Search results for: short-time quaternion offset linear canonical transform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5057

Search results for: short-time quaternion offset linear canonical transform

3857 Area-Efficient FPGA Implementation of an FFT Processor by Reusing Butterfly Units

Authors: Atin Mukherjee, Amitabha Sinha, Debesh Choudhury

Abstract:

Fast Fourier transform (FFT) of large-number of samples requires larger hardware resources of field programmable gate arrays and it asks for more area as well as power. In this paper, an area efficient architecture of FFT processor is proposed, that reuses the butterfly units more than once. The FFT processor is emulated and the results are validated on Virtex-6 FPGA. The proposed architecture outperforms the conventional architecture of a N-point FFT processor in terms of area which is reduced by a factor of log_N(2) with the negligible increase of processing time.

Keywords: FFT, FPGA, resource optimization, butterfly units

Procedia PDF Downloads 521
3856 Global Optimization: The Alienor Method Mixed with Piyavskii-Shubert Technique

Authors: Guettal Djaouida, Ziadi Abdelkader

Abstract:

In this paper, we study a coupling of the Alienor method with the algorithm of Piyavskii-Shubert. The classical multidimensional global optimization methods involves great difficulties for their implementation to high dimensions. The Alienor method allows to transform a multivariable function into a function of a single variable for which it is possible to use efficient and rapid method for calculating the the global optimum. This simplification is based on the using of a reducing transformation called Alienor.

Keywords: global optimization, reducing transformation, α-dense curves, Alienor method, Piyavskii-Shubert algorithm

Procedia PDF Downloads 499
3855 Production Planning for Animal Food Industry under Demand Uncertainty

Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut

Abstract:

This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.

Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty

Procedia PDF Downloads 377
3854 The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope

Authors: Getachew T. Sedebo, Stephan V. Joubert, Michael Y. Shatalov

Abstract:

Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope.

Keywords: Bryan’s effect, bending vibrations, disc gyroscope, eigenfunctions, eigenvalues, tuning conditions

Procedia PDF Downloads 320
3853 The Use of Geographic Information System and Spatial Statistic for Analyzing Leukemia in Kuwait for the Period of 2006-2012

Authors: Muhammad G. Almatar, Mohammad A. Alnasrallah

Abstract:

This research focuses on the study of three main issues: 1) The temporal analysis of leukemia for a period of six years (2006-2012), 2) spatial analysis by investigating this phenomenon in the Kuwaiti society spatially in the residential areas within the six governorates, 3) the use of Geographic Information System technology in investigating the hypothesis of the research and its variables using the linear regression, to show the pattern of linear relationship. The study depends on utilizing the map to understand the distribution of blood cancer in Kuwait. Several geodatabases were created for the number of patients and air pollution. Spatial interpolation models were used to generate layers of air pollution in the study area. These geodatabases were tested over the past six years to reach the conclusion: Is there a relationship with significant significance between the two main variables of the study: blood cancer and air pollution? This study is the first to our best knowledge. As far as the researchers know, the distribution of this disease has not been studied geographically at the level of regions in Kuwait within six years and in specific areas as described above. This study investigates the concentration of this type of disease. The study found that there is no relationship of significant value between the two variables studied, and this may be due to the nature of the disease, which are often hereditary. On the other hand, this study has reached a number of suggestions and recommendations that may be useful to decision-makers and interested in the study of leukemia in Kuwait by focusing on the study of genetic diseases, which may be a cause of leukemia rather than air pollution.

Keywords: Kuwait, GIS, cancer, geography

Procedia PDF Downloads 113
3852 RNA-seq Analysis of Liver from NASH-HCC Model Mouse Treated with Streptozotocin-High Fat Diet

Authors: Bui Phuong Linh, Yuki Sakakibara, Ryuto Tanaka, Elizabeth H. Pigney, Taishi Hashiguchi

Abstract:

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease, often associated with type II diabetes, which sometimes progresses to more serious conditions such as liver fibrosis and hepatocellular carcinoma (HCC). NASH has become an important health problem worldwide, buttherapeutic agents for NASH have not yet been approved, and animal models with high clinical correlation are required. TheSTAM™ mouse shows the same pathological progression as human NASH patients and has been widely used for both drug efficacy and basic research, such as lipid profiling and gut microbiota research. In this study, we analyzed the RNA-seq data of STAM™mice at each pathological stage (steatosis, steatohepatitis, liver fibrosis, and HCC) and examined the clinical correlation at the genetic level. NASH was induced in male mice by a single subcutaneous injection of 200 µg streptozotocin solution 2 days after birth and feeding with high fat dietafter 4 weeks of age. The mice were sacrificed and livers collected at 6, 8, 10, 12, 16, and 20 weeks of age. For liver samples, the left lateral lobe was snap frozen in liquid nitrogen and stored at -80˚C for RNA-seq analysis. Total RNA of the cells was isolated using RNeasy mini kit. The gene expression of the canonical pathways in NASH progression from steatosis to hepatocellular carcinoma were analyzed, such as immune system process, oxidation-reduction process, lipid metabolic process. Moreover, since it has been reported that genetic traits are involved in the development of NASH-HCC, we next analyzed the genetic mutations in the STAM™mice. The number of individuals showing mutations in Mtorinvolved in Insulin signaling increases as the disease progresses, especially in the liver cancer phase. These results indicated a clinical correlation of gene profiles in the STAM™mouse.

