Search results for: polymer nanocarriers
332 Dielectric, Electrical and Magnetic Properties of Elastomer Filled with in situ Thermally Reduced Graphene Oxide and Spinel Ferrite NiFe₂O₄ Nanoparticles
Authors: Raghvendra Singh Yadav, Ivo Kuritka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda, Milan Masar
Abstract:
The elastomer nanocomposites were synthesized by solution mixing method with an elastomer as a matrix and in situ thermally reduced graphene oxide (RGO) and spinel ferrite NiFe₂O₄ nanoparticles as filler. Spinel ferrite NiFe₂O₄ nanoparticles were prepared by the starch-assisted sol-gel auto-combustion method. The influence of filler on the microstructure, morphology, dielectric, electrical and magnetic properties of Reduced Graphene Oxide-Nickel Ferrite-Elastomer nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, the Dielectric Impedance analyzer, and vibrating sample magnetometer. Scanning electron microscopy study revealed that the fillers were incorporated in elastomer matrix homogeneously. The dielectric constant and dielectric tangent loss of nanocomposites was decreased with the increase of frequency, whereas, the dielectric constant increases with the addition of filler. Further, AC conductivity was increased with the increase of frequency and addition of fillers. Furthermore, the prepared nanocomposites exhibited ferromagnetic behavior. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).Keywords: polymer-matrix composites, nanoparticles as filler, dielectric property, magnetic property
Procedia PDF Downloads 171331 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis
Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi
Abstract:
Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.Keywords: Lab-on-chip, LOC, micro-mixer, OpenFOAM, PDMS
Procedia PDF Downloads 163330 Synthesis and Characterization of Some Novel Carbazole Schiff Bases (OLED)
Authors: Baki Cicek, Umit Calisir
Abstract:
Carbazoles have been replaced lots of studies from 1960's to present and also still continues. In 1987, the first diode device had been developed. Thanks to that study, light emitting devices have been investigated and developed and also have been used on commercial applications. Nowadays, OLED (Organic Light Emitting Diodes) technology is using on lots of electronic screen such as (mobile phone, computer monitors, televisions, etc.) Carbazoles were subject a lot of study as a semiconductor material. Although this technology is used commen and widely, it is still development stage. Metal complexes of these compounds are using at pigment dyes because of colored substances, polymer technology, medicine industry, agriculture area, preparing rocket fuel-oil, determine some of biological events, etc. Becides all of these to preparing of schiff base synthesis is going on intensely. In this study, some of novel carbazole schiff bases were synthesized starting from carbazole. For that purpose, firstly, carbazole was alkylated. After purification of N-substituted-carbazole was nitrated to sythesized 3-nitro-N-substituted and 3,6-dinitro-N-substituted carbazoles. At next step, nitro group/groups were reduced to amines. Purified with using a type of silica gel-column chromatography. At the last step of our study, with sythesized 3,6-diamino-N-substituted carbazoles and 3-amino-N-substituted carbazoles were reacted with aldehydes to condensation reactions. 3-(imino-p-hydroxybenzyl)-N-isobutyl -carbazole, 3-(imino-2,3,4-trimethoxybenzene)-N-butylcarbazole, 3-(imino-3,4-dihydroxybenzene)-N-octylcarbazole, 3-(imino-2,3-dihydroxybenzene)-N-octylkarbazole and 3,6-di(α-imino-β-naphthol) -N-hexylcarbazole compounds were synthesized. All of synthesized compounds were characterized with FT-IR, 1H-NMR, 13C-NMR, and LC-MS.Keywords: carbazole, carbazol schiff base, condensation reactions, OLED
Procedia PDF Downloads 443329 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers
Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole
Abstract:
Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing
Procedia PDF Downloads 133328 A Comprehensive Analysis of the Rheological Properties of Polymer Hydrogels in Order to Explore Their Potential for Practical Utilization in Industries
Authors: Raana Babadi Fathipour
Abstract:
Hydrogels are three-dimensional structures formed by the interweaving of polymeric materials, possessing the remarkable ability to imbibe copious amounts of water. Numerous methodologies have been devised for examining and understanding the properties of these synthesized gels. Amongst them, spectroscopic techniques such as ultraviolet/visible (UV/Vis) and Fourier-transform infrared (FTIR) spectroscopy offer a glimpse into molecular and atomic aspects. Additionally, diffraction methods like X-ray diffraction (XRD) enable one to measure crystallinity within the gel's structure, while microscopy tools encompassing scanning electron microscopy (SEM) and transmission electron microscopy (TEM) provide insights into surface texture and morphology. Furthermore, rheology serves as an invaluable tool for unraveling the viscoelastic behavior inherent in hydrogels—a parameter