Search results for: range migration algorithm
9581 Development of a Few-View Computed Tomographic Reconstruction Algorithm Using Multi-Directional Total Variation
Authors: Chia Jui Hsieh, Jyh Cheng Chen, Chih Wei Kuo, Ruei Teng Wang, Woei Chyn Chu
Abstract:
Compressed sensing (CS) based computed tomographic (CT) reconstruction algorithm utilizes total variation (TV) to transform CT image into sparse domain and minimizes L1-norm of sparse image for reconstruction. Different from the traditional CS based reconstruction which only calculates x-coordinate and y-coordinate TV to transform CT images into sparse domain, we propose a multi-directional TV to transform tomographic image into sparse domain for low-dose reconstruction. Our method considers all possible directions of TV calculations around a pixel, so the sparse transform for CS based reconstruction is more accurate. In 2D CT reconstruction, we use eight-directional TV to transform CT image into sparse domain. Furthermore, we also use 26-directional TV for 3D reconstruction. This multi-directional sparse transform method makes CS based reconstruction algorithm more powerful to reduce noise and increase image quality. To validate and evaluate the performance of this multi-directional sparse transform method, we use both Shepp-Logan phantom and a head phantom as the targets for reconstruction with the corresponding simulated sparse projection data (angular sampling interval is 5 deg and 6 deg, respectively). From the results, the multi-directional TV method can reconstruct images with relatively less artifacts compared with traditional CS based reconstruction algorithm which only calculates x-coordinate and y-coordinate TV. We also choose RMSE, PSNR, UQI to be the parameters for quantitative analysis. From the results of quantitative analysis, no matter which parameter is calculated, the multi-directional TV method, which we proposed, is better.Keywords: compressed sensing (CS), low-dose CT reconstruction, total variation (TV), multi-directional gradient operator
Procedia PDF Downloads 2559580 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines
Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun
Abstract:
This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.Keywords: capacitated MRP, tabu search, simulated annealing, variable neighborhood search, linear programming, assembly flow shop, application in industry
Procedia PDF Downloads 2329579 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar
Authors: Chulsang Yoo, Gildo Kim
Abstract:
Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm
Procedia PDF Downloads 2109578 Riesz Mixture Model for Brain Tumor Detection
Authors: Mouna Zitouni, Mariem Tounsi
Abstract:
This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution
Procedia PDF Downloads 169577 Deterministic Random Number Generator Algorithm for Cryptosystem Keys
Authors: Adi A. Maaita, Hamza A. A. Al Sewadi
Abstract:
One of the crucial parameters of digital cryptographic systems is the selection of the keys used and their distribution. The randomness of the keys has a strong impact on the system’s security strength being difficult to be predicted, guessed, reproduced or discovered by a cryptanalyst. Therefore, adequate key randomness generation is still sought for the benefit of stronger cryptosystems. This paper suggests an algorithm designed to generate and test pseudo random number sequences intended for cryptographic applications. This algorithm is based on mathematically manipulating a publically agreed upon information between sender and receiver over a public channel. This information is used as a seed for performing some mathematical functions in order to generate a sequence of pseudorandom numbers that will be used for encryption/decryption purposes. This manipulation involves permutations and substitutions that fulfills Shannon’s principle of “confusion and diffusion”. ASCII code characters wereutilized in the generation process instead of using bit strings initially, which adds more flexibility in testing different seed values. Finally, the obtained results would indicate sound difficulty of guessing keys by attackers.Keywords: cryptosystems, information security agreement, key distribution, random numbers
Procedia PDF Downloads 2689576 Study of the Best Algorithm to Estimate Sunshine Duration from Global Radiation on Horizontal Surface for Tropical Region
Authors: Tovondahiniriko Fanjirindratovo, Olga Ramiarinjanahary, Paulisimone Rasoavonjy
Abstract:
The sunshine duration, which is the sum of all the moments when the solar beam radiation is up to a minimal value, is an important parameter for climatology, tourism, agriculture and solar energy. Its measure is usually given by a pyrheliometer installed on a two-axis solar tracker. Due to the high cost of this device and the availability of global radiation on a horizontal surface, on the other hand, several studies have been done to make a correlation between global radiation and sunshine duration. Most of these studies are fitted for the northern hemisphere using a pyrheliometric database. The aim of the present work is to list and assess all the existing methods and apply them to Reunion Island, a tropical region in the southern hemisphere. Using a database of ten years, global, diffuse and beam radiation for a horizontal surface are employed in order to evaluate the uncertainty of existing algorithms for a tropical region. The methodology is based on indirect comparison because the solar beam radiation is not measured but calculated by the beam radiation on a horizontal surface and the sun elevation angle.Keywords: Carpentras method, data fitting, global radiation, sunshine duration, Slob and Monna algorithm, step algorithm
Procedia PDF Downloads 1229575 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling.Keywords: genetic algorithm, kinematic hardening, material model, objective function
Procedia PDF Downloads 3299574 Physiotherapy Program for Frozen Shoulder Related to Onset of Symptom, Range of Motions and Obtaining Modalities
Authors: Narupon Kunbootsri, P. Sirasaporn
Abstract:
Frozen shoulder is a common problem present by pain and limit range of motion. The prevalence of frozen shoulder showed 18-31% of population. The effect of frozen shoulder lead to limit activities daily living life, high medical care cost and so on. Physiotherapy is one of the treatments for frozen shoulder but there was no data about the treatment of physiotherapy. Moreover, it is question about onset of symptom relate to physiotherapy program and obtaining physical modalities and delayed start physiotherapy program lead to delayed improvement. Thus the aim of this study was to investigate physiotherapy program for frozen shoulder relate to onset of symptom, range of motion and obtaining physical modalities. A retrospective study design was conducted. 182 medical records of patients with frozen shoulder were reviewed. These frozen shoulders were treated at physiotherapy unit, department of Rehabilitation last 3 years (January, 2014- December, 2016). The data consist of onset of symptom, range of motion and obtaining physical modalities were recorded. There was a statistically significant increase in shoulder flexion [mean difference 38.88 with 95%CI were [16.00-61.77], shoulder abduction [mean difference 48.47 with 95%CI were 16.07-90.59], shoulder internal rotation [mean difference 22.36 with 95%CI were 2.81-37.18] and shoulder external rotation [mean difference 32.12 with 95%CI were [(-2.47)-(46.91)]. In addition, the onset of symptom was 76.42±46.90 days. And the physical modalities used frequently were hot pack 14.8% and ultrasound diathermy 13.7%. In conclusion, the physiotherapy program including, hot pack and ultrasound diathermy seem to be useful for frozen shoulder. But onset of symptom is too long to start physiotherapy programs.Keywords: frozen shoulder, range of motions, onset of symptom, physiotherapy, physical modality
Procedia PDF Downloads 2849573 In vitro Comparison Study of Biologically Synthesized Cupper-Disulfiram Nanoparticles with Its Free Corresponding Complex as Therapeutic Approach for Breast and Liver Cancer
Authors: Marwa M. Abu-Serie, Marwa M. Eltarahony
Abstract:
The search for reliable, effective, and safe nanoparticles (NPs) as a treatment for cancer is a pressing priority. In this study, Cu-NPs were fabricated by Streptomyces cyaneofuscatus through simultaneous bioreduction strategy of copper nitrate salt. The as-prepared Cu-NPs subjected to structural analysis; energy-dispersive X-ray spectroscopy, elemental mapping, X-ray diffraction, transmission electron microscopy, and ζ-potential. These biological synthesized Cu-NPs were mixed with disulfiram (DS), forming a nanocomplex of Cu-DS with a size of ~135 nm. The prepared nanocomplex (nanoCu-DS) exhibited higher anticancer activity than that of free complex of DS-Cu, Cu-NPs, and DS alone. This was illustrated by the lowest IC50 of nanoCu-DS (< 4 µM) against human breast and liver cancer cell lines comparing with DS-Cu, Cu-NPs, and DS (~8, 22.98-33.51 and 11.95-14.86, respectively). Moreover, flow cytometric analysis confirmed that