Keywords: steatosis, non-alcoholic steatohepatitis, fibrosis, hepatocellular carcinoma, RNA-seq

Procedia PDF Downloads 150
3851 Effects of Potential Chloride-Free Admixtures on Selected Mechanical Properties of Kenya Clay-Based Cement Mortars

Authors: Joseph Mwiti Marangu, Joseph Karanja Thiong'o, Jackson Muthengia Wachira

Abstract:

The mechanical performance of hydrated cements mortars mainly depends on its compressive strength and setting time. These properties are crucial in the construction industry. Pozzolana based cements are mostly characterized by low 28 day compressive strength and long setting times. These are some of the major impediments to their production and diverse uses despite numerous technological and environmental benefits associated with them. The study investigated the effects of potential chemical activators on calcined clay- Portland cement blends with an aim to achieve high early compressive strength and shorter setting times in cement mortar. In addition, standard consistency, soundness and insoluble residue of all cement categories was determined. The test cement was made by blending calcined clays with Ordinary Portland Cement (OPC) at replacement levels from 35 to 50 percent by mass of the OPC to make test cement labeled PCC for the purposes of this study. Mortar prisms measuring 40mmx40mmx160mm were prepared and cured in accordance with KS EAS 148-3:2000 standard. Solutions of Na2SO4, NaOH, Na2SiO3 and Na2CO3 containing 0.5- 2.5M were separately added during casting. Compressive strength was determined at 2rd, 7th, 28th and 90th day of curing. For comparison purposes, commercial Portland Pozzolana cement (PPC) and Ordinary Portland Cement (OPC) were also investigated without activators under similar conditions. X-Ray Florescence (XRF) was used for chemical analysis while X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used for mineralogical analysis of the test samples. The results indicated that addition of activators significantly increased the 2nd and 7th day compressive strength but minimal increase on the 28th and 90th day compressive strength. A relatively linear relationship was observed between compressive strength and concentration of activator solutions up to 28th of curing. Addition of the said activators significantly reduced both initial and final setting time. Standard consistency and soundness varied with increased amount of clay in the test cement and concentration of activators. Amount of insoluble residues increased with increased replacement of OPC with calcined clays. Mineralogical studies showed that N-A-S-H is formed in addition to C-S-H. In conclusion, the concentration of 2 molar for all activator solutions produced the optimum compressive strength and greatly reduced the setting times for all cement mortars.

Keywords: activators, admixture, cement, clay, pozzolana

Procedia PDF Downloads 261
3850 Valorization Bio-Waste Argan Pulp for Green Synthesis of Silver Nanoparticles

Authors: Omar Drissi, Nadia El Harfaoui, Khalid Nouneh, Rachid Hsissou, Badre Daoudi

Abstract:

The pulp endures of having a lower importance, incompletely because of the way that it has been less studied, and it has been recognized as a pivotal product got from biomass that can be utilized in different fields. The current research focuses on pulp of Argania spinosa (L). To this end, the aim is to study the characteristics and properties of Argan pulp, such as shape, chemical and macromineral composition. As a result, X-Ray Fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) were used in the research.

Keywords: argania spinose, argan pulp, argan bio-waste, green synthesis, silver nanoparticles, valorization

Procedia PDF Downloads 118
3849 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review

Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon

Abstract:

The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.

Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration

Procedia PDF Downloads 97
3848 Energy Budgeting, Carbon and Water Footprints Under Conventional and Conservation Tillage Practices of Rice-Wheat Double Cropping System

Authors: Ahmad Latif Virk, Naeem Ahmad, Muhammad Ishaq Asif Rehmani

Abstract:

Amid the present environmental crises, developing environment-resilient and cost-effective conservation agriculture strategies to feed the world's ever-growing population is pertinent. Therefore, a field study was conducted to test the hypothesis that residue retention under no-till (NTR) would enhance energy productivity (EP) and energy use efficiency (EUE) while offsetting the carbon footprints (CF), water footprints (WF) and greenhouse gases emissions (GHGs) in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) double cropping system. Two tillage systems viz., conventional tillage (CT) and conservation tillage (no-till; NT), with or without residue retention, were combined into four treatments as CT0 (puddled rice, conventional wheat - residue); CTR (puddled rice, conventional wheat + residue); NT0 (direct rice seeding, zero-tilled wheat - residue); NTR (direct rice seeding, zero-tilled wheat + residue) were evaluated. Overall, results showed that the NT system had 34.2% lower energy consumption, 1.2 times more EP than CT system. Moreover, NTR had 19.8% higher EUE than CT0. The overall system grain yield ranged from 7.8 to 9.3 Mg ha−1 under NT0 and CTR, respectively. The NTR had 56.6% and 17.9% lesser CF and WF, respectively, than CT0. The net GHGs emissions (CO2-eq kg ha−1) under CT0 were the highest, while NTR had the lowest emissions. The NTR enhanced carbon sequestration in soil that can offset half of the system's CO2 emissions. The findings of this study might help develop a suitable strategy for resource/energy conservation and higher productivity while offsetting GHGs emissions in the Indo-Gangetic Plains.

Keywords: residue, yield, indirect emissions, energy use efficiency, carbon sequestration

Procedia PDF Downloads 90
3847 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs

Authors: Taysir Soliman

Abstract:

One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.

Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph

Procedia PDF Downloads 188
3846 Variations of Total Electron Content over High Latitude Region during the 24th Solar Cycle

Authors: Arun Kumar Singh, Rupesh M. Das, Shailendra Saini

Abstract:

The effect of solar cycle and seasons on the total electron content has been investigated over high latitude region during 24th solar cycle (2010-2014). The total electron content data has been observed with the help of Global Ionospheric Scintillation and TEC monitoring (GISTM) system installed at Indian permanent scientific 'Maitri station' [70˚46’00”S 11˚43’56” E]. The dependence of TEC over a solar cycle has been examined by the performing linear regression analysis between the vertical total electron content (VTEC) and daily total sunspot numbers (SSN). It has been found that the season and level of geomagnetic activity has a considerable effect on the VTEC. It is observed that the VTEC and SSN follow better agreement during summer seasons as compared to winter and equinox seasons and extraordinary agreement during minimum phase (during the year 2010) of the solar cycle. There is a significant correlation between VTEC and SSN during quiet days of the years as compared to overall days of the years (2010-2014). Further, saturation effect has been observed during maximum phase (during the year 2014) of the 24th solar cycle. It is also found that Ap index and SSN has a linear correlation (R=0.37) and the most of the geomagnetic activity occurs during the declining phase of the solar cycle.

Keywords: high latitude ionosphere, sunspot number, correlation, vertical total electron content

Procedia PDF Downloads 192
3845 Compact Optical Sensors for Harsh Environments

Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi

Abstract:

Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.

Keywords: optical MEMS, temperature sensor, accelerometer, remote sensing, harsh environment

Procedia PDF Downloads 364
3844 Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair

Authors: J. S. Rudas, J. M. Gutiérrez Cabeza, A. Corz Rodríguez, L. M. Gómez, A. O. Toro

Abstract:

The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid.

Keywords: degradation, dissipative mechanism, dry sliding, entropy, friction, wear

Procedia PDF Downloads 502
3843 Mapping Man-Induced Soil Degradation in Armenia's High Mountain Pastures through Remote Sensing Methods: A Case Study

Authors: A. Saghatelyan, Sh. Asmaryan, G. Tepanosyan, V. Muradyan

Abstract:

One of major concern to Armenia has been soil degradation emerged as a result of unsustainable management and use of grasslands, this in turn largely impacting environment, agriculture and finally human health. Hence, assessment of soil degradation is an essential and urgent objective set out to measure its possible consequences and develop a potential management strategy. Since recently, an essential tool for assessing pasture degradation has been remote sensing (RS) technologies. This research was done with an intention to measure preciseness of Linear spectral unmixing (LSU) and NDVI-SMA methods to estimate soil surface components related to degradation (fractional vegetation cover-FVC, bare soils fractions, surface rock cover) and determine appropriateness of these methods for mapping man-induced soil degradation in high mountain pastures. Taking into consideration a spatially complex and heterogeneous biogeophysical structure of the studied site, we used high resolution multispectral QuickBird imagery of a pasture site in one of Armenia’s rural communities - Nerkin Sasoonashen. The accuracy assessment was done by comparing between the land cover abundance data derived through RS methods and the ground truth land cover abundance data. A significant regression was established between ground truth FVC estimate and both NDVI-LSU and LSU - produced vegetation abundance data (R2=0.636, R2=0.625, respectively). For bare soil fractions linear regression produced a general coefficient of determination R2=0.708. Because of poor spectral resolution of the QuickBird imagery LSU failed with assessment of surface rock abundance (R2=0.015). It has been well documented by this particular research, that reduction in vegetation cover runs in parallel with increase in man-induced soil degradation, whereas in the absence of man-induced soil degradation a bare soil fraction does not exceed a certain level. The outcomes show that the proposed method of man-induced soil degradation assessment through FVC, bare soil fractions and field data adequately reflects the current status of soil degradation throughout the studied pasture site and may be employed as an alternate of more complicated models for soil degradation assessment.