crucial not only to numerous industries, including pharmaceuticals, cosmetics, food processing, agriculture and water treatment, but also pivotal to related fields of research. Likewise, the ultimate configuration of the product is contingent upon its characterization at a microscopic scale in order to comprehend the intricacies of the hydrogel network's structure and interaction dynamics in response to external forces. Within this present scrutiny, our attention has been devoted to unraveling the intricate rheological tendencies exhibited by materials founded on synthetic, natural, and semi-synthetic hydrogels. We also explore their practical utilization within various facets of everyday life from an industrial perspective.Keywords: rheology, hydrogels characterization, viscoelastic behavior, application
Procedia PDF Downloads 52327 Encapsulation of Probiotic Bacteria in Complex Coacervates
Authors: L. A. Bosnea, T. Moschakis, C. Biliaderis
Abstract:
Two probiotic strains of Lactobacillus paracasei subsp. paracasei (E6) and Lactobacillus paraplantarum (B1), isolated from traditional Greek dairy products, were microencapsulated by complex coacervation using whey protein isolate (WPI, 3% w/v) and gum arabic (GA, 3% w/v) solutions mixed at different polymer ratio (1:1, 2:1 and 4:1). The effect of total biopolymer concentration on cell viability was assessed using WPI and GA solutions of 1, 3 and 6% w/v at a constant ratio of 2:1. Also, several parameters were examined for optimization of the microcapsule formation, such as inoculum concentration and the effect of ionic strength. The viability of the bacterial cells during heat treatment and under simulated gut conditions was also evaluated. Among the different WPI/GA weight ratios tested (1:1, 2:1, and 4:1), the highest survival rate was observed for the coacervate structures made with the ratio of 2:1. The protection efficiency at low pH values is influenced by both concentration and the ratio of the added biopolymers. Moreover, the inoculum concentration seems to affect the efficiency of microcapsules to entrap the bacterial cells since an optimum level was noted at less than 8 log cfu/ml. Generally, entrapment of lactobacilli in the complex coacervate structure enhanced the viability of the microorganisms when exposed to a low pH environment (pH 2.0). Both encapsulated strains retained high viability in simulated gastric juice (>73%), especially in comparison with non-encapsulated (free) cells (<19%). The encapsulated lactobacilli also exhibited enhanced viability after 10–30 min of heat treatment (65oC) as well as at different NaCl concentrations (pH 4.0). Overall, the results of this study suggest that complex coacervation with WPI/GA has a potential to deliver live probiotics in low pH food systems and fermented dairy products; the complexes can dissolve at pH 7.0 (gut environment), releasing the microbial cells.Keywords: probiotic, complex coacervation, whey, encapsulation
Procedia PDF Downloads 298326 Formulation and Evaluation of TDDS for Sustained Release Ondansetron HCL Patches
Authors: Baljinder Singh, Navneet Sharma
Abstract:
The skin can be used as the site for drug administration for continuous transdermal drug infusion into the systemic circulation. For the continuous diffusion/penetration of the drugs through the intact skin surface membrane-moderated systems, matrix dispersion type systems, adhesive diffusion controlled systems and micro reservoir systems have been developed. Various penetration enhancers are used for the drug diffusion through skin. In matrix dispersion type systems, the drug is dispersed in the solvent along with the polymers and solvent allowed to evaporate forming a homogeneous drug-polymer matrix. Matrix type systems were developed in the present study. In the present work, an attempt has been made to develop a matrix-type transdermal therapeutic system comprising of ondansetron-HCl with different ratios of hydrophilic and hydrophobic polymeric combinations using solvent evaporation technique. The physicochemical compatibility of the drug and the polymers was studied by infrared spectroscopy. The results obtained showed no physical-chemical incompatibility between the drug and the polymers. The patches were further subjected to various physical evaluations along with the in-vitro permeation studies using rat skin. On the basis of results obtained form the in vitro study and physical evaluation, the patches containing hydrophilic polymers i.e. polyvinyl alcohol and poly vinyl pyrrolidone with oleic acid as the penetration enhancer(5%) were considered as suitable for large scale manufacturing with a backing layer and a suitable adhesive membrane.Keywords: transdermal drug delivery, penetration enhancers, hydrophilic and hydrophobic polymers, ondansetron HCl
Procedia PDF Downloads 322325 The Studies of the Sorption Capabilities of the Porous Microspheres with Lignin
Authors: M. Goliszek, M. Sobiesiak, O. Sevastyanova, B. Podkoscielna
Abstract:
Lignin is one of three main constituents of biomass together with cellulose and hemicellulose. It is a complex biopolymer, which contains a large number of functional groups, including aliphatic and aromatic hydroxyl groups, carbohylic groups and methoxy groups in its structure, that is why it shows potential capacities for process of sorption. Lignin is a highly cross-linked polymer with a three-dimentional structure which can provide large surface area and pore volumes. It can also posses better dispersion, diffusion and mass transfer behavior in a field of the removal of, e.g., heavy-metal-ions or aromatic pollutions. In this work emulsion-suspension copolymerization method, to synthesize the porous microspheres of divinylbenzene (DVB), styrene (St) and lignin was used. There are also microspheres without the addition of lignin for comparison. Before the copolymerization, modification lignin with methacryloyl chloride, to improve its reactivity with other monomers was done. The physico-chemical properties of the obtained microspheres, e.g., pore structures (adsorption-desorption measurements), thermal properties (DSC), tendencies to swell and the actual shapes were also studied. Due to well-developed porous structure and the presence of functional groups our materials may have great potential in sorption processes. To estimate the sorption capabilities of the microspheres towards phenol and its chlorinated derivatives the off-line SPE (solid-phase extraction) method is going to be applied. This method has various advantages, including low-cost, easy to use and enables the rapid measurements for a large number of chemicals. The efficiency of the materials in removing phenols from aqueous solution and in desorption processes will be evaluated.Keywords: microspheres, lignin, sorption, solid-phase extraction
Procedia PDF Downloads 183324 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies
Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel
Abstract:
To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots
Procedia PDF Downloads 527323 The Effect of Silanization on Alumina for Improving the Compatibility with Poly(Methacrylic Acid) Matrix for Dental Restorative Materials
Authors: Andrei Tiberiu Cucuruz, Ecaterina Andronescu, Cristina Daniela Ghitulica, Andreia Cucuruz
Abstract:
In modern dentistry, the application of resin-based composites continues to increase and in the majority of countries has completely replaced mercury amalgams. Alumina (Al2O3) is a representative bioinert ceramic with a variety of applications in industry as well as in medicine. Alumina has the potential to improve electrical resistivity and thermal conductivity of polymers. The application of poly(methacrylic acid) (PMAA) in medicine was poorly investigated in the past but can lead to good results by the incorporation of alumina particles that can bring bioinertness to the composite. However, because of the differences related to chemical bonding of these materials, the interaction is very weak at the interface leading to no significant values in practical situations. The aim of this work was to modify the structure of alumina with silane coupling agents and to study the influence of silanization on the physicomechanical properties of the resulting composite materials. Two silanes were used in this study: 3-aminopropyl-trimethoxysilane (APTMS) and dichlorodimethylsilane (DCDMS). Both silanes proved to have a significant effect on the overall performance of composites by establishing bonds with the polymer matrix and the filler. All these improvements in dental adhesive systems made for bonding resin composites to tooth structure have enhanced the clinical application of polymeric restorative materials to the position that they are now considered the material of choice for esthetic restoration.Keywords: alumina, compressive strength, dental materials, silane coupling agents, poly(methacrylic acid)
Procedia PDF Downloads 351322 Modeling and Simulation of Vibratory Behavior of Hybrid Smart Composite Plate
Authors: Salah Aguib, Noureddine Chikh, Abdelmalek Khabli, Abdelkader Nour, Toufik Djedid, Lallia Kobzili
Abstract:
This study presents the behavior of a hybrid smart sandwich plate with a magnetorheological elastomer core. In order to improve the vibrational behavior of the plate, the pseudo‐fibers formed by the effect of the magnetic field on the elastomer charged by the ferromagnetic particles are oriented at 45° with respect to the direction of the magnetic field at 0°. Ritz's approach is taken to solve the physical problem. In order to verify and compare the results obtained by the Ritz approach, an analysis using the finite element method was carried out. The rheological property of the MRE material at 0° and at 45° are determined experimentally, The studied elastomer is prepared by a mixture of silicone oil, RTV141A polymer, and 30% of iron particles of total mixture, the mixture obtained is mixed for about 15 minutes to obtain an elastomer paste with good homogenization. In order to develop a magnetorheological elastomer (MRE), this paste is injected into an aluminum mold and subjected to a magnetic field. In our work, we have chosen an ideal percentage of filling of 30%, to obtain the best characteristics of the MRE. The mechanical characteristics obtained by dynamic mechanical viscoanalyzer (DMA) are used in the two numerical approaches. The natural frequencies and the modal damping of the sandwich plate are calculated and discussed for various magnetic field intensities. The results obtained by the two methods are compared. These off‐axis anisotropic MRE structures could open up new opportunities in various fields of aeronautics, aerospace, mechanical engineering and civil engineering.Keywords: hybrid smart sandwich plate, vibratory behavior, FEM, Ritz approach, MRE