higher apoptosis percentage range of nanoCu-DS-treated in MDA-MB 231, MCF-7, Huh-7, and HepG-2 cells (51.24-65.28%) than free complex of Cu-DS ( < 4.5%). Regarding inhibition potency of liver and breast cancer cell migration, no significant difference was recorded between free and nanocomplex. Furthermore, nanoCu-DS suppressed gene expression of β-catenine, Akt, and NF-κB and upregulated p53 expression (> 3, >15, > 5 and ≥ 3 folds, respectively) more efficiently than free complex (all ~ 1 fold) in MDA-MB 231 and Huh-7 cells. Our finding proved this prepared nano complex has a powerful anticancer activity relative to free complex, thereby offering a promising cancer treatment.Keywords: biologically prepared Cu-NPs, breast cancer cell lines, liver cancer cell lines, nanoCu- disulfiram
Procedia PDF Downloads 1869572 Contamination by Heavy Metals of Some Environmental Objects in Adjacent Territories of Solid Waste Landfill
Authors: D. Kekelidze, G. Tsotadze, G. Maisuradze, L. Akhalbedashvili, M. Chkhaidze
Abstract:
Statement of Problem: The problem of solid wastes -dangerous sources of environmental pollution,is the urgent issue for Georgia as there are no waste-treatment and waste- incineration plants. Urban peripheral and rural areas, frequently along small rivers, are occupied by landfills without any permission. The study of the pollution of some environmental objects in the adjacent territories of solid waste landfill in Tbilisi carried out in 2020-2021, within the framework of project: “Ecological monitoring of the landfills surrounding areas and population health risk assessment”. Research objects: This research had goal to assess the ecological state of environmental objects (soil cover and surface water) in the territories, adjacent of solid waste landfill, on the base of changes heavy metals' (HM) concentration with distance from landfill. An open sanitary landfill for solid domestic waste in Tbilisi locates at suburb Lilo surrounded with densely populated villages. Content of following HM was determined in soil and river water samples: Pb, Cd, Cu, Zn, Ni, Co, Mn. Methodology: The HM content in samples was measured, using flame atomic absorption spectrophotometry (spectrophotometer of firm Perkin-Elmer AAnalyst 200) in accordance with ISO 11466 and GOST Р 53218-2008. Results and discussion: Data obtained confirmed migration of HM mainly in terms of the distance from the polygon that can be explained by their areal emissions and storage in open state, they could also get into the soil cover under the influence of wind and precipitation. Concentration of Pb, Cd, Cu, Zn always increases with approaching to landfill. High concentrations of Pb, Cd are characteristic of the soil covers of the adjacent territories around the landfill at a distance of 250, 500 meters.They create a dangerous zone, since they can later migrate into plants, enter in rivers and lakes. The higher concentrations, compared to the maximum permissible concentrations (MPC) for surface waters of Georgia, are observed for Pb, Cd. One of the reasons for the low concentration of HM in river water may be high turbidity – as is known, suspended particles are good natural sorbents that causes low concentration of dissolved forms. Concentration of Cu, Ni, Mn increases in winter, since in this season the rivers are switched to groundwater feeding. Conclusion: Soil covers of the areas adjacent to the landfill in Lilo are contaminated with HM. High concentrations in soils are characteristic of lead and cadmium. Elevated concentrations in comparison with the MPC for surface waters adopted in Georgia are also observed for Pb, Cd at checkpoints along and below (1000 m) of the landfill downstream. Data obtained confirm migration of HM to the adjacent territories of the landfill and to the Lochini River. Since the migration and toxicity of metals depends also on the presence of their mobile forms in water bodies, samples of bottom sediments should be taken too. Bottom sediments reflect a long-term picture of pollution, they accumulate HM and represent a constant source of secondary pollution of water bodies. The study of the physicochemical forms of metals is one of the priority areas for further research.Keywords: landfill, pollution, heavy metals, migration
Procedia PDF Downloads 999571 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method
Authors: A.R. Eskandari, M.R. Eskandari
Abstract:
A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)
Procedia PDF Downloads 3839570 A Versatile Algorithm to Propose Optimized Solutions to the Dengue Disease Problem
