
4406 Prediction of the Mechanical Power in Wind Turbine Powered Car Using Velocity Analysis

Authors: Abdelrahman Alghazali, Youssef Kassem, Hüseyin Çamur, Ozan Erenay

Abstract:

Savonius is a drag type vertical axis wind turbine. Savonius wind turbines have a low cut-in speed and can operate at low wind speed. This makes it suitable for electricity or mechanical generation in low-power applications such as individual domestic installations. Therefore, the primary purpose of this work was to investigate the relationship between the type of Savonius rotor and the torque and mechanical power generated. And it was to illustrate how the type of rotor might play an important role in the prediction of mechanical power of wind turbine powered car. The main purpose of this paper is to predict and investigate the aerodynamic effects by means of velocity analysis on the performance of a wind turbine powered car by converting the wind energy into mechanical energy to overcome load that rotates the main shaft. The predicted results based on theoretical analysis were compared with experimental results obtained from literature. The percentage of error between the two was approximately around 20%. Prediction of the torque was done at a wind speed of 4 m/s, and an angular velocity of 130 RPM according to meteorological statistics in Northern Cyprus.

Keywords: mechanical power, torque, Savonius rotor, wind car

Procedia PDF Downloads 338
4405 Numerical Method for Productivity Prediction of Water-Producing Gas Well with Complex 3D Fractures: Case Study of Xujiahe Gas Well in Sichuan Basin

Authors: Hong Li, Haiyang Yu, Shiqing Cheng, Nai Cao, Zhiliang Shi

Abstract:

Unconventional resources have gradually become the main direction for oil and gas exploration and development. However, the productivity of gas wells, the level of water production, and the seepage law in tight fractured gas reservoirs are very different. These are the reasons why production prediction is so difficult. Firstly, a three-dimensional multi-scale fracture and multiphase mathematical model based on an embedded discrete fracture model (EDFM) is established. And the material balance method is used to calculate the water body multiple according to the production performance characteristics of water-producing gas well. This will help construct a 'virtual water body'. Based on these, this paper presents a numerical simulation process that can adapt to different production modes of gas wells. The research results show that fractures have a double-sided effect. The positive side is that it can increase the initial production capacity, but the negative side is that it can connect to the water body, which will lead to the gas production drop and the water production rise both rapidly, showing a 'scissor-like' characteristic. It is worth noting that fractures with different angles have different abilities to connect with the water body. The higher the angle of gas well development, the earlier the water maybe break through. When the reservoir is a single layer, there may be a stable production period without water before the fractures connect with the water body. Once connected, a 'scissors shape' will appear. If the reservoir has multiple layers, the gas and water will produce at the same time. The above gas-water relationship can be matched with the gas well production date of the Xujiahe gas reservoir in the Sichuan Basin. This method is used to predict the productivity of a well with hydraulic fractures in this gas reservoir, and the prediction results are in agreement with on-site production data by more than 90%. It shows that this research idea has great potential in the productivity prediction of water-producing gas wells. Early prediction results are of great significance to guide the design of development plans.

Keywords: EDFM, multiphase, multilayer, water body

Procedia PDF Downloads 195
4404 Assessment of Pier Foundations for Onshore Wind Turbines in Non-cohesive Soil

Authors: Mauricio Terceros, Jann-Eike Saathoff, Martin Achmus

Abstract:

In non-cohesive soil, onshore wind turbines are often found on shallow foundations with a circular or octagonal shape. For the current generation of wind turbines, shallow foundations with very large breadths are required. The foundation support costs thus represent a considerable portion of the total construction costs. Therefore, an economic optimization of the type of foundation is highly desirable. A conceivable alternative foundation type would be a pier foundation, which combines the load transfer over the foundation area at the pier base with the transfer of horizontal loads over the shaft surface of the pier. The present study aims to evaluate the load-bearing behavior of a pier foundation based on comprehensive parametric studies. Thereby, three-dimensional numerical simulations of both pier and shallow foundations are developed. The evaluation of the results focuses on the rotational stiffnesses of the proposed soil-foundation systems. In the design, the initial rotational stiffness is decisive for consideration of natural frequencies, whereas the rotational secant stiffness for a maximum load is decisive for serviceability considerations. A systematic analysis of the results at different load levels shows that the application of the typical pier foundation is presumably limited to relatively small onshore wind turbines.