Keywords: Armenia, linear spectral unmixing, remote sensing, soil degradation

Procedia PDF Downloads 326
3842 X-Ray Dosimetry by a Low-Cost Current Mode Ion Chamber

Authors: Ava Zarif Sanayei, Mustafa Farjad-Fard, Mohammad-Reza Mohammadian-Behbahani, Leyli Ebrahimi, Sedigheh Sina

Abstract:

The fabrication and testing of a low-cost air-filled ion chamber for X-ray dosimetry is studied. The chamber is made of a metal cylinder, a central wire, a BC517 Darlington transistor, a 9V DC battery, and a voltmeter in order to have a cost-effective means to measure the dose. The output current of the dosimeter is amplified by the transistor and then fed to the large internal resistance of the voltmeter, producing a readable voltage signal. The dose-response linearity of the ion chamber is evaluated for different exposure scenarios by the X-ray tube. kVp values 70, 90, and 120, and mAs up to 20 are considered. In all experiments, a solid-state dosimeter (Solidose 400, Elimpex Medizintechnik) is used as a reference device for chamber calibration. Each case of exposure is repeated three times, the voltmeter and Solidose readings are recorded, and the mean and standard deviation values are calculated. Then, the calibration curve, derived by plotting voltmeter readings against Solidose readings, provided a linear fit result for all tube kVps of 70, 90, and 120. A 99, 98, and 100% linear relationship, respectively, for kVp values 70, 90, and 120 are demonstrated. The study shows the feasibility of achieving acceptable dose measurements with a simplified setup. Further enhancements to the proposed setup include solutions for limiting the leakage current, optimizing chamber dimensions, utilizing electronic microcontrollers for dedicated data readout, and minimizing the impact of stray electromagnetic fields on the system.

Keywords: dosimetry, ion chamber, radiation detection, X-ray

Procedia PDF Downloads 76
3841 Nonlinear Finite Element Analysis of Concrete Filled Steel I-Girder Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura

Abstract:

Concrete filled steel I-girder (CFIG) bridge was proposed and the bending and shear strength was confirmed by experiments. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used to the intermediate support of a continuous girder. Three-dimensional finite element models were established to simulate the bending and shear behaviors of CFIG and to clarify the load transfer mechanism. Steel plates and filled concrete were modeled as a three-dimensional 8-node solid element and steel reinforcement bars as a three-dimensional 2-node truss element. The elements were mostly divided into the 50 x 50 mm mesh size. The non-linear stress-strain relation is assumed for concrete in compression including the softening effect after the peak, and the stress increases linearly for concrete in tension until concrete cracking but then decreases due to tension stiffening effect. The stress-strain relation for steel plates was tri-linear and that for reinforcements was bi-linear. The concrete and the steel plates were rigidly connected. The developed FEM model was applied to simulate and analysis the bending behaviors of the CFIG specimens. The vertical displacements and the strains of steel plates and the filled concrete obtained by FEM agreed very well with the test results until the yield load. The specimens collapsed when the upper flange buckled or the concrete spalled off. These phenomena cannot be properly analyzed by FEM, which produces a small discrepancy at the ultimate states. The FEM model was also applied to simulate and analysis the shear tests of the CFIG specimens. The vertical displacements and strains of steel and concrete calculated by FEM model agreed well with the test results. A truss action was confirmed by the FEM and the experiment, clarifying that shear forces were mainly resisted by the tension strut of the steel plate and the compression strut of the filled concrete acting in the diagonal direction. A trail design with the CFIG was carried out for a four-span continuous highway bridge and the design method was established. Construction cost was estimated about 12% lower than that of a conventional steel I-section girder.