Authors: Fernando L. P. Santos, Luiz G. Lyra, Helenice O. Florentino, Daniela R. Cantane
Abstract:
Dengue is a febrile infectious disease caused by a virus of the family Flaviridae. It is transmitted by the bite of mosquitoes, usually of the genus Aedes aegypti. It occurs in tropical and subtropical areas of the world. This disease has been a major public health problem worldwide, especially in tropical countries such as Brazil, and its incidence has increased in recent years. Dengue is a subject of intense research. Efficient forms of mosquito control must be considered. In this work, the mono-objective optimal control problem was solved for analysing the dengue disease problem. Chemical and biological controls were considered in the mathematical aspect. This model describes the dynamics of mosquitoes in water and winged phases. We applied the genetic algorithms (GA) to obtain optimal strategies for the control of dengue. Numerical simulations have been performed to verify the versatility and the applicability of this algorithm. On the basis of the present results we may recommend the GA to solve optimal control problem with a large region of feasibility.Keywords: genetic algorithm, dengue, Aedes aegypti, biological control, chemical control
Procedia PDF Downloads 3489569 A Genetic Algorithm Based Ensemble Method with Pairwise Consensus Score on Malware Cacophonous Labels
Authors: Shih-Yu Wang, Shun-Wen Hsiao
Abstract:
In the field of cybersecurity, there exists many vendors giving malware samples classified results, namely naming after the label that contains some important information which is also called AV label. Lots of researchers relay on AV labels for research. Unfortunately, AV labels are too cluttered. They do not have a fixed format and fixed naming rules because the naming results were based on each classifiers' viewpoints. A way to fix the problem is taking a majority vote. However, voting can sometimes create problems of bias. Thus, we create a novel ensemble approach which does not rely on the cacophonous naming result but depend on group identification to aggregate everyone's opinion. To achieve this purpose, we develop an scoring system called Pairwise Consensus Score (PCS) to calculate result similarity. The entire method architecture combine Genetic Algorithm and PCS to find maximum consensus in the group. Experimental results revealed that our method outperformed the majority voting by 10% in term of the score.Keywords: genetic algorithm, ensemble learning, malware family, malware labeling, AV labels
Procedia PDF Downloads 849568 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction
Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic
Abstract:
Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks
Procedia PDF Downloads 3859567 An Improved Tracking Approach Using Particle Filter and Background Subtraction
Authors: Amir Mukhtar, Dr. Likun Xia
Abstract:
An improved, robust and efficient visual target tracking algorithm using particle filtering is proposed. Particle filtering has been proven very successful in estimating non-Gaussian and non-linear problems. In this paper, the particle filter is used with color feature to estimate the target state with time. Color distributions are applied as this feature is scale and rotational invariant, shows robustness to partial occlusion and computationally efficient. The performance is made more robust by choosing the different (YIQ) color scheme. Tracking is performed by comparison of chrominance histograms of target and candidate positions (particles). Color based particle filter tracking often leads to inaccurate results when light intensity changes during a video stream. Furthermore, background subtraction technique is used for size estimation of the target. The qualitative evaluation of proposed algorithm is performed on several real-world videos. The experimental results demonstrate that the improved algorithm can track the moving objects very well under illumination changes, occlusion and moving background.Keywords: tracking, particle filter, histogram, corner points, occlusion, illumination
Procedia PDF Downloads 3789566 Battery Control with Moving Average Algorithm to Smoothen the Intermittent Output Power of Photovoltaic Solar Power Plants in Off-Grid Configuration
Authors: Muhammad Gillfran Samual, Rinaldy Dalimi, Fauzan Hanif Jufri, Budi Sudiarto, Ismi Rosyiana Fitri
Abstract:
Solar energy is increasingly recognized as an important future energy source due to its abundant availability and renewable nature. However, the intermittent nature of solar energy can cause fluctuations in the electricity produced, making it difficult to guarantee a stable and reliable electricity supply. One solution that can be implemented is to use batteries in a photovoltaic solar power plant system with a Moving Average control algorithm, which can help smooth and reduce fluctuations in solar power output power. The parameter that can be adjusted in the Moving Average algorithm is the window size or the arithmetic average width of the photovoltaic output power over time. This research evaluates the effect of a change of window size parameter in the Moving Average algorithm on the resulting smoothed photovoltaic output power and the technical effects on batteries, i.e., power and energy usage. Based on the evaluation, it is found that the increase of window size parameter will slow down the response of photovoltaic output power to changes in irradiation and increase the smoothing quality of the intermittent photovoltaic output power. In addition, increasing the window size will reduce the maximum power received on the load side, and the amount of energy used by the battery during the power smoothing process will increase, which, in turn, increases the required battery capacity.Keywords: battery, intermittent, moving average, photovoltaic, power smoothing
Procedia PDF Downloads 609565 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene
Authors: Jigg Pelayo, Ricardo Villar
Abstract:
Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.Keywords: algorithm, LiDAR, object recognition, OBIA
Procedia PDF Downloads 2429564 Genetic Algorithm Methods for Determination Over Flow Coefficient of Medium Throat Length Morning Glory Spillway Equipped Crest Vortex Breakers
Authors: Roozbeh Aghamajidi
Abstract:
Shaft spillways are circling spillways used generally for emptying unexpected floods on earth and concrete dams. There are different types of shaft spillways: Stepped and Smooth spillways. Stepped spillways pass more flow discharges through themselves in comparison to smooth spillways. Therefore, awareness of flow behavior of these spillways helps using them better and more efficiently. Moreover, using vortex breaker has great effect on passing flow through shaft spillway. In order to use more efficiently, the risk of flow pressure decreases to less than fluid vapor pressure, called cavitations, should be prevented as far as possible. At this research, it has been tried to study different behavior of spillway with different vortex shapes on spillway crest on flow. From the viewpoint of the effects of flow regime changes on spillway, changes of step dimensions, and the change of type of discharge will be studied effectively. Therefore, two spillway models with three different vortex breakers and three arrangements have been used to assess the hydraulic characteristics of flow. With regard to the inlet discharge to spillway, the parameters of pressure and flow velocity on spillway surface have been measured at several points and after each run. Using these kinds of information leads us to create better design criteria of spillway profile. To achieve these purposes, optimization has important role and genetic algorithm are utilized to study the emptying discharge. As a result, it turned out that the best type of spillway with maximum discharge coefficient is smooth spillway with ogee shapes as vortex breaker and 3 number as arrangement. Besides it has been concluded that the genetic algorithm can be used to optimize the results.Keywords: shaft spillway, vortex breaker, flow, genetic algorithm
Procedia PDF Downloads 3709563 Medium Composition for the Laboratory Production of Enzyme Fructosyltransferase (FTase)
Authors: O. R. Raimi, A. Lateef
Abstract:
Inoculum developments of A. niger were used for inoculation of medium for submerged fermentation and solid state fermentation. The filtrate obtained were used as sources of the extra-cellular enzymes. The FTase activities and the course of pH in submerged fermentation ranged from 7.53-24.42µ/ml and 4.4-4.8 respectively. The maximum FTase activity was obtained at 48 hours fermentation. In solid state fermentation, FTase activities ranged from 2.41-27.77µ/ml. Using ripe plantain peel and kola nut pod respectively. Both substrates supported the growth of the fungus, producing profuse growth during fermentation. In the control experiment (using kolanut pod) that lack supplementation, appreciable FTase activity of 16.92µ/ml was obtained. The optimum temperature range was 600C. it was also active at broad pH range of 1-9 with optimum obtain at pH of 5.0. FTase was stable within the range of investigated pH showing more than 60% activities. FTase can be used in the production of fructooligosaccharide, a functional food.Keywords: Aspergillus niger, solid state fermentation, kola nut pods, Fructosyltransferase (FTase)