Keywords: onshore wind foundation, pier foundation, rotational stiffness of soil-foundation system, shallow foundation

Procedia PDF Downloads 154
4403 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System

Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin

Abstract:

A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.

Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts

Procedia PDF Downloads 130
4402 Inversion of the Spectral Analysis of Surface Waves Dispersion Curves through the Particle Swarm Optimization Algorithm

Authors: A. Cerrato Casado, C. Guigou, P. Jean

Abstract:

In this investigation, the particle swarm optimization (PSO) algorithm is used to perform the inversion of the dispersion curves in the spectral analysis of surface waves (SASW) method. This inverse problem usually presents complicated solution spaces with many local minima that make difficult the convergence to the correct solution. PSO is a metaheuristic method that was originally designed to simulate social behavior but has demonstrated powerful capabilities to solve inverse problems with complex space solution and a high number of variables. The dispersion curve of the synthetic soils is constructed by the vertical flexibility coefficient method, which is especially convenient for soils where the stiffness does not increase gradually with depth. The reason is that these types of soil profiles are not normally dispersive since the dominant mode of Rayleigh waves is usually not coincident with the fundamental mode. Multiple synthetic soil profiles have been tested to show the characteristics of the convergence process and assess the accuracy of the final soil profile. In addition, the inversion procedure is applied to multiple real soils and the final profile compared with the available information. The combination of the vertical flexibility coefficient method to obtain the dispersion curve and the PSO algorithm to carry out the inversion process proves to be a robust procedure that is able to provide good solutions for complex soil profiles even with scarce prior information.

Keywords: dispersion, inverse problem, particle swarm optimization, SASW, soil profile

Procedia PDF Downloads 185
4401 Parametric Study on the Development of Earth Pressures Behind Integral Bridge Abutments Under Cyclic Translational Movements

Authors: Lila D. Sigdel, Chin J. Leo, Samanthika Liyanapathirana, Pan Hu, Minghao Lu

Abstract:

Integral bridges are a class of bridges with integral or semi-integral abutments, designed without expansion joints in the bridge deck of the superstructure. Integral bridges are economical alternatives to conventional jointed bridges with lower maintenance costs and greater durability, thereby improving social and economic stability for the community. Integral bridges have also been proven to be effective in lowering the overall construction cost compared to the conventional type of bridges. However, there is significant uncertainty related to the design and analysis of integral bridges in response to cyclic thermal movements induced due to deck expansion and contraction. The cyclic thermal movements of the abutments increase the lateral earth pressures on the abutment and its foundation, leading to soil settlement and heaving of the backfill soil. Thus, the primary objective of this paper is to investigate the soil-abutment interaction under the cyclic translational movement of the abutment. Results from five experiments conducted to simulate different magnitudes of cyclic translational movements of abutments induced by thermal changes are presented, focusing on lateral earth pressure development at the abutment-soil interface. Test results show that the cycle number and magnitude of cyclic translational movements have significant effects on the escalation of lateral earth pressures. Experimentally observed earth pressure distributions behind the integral abutment were compared with the current design approaches, which shows that the most of the practices has under predicted the lateral earth pressure.

Keywords: integral bridge, cyclic thermal movement, lateral earth pressure, soil-structure interaction

Procedia PDF Downloads 114
4400 Soil-Structure Interaction in a Case Study Bridge: Seismic Response under Moderate and Strong Near-Fault Earthquakes

Authors: Nastaran Cheshmehkaboodi, Lotfi Guizani, Noureddine Ghlamallah

Abstract:

Seismic isolation proves to be a powerful technology in reducing seismic hazards and enhancing overall structural resilience. However, the performance of the technology can be influenced by various factors, including seismic inputs and soil conditions. This research aims to investigate the effects of moderate and strong earthquakes associated with different distances of the source on the seismic responses of conventional and isolated bridges, considering the soil-structure interaction effects. Two groups of moderate and strong near-fault records are applied to the conventional and isolated bridges, with and without considering the underlying soil. For this purpose, using the direct method, three soil properties representing rock, dense, and stiff soils are modeled in Abaqus software. Nonlinear time history analysis is carried out, and structural responses in terms of maximum deck acceleration, deck displacement, and isolation system displacement are studied. The comparison of dynamic responses between both earthquake groups demonstrates a consistent pattern, indicating that the bridge performance and the effects of soil-structure interaction are primarily influenced by the ground motions and their frequency contents. Low ratios of PGA/PGV are found to significantly impact all dynamic responses, resulting in higher force and displacement responses, regardless of the distance associated with the ruptured fault. In addition, displacement responses increase drastically on softer soils. Thus, meticulous consideration is crucial in designing isolation systems to avoid underestimating displacement demands and to ensure sufficient displacement capacity. Despite a lower PGA value in high seismicity areas in this study, the acceleration demand during strong earthquakes is up to 1.3 times higher in conventional bridges and up to 3 times higher in isolated bridges than in moderate earthquakes. Additionally, the displacement demand in strong earthquakes is up to 2 times higher in conventional bridges and up to 5 times higher in isolated bridges compared to moderate earthquakes, highlighting the increased force and displacement demand in strong earthquakes.