Keywords: concrete filled steel I-girder, bending strength, FEM, limit states design, steel I-girder, shear strength

Procedia PDF Downloads 217
3840 Miniaturizing the Volumetric Titration of Free Nitric Acid in U(vi) Solutions: On the Lookout for a More Sustainable Process Radioanalytical Chemistry through Titration-On-A-Chip

Authors: Jose Neri, Fabrice Canto, Alastair Magnaldo, Laurent Guillerme, Vincent Dugas

Abstract:

A miniaturized and automated approach for the volumetric titration of free nitric acid in U(VI) solutions is presented. Free acidity measurement refers to the acidity quantification in solutions containing hydrolysable heavy metal ions such as U(VI), U(IV) or Pu(IV) without taking into account the acidity contribution from the hydrolysis of such metal ions. It is, in fact, an operation having an essential role for the control of the nuclear fuel recycling process. The main objective behind the technical optimization of the actual ‘beaker’ method was to reduce the amount of radioactive substance to be handled by the laboratory personnel, to ease the instrumentation adjustability within a glove-box environment and to allow a high-throughput analysis for conducting more cost-effective operations. The measurement technique is based on the concept of the Taylor-Aris dispersion in order to create inside of a 200 μm x 5cm circular cylindrical micro-channel a linear concentration gradient in less than a second. The proposed analytical methodology relies on the actinide complexation using pH 5.6 sodium oxalate solution and subsequent alkalimetric titration of nitric acid with sodium hydroxide. The titration process is followed with a CCD camera for fluorescence detection; the neutralization boundary can be visualized in a detection range of 500nm- 600nm thanks to the addition of a pH sensitive fluorophore. The operating principle of the developed device allows the active generation of linear concentration gradients using a single cylindrical micro channel. This feature simplifies the fabrication and ease of use of the micro device, as it does not need a complex micro channel network or passive mixers to generate the chemical gradient. Moreover, since the linear gradient is determined by the liquid reagents input pressure, its generation can be fully achieved in faster intervals than one second, being a more timely-efficient gradient generation process compared to other source-sink passive diffusion devices. The resulting linear gradient generator device was therefore adapted to perform for the first time, a volumetric titration on a chip where the amount of reagents used is fixed to the total volume of the micro channel, avoiding an important waste generation like in other flow-based titration techniques. The associated analytical method is automated and its linearity has been proven for the free acidity determination of U(VI) samples containing up to 0.5M of actinide ion and nitric acid in a concentration range of 0.5M to 3M. In addition to automation, the developed analytical methodology and technique greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing a thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight-fold. The developed device represents, therefore, a great step towards an easy-to-handle nuclear-related application, which in the short term could be used to improve laboratory safety as much as to reduce the environmental impact of the radioanalytical chain.

Keywords: free acidity, lab-on-a-chip, linear concentration gradient, Taylor-Aris dispersion, volumetric titration

Procedia PDF Downloads 385
3839 Fault Analysis of Ship Power System Comprising of Parallel Generators and Variable Frequency Drive

Authors: Umair Ashraf, Kjetil Uhlen, Sverre Eriksen, Nadeem Jelani

Abstract:

Although advancement in technology has increased the reliability and ease of work in ship power system, but these advancements are also adding complexities. Ever increasing non linear loads, like power electronics (PE) devices effect the stability of the system. Frequent load variations and complex load dynamics are due to the frequency converters and motor drives, these problem are more prominent when system is connected with the weak grid. In the ship power system major consumers are thruster motors for the propulsion. For the control operation of these motors variable frequency drives (VFD) are used, mostly VFDs operate on nominal voltage of the system. Some of the consumers in ship operate on lower voltage than nominal, these consumers got supply through step down transformers. In this paper the vector control scheme is used for the control of both rectifier and inverter, parallel operation of the synchronous generators is also demonstrated. The simulation have been performed with induction motor as load on VFD and parallel RLC load. Fault analysis has been performed first for the system which do not have VFD and then for the system with VFD. Three phase to the ground, single phase to the ground fault were implemented and behavior of the system in both the cases was observed.

Keywords: non-linear load, power electronics, parallel operating generators, pulse width modulation, variable frequency drives, voltage source converters, weak grid

Procedia PDF Downloads 567
3838 Model Driven Architecture Methodologies: A Review

Authors: Arslan Murtaza

Abstract:

Model Driven Architecture (MDA) is technique presented by OMG (Object Management Group) for software development in which different models are proposed and converted them into code. The main plan is to identify task by using PIM (Platform Independent Model) and transform it into PSM (Platform Specific Model) and then converted into code. In this review paper describes some challenges and issues that are faced in MDA, type and transformation of models (e.g. CIM, PIM and PSM), and evaluation of MDA-based methodologies.