Procedia PDF Downloads 4549562 Light-Weight Network for Real-Time Pose Estimation
Authors: Jianghao Hu, Hongyu Wang
Abstract:
The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone
Procedia PDF Downloads 1529561 Space Time Adaptive Algorithm in Bi-Static Passive Radar Systems for Clutter Mitigation
Authors: D. Venu, N. V. Koteswara Rao
Abstract:
Space – time adaptive processing (STAP) is an effective tool for detecting a moving target in spaceborne or airborne radar systems. Since airborne passive radar systems utilize broadcast, navigation and excellent communication signals to perform various surveillance tasks and also has attracted significant interest from the distinct past, therefore the need of the hour is to have cost effective systems as compared to conventional active radar systems. Moreover, requirements of small number of secondary samples for effective clutter suppression in bi-static passive radar offer abundant illuminator resources for passive surveillance radar systems. This paper presents a framework for incorporating knowledge sources directly in the space-time beam former of airborne adaptive radars. STAP algorithm for clutter mitigation for passive bi-static radar has better quantitation of the reduction in sample size thereby amalgamating the earlier data bank with existing radar data sets. Also, we proposed a novel method to estimate the clutter matrix and perform STAP for efficient clutter suppression based on small sample size. Furthermore, the effectiveness of the proposed algorithm is verified using MATLAB simulations in order to validate STAP algorithm for passive bi-static radar. In conclusion, this study highlights the importance for various applications which augments traditional active radars using cost-effective measures.Keywords: bistatic radar, clutter, covariance matrix passive radar, STAP
Procedia PDF Downloads 2939560 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals
Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar
Abstract:
Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks
Procedia PDF Downloads 1859559 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.Keywords: multi objective optimization, pareto front, composite patch, cracked pipe
Procedia PDF Downloads 3109558 Wireless Transmission of Big Data Using Novel Secure Algorithm
Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha
Abstract:
This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.Keywords: big data, two-hop transmission, physical layer wireless security, cooperative jamming, energy balance
Procedia PDF Downloads 4869557 Defective Autophagy Disturbs Neural Migration and Network Activity in hiPSC-Derived Cockayne Syndrome B Disease Models
Authors: Julia Kapr, Andrea Rossi, Haribaskar Ramachandran, Marius Pollet, Ilka Egger, Selina Dangeleit, Katharina Koch, Jean Krutmann, Ellen Fritsche
Abstract:
It is widely acknowledged that animal models do not always represent human disease. Especially human brain development is difficult to model in animals due to a variety of structural and functional species-specificities. This causes significant discrepancies between predicted and apparent drug efficacies in clinical trials and their subsequent failure. Emerging alternatives based on 3D in vitro approaches, such as human brain spheres or organoids, may in the future reduce and ultimately replace animal models. Here, we present a human induced pluripotent stem cell (hiPSC)-based 3D neural in a vitro disease model for the Cockayne Syndrome B (CSB). CSB is a rare hereditary disease and is accompanied by severe neurologic defects, such as microcephaly, ataxia and intellectual disability, with currently no treatment options. Therefore, the aim of this study is to investigate the molecular and cellular defects found in neural hiPSC-derived CSB models. Understanding the underlying pathology of CSB enables the development of treatment options. The two CSB models used in this study comprise a patient-derived hiPSC line and its isogenic control as well as a CSB-deficient cell line based on a healthy hiPSC line (IMR90-4) background thereby excluding genetic background-related effects. Neurally induced and differentiated brain sphere cultures were characterized via RNA Sequencing, western blot (WB), immunocytochemistry (ICC) and multielectrode arrays (MEAs). CSB-deficiency leads to an altered gene expression of markers for autophagy, focal adhesion and neural network formation. Cell migration was significantly reduced and electrical activity was significantly increased in the disease cell lines. These data hint that the cellular pathologies is possibly underlying CSB. By induction of autophagy, the migration phenotype could be partially rescued, suggesting a crucial role of disturbed autophagy in defective neural migration of the disease lines. Altered autophagy may also lead to inefficient mitophagy. Accordingly, disease cell lines were shown to have a lower mitochondrial base activity and a higher susceptibility to mitochondrial stress induced by rotenone. Since mitochondria play an important role in neurotransmitter cycling, we suggest that defective mitochondria may lead to altered electrical activity in the disease cell lines. Failure to clear the defective mitochondria by mitophagy and thus missing initiation cues for new mitochondrial production could potentiate this problem. With our data, we aim at establishing a disease adverse outcome pathway (AOP), thereby adding to the in-depth understanding of this multi-faced disorder and subsequently contributing to alternative drug development.Keywords: autophagy, disease modeling, in vitro, pluripotent stem cells
Procedia PDF Downloads 1199556 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement
Authors: Pogula Rakesh, T. Kishore Kumar
Abstract:
Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss
Procedia PDF Downloads 4809555 Analysis of Formation Methods of Range Profiles for an X-Band Coastal Surveillance Radar
Authors: Nguyen Van Loi, Le Thanh Son, Tran Trung Kien
Abstract:
The paper deals with the problem of the formation of range profiles (RPs) for an X-band coastal surveillance radar. Two popular methods, the difference operator method, and the window-based method, are reviewed and analyzed via two tests with different datasets. The test results show that although the original window-based method achieves a better performance than the difference operator method, it has three main drawbacks that are the use of 3 or 4 peaks of an RP for creating the windows, the extension of the window size using the power sum of three adjacent cells in the left and the right sides of the windows and the same threshold applied for all types of vessels to finish the formation process of RPs. These drawbacks lead to inaccurate RPs due to the low signal-to-clutter ratio. Therefore, some suggestions are proposed to improve the original window-based method.Keywords: range profile, difference operator method, window-based method, automatic target recognition
Procedia PDF Downloads 1259554 Study of the Morpho-Sedimentary Evolution of Tidal Mouths on the Southern Fringe of the Gulf of Gabes, Southeast of Tunisia: Hydrodynamic Circulation and Associated Sedimentary Movements
Authors: Chadlia Ounissi, Maher Gzam, Tahani Hallek, Salah Mahmoudi, Mabrouk Montacer
Abstract:
This work consists of a morphological study of the coastal domain at the central fringe of the Gulf of Gabes, Southeast of Tunisia, belonging to the structural domain of the maritime Jeffara. The diachronic study of tidal mouths in the study area and the observation of morphological markers revealed the existence of hydro-sedimentary processes leading to sedimentary accumulation and filling of the estuarine system. This filling process is materialized by the genesis of a sandy cord and the lateral migration of the tidal mouth. Moreover, we have been able to affirm, by the use of satellite images, that the dominant and responsible current at this particular coastal morphology is directed to the North, having constituted a controversy on the occurrence of what is previously mentioned in the literature. The speed of the lateral displacement of the channel varies as a function of the hydrodynamic forcing. Wave-dominated sites recorded the fastest speed (18 m/year) in the image of the mouth of Wadi el Melah. Tidal dominated sites in the Wadi Zerkine satellite image recorded a very low lateral migration (2 m / year). This variation in speed indicates that the intensity of the coastal current is uneven along the coast. This general pattern of hydrodynamic circulation, to the north, of the central fringe of the Gulf of Gabes, is disturbed by hydro-sedimentary cells.Keywords: tidal mouth, direction of current, filling, sediment transport, Gulf of Gabes
Procedia PDF Downloads 2829553 Molecular Migration in Polyvinyl Acetate Matrix: Impact of Compatibility, Number of Migrants and Stress on Surface and Internal Microstructure