Keywords: bridges, seismic isolation, near-fault, earthquake characteristics, soil-structure interaction

Procedia PDF Downloads 63
4399 Effects of Dimensional Sizes of Mould on the Volumetric Shrinkage Strain of Lateric Soil

Authors: John E. Sani, Moses George

Abstract:

The paper presents the result of a laboratory study carried out on lateritic soil to determine the effects of dimensional size on the volumetric shrinkage strain (VSS) using three mould sizes i.e. split former mould, proctor mould and California bearing ratio (CBR) mould at three energy levels; British standard light (BSL), West African standard (WAS) and British standard heavy (BSH) respectively. Compactions were done at different molding water content of -2 % to +6 % optimum moisture content (OMC). At -2% to +2% molding water content for the split former mould the volumetric shrinkage strain met the requirement of not more than 4% while at +4% and +6% only the WAS and BSH met the requirement. The proctor mould and the CBR mould on the other hand gave a lower value of volumetric shrinkage strain in all compactive effort and the values are lower than the 4% safe VSS value.

Keywords: lateritic soil, volumetric shrinkage strain, molding water content, compactive effort

Procedia PDF Downloads 536
4398 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages

Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong

Abstract:

Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.

Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale

Procedia PDF Downloads 65
4397 Integrating Deep Learning For Improved State Of Charge Estimation In Electric Bus

Authors: Ms. Hema Ramachandran, Dr. N. Vasudevan

Abstract:

Accurate estimation of the battery State of Charge (SOC) is essential for optimizing the range and performance of modern electric vehicles. This paper focuses on analysing historical driving data from electric buses, with an emphasis on feature extraction and data preprocessing of driving conditions. By selecting relevant parameters, a set of characteristic variables tailored to specific driving scenarios is established. A battery SOC prediction model based on a combination a bidirectional long short-term memory (LSTM) architecture and a standard fully connected neural network (FCNN) is then proposed, where various hyperparameters are identified and fine-tuned to enhance prediction accuracy. The results indicate that with optimized hyperparameters, the prediction achieves a Root Mean Square Error (RMSE) of 1.98% and a Mean Absolute Error (MAE) of 1.72%. This approach is expected to improve the efficiency of battery management systems and battery utilization in electric vehicles.

Keywords: long short-term memory (lstm), battery health monitoring, data-driven models, battery charge-discharge cycles, adaptive soc estimation, voltage and current sensing

Procedia PDF Downloads 8
4396 Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation

Authors: Sneha Thakur, Sanjeev Karmakar

Abstract:

This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively.

Keywords: long short-term memory, particle swarm optimization, prediction, deep learning, groundwater level

Procedia PDF Downloads 79
4395 Degradation of Polycyclic Aromatic Hydrocarbons-Contaminated Soil by Proxy-Acid Method

Authors: Reza Samsami

Abstract:

The aim of the study was to degradation of polycyclic aromatic hydrocarbons (PAHs) by proxy-acid method. The amounts of PAHs were determined in a silty-clay soil sample of an aged oil refinery field in Abadan, Iran. Proxy-acid treatment method was investigated. The results have shown that the proxy-acid system is an effective method for degradation of PAHs. The results also demonstrated that the number of fused aromatic rings have not significant effects on PAH removal by proxy-acid method. The results also demonstrated that the number of fused aromatic rings have not significant effects on PAH removal by proxy-acid method.