Keywords: OMG, model driven rrchitecture (MDA), computation independent model (CIM), platform independent model (PIM), platform specific model(PSM), MDA-based methodologies

Procedia PDF Downloads 456
3837 Synthesis and Characterizations of Lead-free BaO-Doped TeZnCaB Glass Systems for Radiation Shielding Applications

Authors: Rezaul K. Sk., Mohammad Ashiq, Avinash K. Srivastava

Abstract:

The use of radiation shielding technology ranging from EMI to high energy gamma rays in various areas such as devices, medical science, defense, nuclear power plants, medical diagnostics etc. is increasing all over the world. However, exposure to different radiations such as X-ray, gamma ray, neutrons and EMI above the permissible limits is harmful to living beings, the environment and sensitive laboratory equipment. In order to solve this problem, there is a need to develop effective radiation shielding materials. Conventionally, lead and lead-based materials are used in making shielding materials, as lead is cheap, dense and provides very effective shielding to radiation. However, the problem associated with the use of lead is its toxic nature and carcinogenic. So, to overcome these drawbacks, there is a great need for lead-free radiation shielding materials and that should also be economically sustainable. Therefore, it is necessary to look for the synthesis of radiation-shielding glass by using other heavy metal oxides (HMO) instead of lead. The lead-free BaO-doped TeZnCaB glass systems have been synthesized by the traditional melt-quenching method. X-ray diffraction analysis confirmed the glassy nature of the synthesized samples. The densities of the developed glass samples were increased by doping the BaO concentration, ranging from 4.292 to 4.725 g/cm3. The vibrational and bending modes of the BaO-doped glass samples were analyzed by Raman spectroscopy, and FTIR (Fourier-transform infrared spectroscopy) was performed to study the functional group present in the samples. UV-visible characterization revealed the significance of optical parameters such as Urbach’s energy, refractive index and optical energy band gap. The indirect and direct energy band gaps were decreased with the BaO concentration whereas the refractive index was increased. X-ray attenuation measurements were performed to determine the radiation shielding parameters such as linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half value layer (HVL), tenth value layer (TVL), mean free path (MFP), attenuation factor (Att%) and lead equivalent thickness of the lead-free BaO-doped TeZnCaB glass system. It was observed that the radiation shielding characteristics were enhanced with the addition of BaO content in the TeZnCaB glass samples. The glass samples with higher contents of BaO have the best attenuation performance. So, it could be concluded that the addition of BaO into TeZnCaB glass samples is a significant technique to improve the radiation shielding performance of the glass samples. The best lead equivalent thickness was 2.626 mm, and these glasses could be good materials for medical diagnostics applications.

Keywords: heavy metal oxides, lead-free, melt-quenching method, x-ray attenuation

Procedia PDF Downloads 29
3836 A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables

Authors: M. Hamdi, R. Rhouma, S. Belghith

Abstract:

Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo-random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties.

Keywords: Random Numbers, Chaotic map, S-box, cryptography, statistical tests

Procedia PDF Downloads 365
3835 The Association of Empirical Dietary Inflammatory Index with Musculoskeletal Pains in Elderlies

Authors: Mahshid Rezaei, Zahra Tajari, Zahra Esmaeily, Atefeh Eyvazkhani, Shahrzad Daei, Marjan Mansouri Dara, Mohaddesh Rezaei, Abolghassem Djazayeri, Ahmadreza Dorosti Motlagh

Abstract:

Background: Musculoskeletal pain is one of the most prevalent symptoms in elderly age. Nutrition and diet are considered important underlying factors that could affect chronic musculoskeletal pain. The purpose of this study was to identify the relationship between empirical dietary inflammatory patterns (EDII) and musculoskeletal pain. Method: In this cross-sectional study, 213 elderly individuals were selected from several health centers. The usual dietary intake was evaluated by a valid and reliable 147-items food frequency questionnaire (FFQ). To measure the intensity of pain, Visual Analogue Scale (VAS) was used. Multiple Linear Regression was applied to assess the association between EDII and musculoskeletal pain. Results: The results of multiple linear regression analysis indicate that a higher EDII score was associated with higher musculoskeletal pain (β= 0.21: 95% CI: 0.24-1.87: P= 0.003). These results stayed significant even after adjusting for covariates such as sex, marital status, height, family number, sleep, BMI, physical activity duration, waist circumference, protector, and medication use (β= 0.16: 95% CI: 0.11-1.04: P= 0.02). Conclusion: Study findings indicated that higher inflammation of diet might have a direct association with musculoskeletal pains in elderlies. However, further investigations are required to confirm these findings.