Authors: O. Squillace, R. L. Thompson
Abstract:
Migration of small molecules to, and across the surface of polymer matrices is a little-studied problem with important industrial applications. Tackifiers in adhesives, flavors in foods and binding agents in paints all present situations where the function of a product depends on the ability of small molecules to migrate through a polymer matrix to achieve the desired properties such as softness, dispersion of fillers, and to deliver an effect that is felt (or tasted) on a surface. It’s been shown that the chemical and molecular structure, surface free energies, phase behavior, close environment and compatibility of the system, influence the migrants’ motion. When differences in behavior, such as occurrence of segregation to the surface or not, are observed it is then of crucial importance to identify and get a better understanding of the driving forces involved in the process of molecular migration. In this aim, experience is meant to be allied with theory in order to deliver a validated theoretical and computational toolkit to describe and predict these phenomena. The systems that have been chosen for this study aim to address the effect of polarity mismatch between the migrants and the polymer matrix and that of a second migrant over the first one. As a non-polar resin polymer, polyvinyl acetate is used as the material to which more or less polar migrants (sorbitol, carvone, octanoic acid (OA), triacetin) are to be added. Through contact angle measurement a surface excess is seen for sorbitol (polar) mixed with PVAc as the surface energy is lowered compare to the one of pure PVAc. This effect is increased upon the addition of carvon or triacetin (non-polars). Surface micro-structures are also evidenced by atomic force microscopy (AFM). Ion beam analysis (Nuclear Reaction Analysis), supplemented by neutron reflectometry can accurately characterize the self-organization of surfactants, oligomers, aromatic molecules in polymer films in order to relate the macroscopic behavior to the length scales that are amenable to simulation. The nuclear reaction analysis (NRA) data for deuterated OA 20% shows the evidence of a surface excess which is enhanced after annealing. The addition of 10% triacetin, as a second migrant, results in the formation of an underlying layer enriched in triacetin below the surface excess of OA. The results show that molecules in polarity mismatch with the matrix tend to segregate to the surface, and this is favored by the addition of a second migrant of the same polarity than the matrix. As studies have been restricted to materials that are model supported films under static conditions in a first step, it is also wished to address the more challenging conditions of materials under controlled stress or strain. To achieve this, a simple rig and PDMS cell have been designed to stretch the material to a defined strain and to probe these mechanical effects by ion beam analysis and atomic force microscopy. This will make a significant step towards exploring the influence of extensional strain on surface segregation, flavor release in cross-linked rubbers.Keywords: polymers, surface segregation, thin films, molecular migration
Procedia PDF Downloads 1329552 A New Heuristic Algorithm for Maximization Total Demands of Nodes and Number of Covered Nodes Simultaneously
Authors: Ehsan Saghehei, Mahdi Eghbali
Abstract:
The maximal covering location problem (MCLP) was originally developed to determine a set of facility locations which would maximize the total customers' demand serviced by the facilities within a predetermined critical service criterion. However, on some problems that differences between the demand nodes are covered or the number of nodes each node is large, the method of solving MCLP may ignore these differences. In this paper, Heuristic solution based on the ranking of demands in each node and the number of nodes covered by each node according to a predetermined critical value is proposed. The output of this method is to maximize total demands of nodes and number of covered nodes, simultaneously. Furthermore, by providing an example, the solution algorithm is described and its results are compared with Greedy and Lagrange algorithms. Also, the results of the algorithm to solve the larger problem sizes that compared with other methods are provided. A summary and future works conclude the paper.Keywords: heuristic solution, maximal covering location problem, ranking, set covering
Procedia PDF Downloads 572