Keywords: proxy-acid treatment, silty-clay soil, PAHs, degradation

Procedia PDF Downloads 269
4394 The Effect of Soil in the Allelopathic Potential of Artemisia herba-alba and Oudneya africana Crude Powder on Growth of Weeds

Authors: Salhi Nesrine, Salama M. El-Darier, Halilat M. El-Taher

Abstract:

The present study aimed to investigate the effect of two type of soil (clay and sandy soils) in the potential allelopathic effects of Artemisia herba-alba, Oudneya africana crude powder on some growth parameters and phytomass of two weeds (Bromus tectorum and Melilotus indica) under laboratory conditions (pot experiment). The experimental findings have reported that the donor species crude powder concentrations were suppressing to shoot length (SL), root length (RL), fresh and dry weight of shoot and root (SFw, RFw, SDw and RDw, respectively and the leaf number (LN)) in both soil types and caused a gradual reduction particularly when they are high. However, the reduction degree was varied and species, concentration dependent. The suppressive effect of all the eight donors on the two weedy species was in the following order Bromus tectorum> Melilotus indica. Generally, the growth parameters of two recipient species were significantly decreased with the increase of each of the donor species crude powder concentration levels. Concerning the type of sol the t-test indicated that the difference was insignificant between clay and sandy soils.

Keywords: allelopathy, soil, Artemisia herba-alba, Oudneya africana, growth, weeds

Procedia PDF Downloads 361
4393 Effect of Marginal Quality Groundwater on Yield of Cotton Crop and Soil Salinity Status

Authors: A. L. Qureshi, A. A. Mahessar, R. K. Dashti, S. M. Yasin

Abstract:

In this paper, effect of marginal quality groundwater on yield of cotton crop and soil salinity was studied. In this connection, three irrigation treatments each with four replications were applied. These treatments were use of canal water, use of marginal quality groundwater from tube well, and conjunctive use by mixing with the ratio of 1:1 of canal water and marginal quality tubewell water. Water was applied to the crop cultivated in Kharif season 2011; its quantity has been measured using cut-throat flume. Total 11 watering each of 50 mm depth have been applied from 20th April to 20th July, 2011. Further, irrigations were stopped from last week of July, 2011 due to monsoon rainfall. Maximum crop yield (seed cotton) was observed under T1 which was 1,516.8 kg/ha followed by T3 (mixed canal and tube well water) having 1009 kg/ha and 709 kg/ha for T2 i.e. marginal quality groundwater. This concludes that crop yield in T2 and T3 with in comparison to T1was reduced by about 53 and 30% respectively. It has been observed that yield of cotton crop is below potential limit for three treatments due to unexpected rainfall at the time of full flowering season; thus the yield was adversely affected. However, salt deposition in soil profiles was not observed that is due to leaching effect of heavy rainfall occurred during monsoon season.

Keywords: conjunctive use, cotton crop, groundwater, soil salinity status, water use efficiency

Procedia PDF Downloads 450
4392 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 51
4391 Energy System for Algerian Green Building in Tlemcen, North Africa

Authors: M. A. Boukli Hacene, N. E.Chabane Sari, A. Benzair

Abstract:

This article highlights a method for natural heating and cooling of systems in areas of moderate climate. Movement of air is generated inside a space by an underground piping system. In this paper, we discuss a feasibility study in Algeria of air-conditioning using a ground source heat pump (GSHP) with vertical mounting, coupled with a solar collector. This study consists of modeling ground temperature at different depths, for a clay soil in the city of Tlemcen. Our model is developed from the non-stationary heat equation for a homogeneous medium and takes into consideration the soil thermal diffusivity. It uses the daily ambient temperature during a typical year for the locality of Tlemcen. The study shows the feasibility of using a heating/cooling GSHP in the town of Tlemcen for the particular soil type; and indicates that the duration of air flow in the borehole has a major influence on the outgoing temperature drilling.

Keywords: green building, heat pump, insulation, climate change

Procedia PDF Downloads 219
4390 Effect of Drying on the Concrete Structures

Authors: A. Brahma

Abstract:

The drying of hydraulics materials is unavoidable and conducted to important spontaneous deformations. In this study, we show that it is possible to describe the drying shrinkage of the high-performance concrete by a simple expression. A multiple regression model was developed for the prediction of the drying shrinkage of the high-performance concrete. The assessment of the proposed model has been done by a set of statistical tests. The model developed takes in consideration the main parameters of confection and conservation. There was a very good agreement between drying shrinkage predicted by the multiple regression model and experimental results. The developed model adjusts easily to all hydraulic concrete types.

Keywords: hydraulic concretes, drying, shrinkage, prediction, modeling

Procedia PDF Downloads 368
4389 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia

Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan

Abstract:

The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.

Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor (EF), Armenia

Procedia PDF Downloads 237