Keywords: musculoskeletal pain, empirical dietary inflammatory pattern, elderlies, dietary pattern

Procedia PDF Downloads 208
3834 Integrating GIS and Analytical Hierarchy Process-Multicriteria Decision Analysis for Identification of Suitable Areas for Artificial Recharge with Reclaimed Water

Authors: Mahmoudi Marwa, Bahim Nadhem, Aydi Abdelwaheb, Issaoui Wissal, S. Najet

Abstract:

This work represents a coupling between the geographic information system (GIS) and the multicriteria analysis aiming at the selection of an artificial recharge site by the treated wastewater for the Ariana governorate. On regional characteristics, bibliography and available data on artificial recharge, 13 constraints and 5 factors were hierarchically structured for the adequacy of an artificial recharge. The factors are subdivided into two main groups: environmental factors and economic factors. The adopted methodology allows a preliminary assessment of a recharge site, the weighted linear combination (WLC) and the analytical hierarchy process (AHP) in a GIS. The standardization of the criteria is carried out by the application of the different membership functions. The form and control points of the latter are defined by the consultation of the experts. The weighting of the selected criteria is allocated according to relative importance using the AHP methodology. The weighted linear combination (WLC) integrates the different criteria and factors to delineate the most suitable areas for artificial recharge site selection by treated wastewater. The results of this study showed three potential candidate sites that appear when environmental factors are more important than economic factors. These sites are ranked in descending order using the ELECTRE III method. Nevertheless, decision making for the selection of an artificial recharge site will depend on the decision makers in force.

Keywords: artificial recharge site, treated wastewater, analytical hierarchy process, ELECTRE III

Procedia PDF Downloads 164
3833 Application of the Urban Forest Credit Standard as a Tool for Compensating CO2 Emissions in the Metalworking Industry: A Case Study in Brazil

Authors: Marie Madeleine Sarzi Inacio, Ligiane Carolina Leite Dauzacker, Rodrigo Henriques Lopes Da Silva

Abstract:

The climate changes resulting from human activity have increased interest in more sustainable production practices to reduce and offset pollutant emissions. Brazil, with its vast areas capable of carbon absorption, holds a significant advantage in this context. However, to optimize the country's sustainable potential, it is important to establish a robust carbon market with clear rules for the eligibility and validation of projects aimed at reducing and offsetting Greenhouse Gas (GHG) emissions. In this study, our objective is to conduct a feasibility analysis through a case study to evaluate the implementation of an urban forest credits standard in Brazil, using the Urban Forest Credits (UFC) model implemented in the United States as a reference. Thus, the city of Ribeirão Preto, located in Brazil, was selected to assess the availability of green areas. With the CO2 emissions value from the metalworking industry, it was possible to analyze information in the case study, considering the activity. The QGIS software was used to map potential urban forest areas, which can connect to various types of geospatial databases. Although the chosen municipality has little vegetative coverage, the mapping identified at least eight areas that fit the standard definitions within the delimited urban perimeter. The outlook was positive, and the implementation of projects like Urban Forest Credits (UFC) adapted to the Brazilian reality has great potential to benefit the country in the carbon market and contribute to achieving its Greenhouse Gas (GHG) emission reduction goals.

Keywords: carbon neutrality, metalworking industry, carbon credits, urban forestry credits

Procedia PDF Downloads 73
3832 Construction and Performance of Nanocomposite-Based Electrochemical Biosensor

Authors: Jianfang Wang, Xianzhe Chen, Zhuoliang Liu, Cheng-An Tao, Yujiao Li

Abstract:

Organophosphorus (OPs) pesticide used as insecticides are widely used in agricultural pest control, household and storage deworming. The detection of pesticides needs more simple and efficient methods. One of the best ways is to make electrochemical biosensors. In this paper, an electrochemical enzyme biosensor based on acetylcholine esterase (AChE) was constructed, and its sensing properties and sensing mechanisms were studied. Reduced graphene oxide-polydopamine complexes (RGO-PDA), gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were prepared firstly and composited with AChE and chitosan (CS), then fixed on the glassy carbon electrode (GCE) surface to construct the biosensor GCE/RGO-PDA-AuNPs-AgNPs-AChE-CS by one-pot method. The results show that graphene oxide (GO) can be reduced by dopamine (DA) and dispersed well in RGO-PDA complexes. And the composites have a synergistic catalysis effect and can improve the surface resistance of GCE. The biosensor selectively can detect acetylcholine (ACh) and OPs pesticide with good linear range and high sensitivity. The performance of the biosensor is affected by the ratio and adding ways of AChE and the adding of AuNPs and AChE. And the biosensor can achieve a detection limit of 2.4 ng/L for methyl parathion and a wide linear detection range of 0.02 ng/L ~ 80 ng/L, and has excellent stability, good anti-interference ability, and excellent preservation performance, indicating that the sensor has practical value.

Keywords: acetylcholine esterase, electrochemical biosensor, nanoparticles, organophosphates, reduced graphene oxide

Procedia PDF Downloads 111
3831 Risk Factors for High Resistance of Ciprofloxacin Against Escherichia coli in Complicated Urinary Tract Infection

Authors: Liaqat Ali, Khalid Farooq, Shafieullah Khan, Nasir Orakzai, Qudratullah

Abstract:

Objectives: To determine the risk factors for high resistance of ciprofloxacin in complicated urinary tract infections. Materials and Methods: It is an analytical study that was conducted in the department of Urology (Team ‘C’) at Institute of Kidney Diseases Hayatabad Peshawar from 1st June 2012 till 31st December 2012. Total numbers of 100 patients with complicated UTI was selected in the study. Multivariate analysis and linear regression were performed for the detection of risk factors. All the data was recorded on structured Proforma and was analyzed on SPSS version 17. Results: The mean age of the patient was 55.6 years (Range 3-82 years). 62 patients were male while 38 patients were female. 66 isolates of E-Coli were found sensitive to ciprofloxacin while 34 isolates were found Resistant for ciprofloxacin. Using multivariate analysis and linear regression, an increasing age above 50 (p=0.002) History of urinary catheterization especially for bladder outflow obstruction (p=0.001) and previous multiple use of ciprofloxacin (p=0.001) and poor brand of ciprofloxacin were found to be independent risk factors for high resistance of ciprofloxacin. Conclusion: UTI is common illness across the globe with increasing trend of antimicrobial resistance for ciprofloxacin against E Coli in complicated UTI. The risk factors for emerging resistance are increasing age, urinary catheterization and multiple use and poor brand of ciprofloxacin.

Keywords: urinary tract infection, ciprofloxacin, urethral catheterization, antimicrobial resistance

Procedia PDF Downloads 352
3830 Theoretical Study of Structural, Magnetic, and Magneto-Optical Properties of Ultrathin Films of Fe/Cu (001)

Authors: Mebarek Boukelkoul, Abdelhalim Haroun

Abstract:

By means of the first principle calculation, we have investigated the structural, magnetic and magneto-optical properties of the ultra-thin films of Fen/Cu(001) with (n=1, 2, 3). We adopted a relativistic approach using DFT theorem with local spin density approximation (LSDA). The electronic structure is performed within the framework of the Spin-Polarized Relativistic (SPR) Linear Muffin-Tin Orbitals (LMTO) with the Atomic Sphere Approximation (ASA) method. During the variational principle, the crystal wave function is expressed as a linear combination of the Bloch sums of the so-called relativistic muffin-tin orbitals centered on the atomic sites. The crystalline structure is calculated after an atomic relaxation process using the optimization of the total energy with respect to the atomic interplane distance. A body-centered tetragonal (BCT) pseudomorphic crystalline structure with a tetragonality ratio c/a larger than unity is found. The magnetic behaviour is characterized by an enhanced magnetic moment and a ferromagnetic interplane coupling. The polar magneto-optical Kerr effect spectra are given over a photon energy range extended to 15eV and the microscopic origin of the most interesting features are interpreted by interband transitions. Unlike thin layers, the anisotropy in the ultra-thin films is characterized by a perpendicular magnetization which is perpendicular to the film plane.

Keywords: ultrathin films, magnetism, magneto-optics, pseudomorphic structure

Procedia PDF Downloads 334
3829 Planning Quality and Maintenance Activities in a Closed-Loop Serial Multi-Stage Manufacturing System under Constant Degradation

Authors: Amauri Josafat Gomez Aguilar, Jean Pierre Kenné

Abstract:

This research presents the development of a self-sustainable manufacturing system from a circular economy perspective, structured by a multi-stage serial production system consisting of a series of machines under deterioration in charge of producing a single product and a reverse remanufacturing system constituted by the same productive systems of the first scheme and different tooling, fed by-products collected at the end of their life cycle, and non-conforming elements of the first productive scheme. Since the advanced production manufacturing system is unable to satisfy the customer's quality expectations completely, we propose the development of a mixed integer linear mathematical model focused on the optimal search and assignment of quality stations and preventive maintenance operation to the machines over a time horizon, intending to segregate the correct number of non-conforming parts for reuse in the remanufacturing system and thereby minimizing production, quality, maintenance, and customer non-conformance penalties. Numerical experiments are performed to analyze the solutions found by the model under different scenarios. The results showed that the correct implementation of a closed manufacturing system and allocation of quality inspection and preventive maintenance operations generate better levels of customer satisfaction and an efficient manufacturing system.

Keywords: closed loop, mixed integer linear programming, preventive maintenance, quality inspection

Procedia PDF Downloads 80
3828 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity

Authors: Dawoon Choi, Jian Li, Yunhyun Cho

Abstract:

Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.

Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity

Procedia PDF Downloads 218