Procedia PDF Downloads 68321 Temperature-Responsive Shape Memory Polymer Filament Integrated Smart Polyester Knitted Fabric Featuring Memory Behavior
Authors: Priyanka Gupta, Bipin Kumar
Abstract:
Recent developments in smart materials motivate researchers to create novel textile products for innovative and functional applications, which have several potential uses beyond the conventional. This study investigates the memory behavior of shape memory filaments integrated into a knitted textile structure. The research advances the knowledge of how these intelligent materials respond within textile structures. This integration may also open new avenues for developing smart fabrics with unique sensing and actuation capabilities. A shape memory filament and polyester yarn were knitted to produce a shape memory knitted fabric (SMF). Thermo-mechanical tensile test was carried out to quantify the memory behavior of SMF under different conditions. The experimental findings demonstrate excellent shape recovery (100%) and shape fixity up to 88% at different strains (20% and 60%) and temperatures (30 ℃ and 50 ℃). Experimental results reveal that memory filament behaves differently in a fabric structure than in its pristine condition at various temperatures and strains. The cycle test of SMF under different thermo-mechanical conditions indicated complete shape recovery with an increase in shape fixity. So, the utterly recoverable textile structure was achieved after a few initial cycles. These intelligent textiles are beneficial for the development of novel, innovative, and functional fabrics like elegant curtains, pressure garments, compression stockings, etc. In addition to fashion and medical uses, this unique feature may also be leveraged to build textile-based sensors and actuators.Keywords: knitting, memory filament, shape memory, smart textiles, thermo-mechanical cycle
Procedia PDF Downloads 89320 Structural and Optical Characterization of Rice-Husk-Derived SiO₂ Crystals-reinforced PVA Composites
Authors: Suminar Pratapa, Agus Riyanto, Silmi Machmudah, Sri Yani Purwaningsih
Abstract:
The objective of this study was to investigate the optical properties of polyvinyl alcohol (PVA) and its prospective applications by adding crystalline silica which is usually used as a reinforcing agent. To do this, we synthesized and evaluated PVA-based composites reinforced with silica crystals, namely cristobalite, derived from rice husk. The experimental procedure involved the production of SiO2 particles using rice husk precursors, which were subsequently subjected to calcination at a rate of 10 °C/min for a duration of 3 hours. This process primarily resulted in the formation of SiO2 crystals in the cristobalite phase, according to X-ray diffraction (XRD). Following this, the crystals were incorporated into polyvinyl alcohol (PVA) via a casting technique, resulting in the formation of composite sheets. The SiO2 contents in the composites were 0, 2.5, 5.0, and 10.%. XRD and Fourier-transform infrared spectroscopy (FTIR) techniques provided confirmation of the composites' successful synthesis, i.e., it did not yield any indications of chemical bonding between polyvinyl alcohol (PVA) and silicon dioxide (SiO2), indicating that the interaction was limited to interfacial reactions. The incorporation of SiO2 crystals resulted in a notable enhancement in UV-vis light absorption and a decrease in the optical band gap. Addition of 2.5, 5.0, and 10.% SiO2, for example, decreases the direct optical band gap of the composites form 5.37, 5.19, and 5.02 eV respectively, while the indirect band gaps of the samples were 4.44, 4.84, and 4.48 eV, correspondingly. These findings emphasize the efficacy of rice husk-derived SiO2 crystals as both reinforcement agents and modifiers of optical properties in the polymer composites, showcasing their significant potential to modify the composite's structural and optical characteristics.Keywords: rice husk, cristaline SiO₂, PVA-based composites, structural characteristics, optical properties.
Procedia PDF Downloads 46319 Formulation Development and Characterization of Oligonucleotide Containing Chitosan Nanoparticles
Authors: Gyati Shilakari Asthana, Abhay Asthana
Abstract:
Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1 and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide
Procedia PDF Downloads 494318 pH-Responsive Carrier Based on Polymer Particle
Authors: Florin G. Borcan, Ramona C. Albulescu, Adela Chirita-Emandi
Abstract:
pH-responsive drug delivery systems are gaining more importance because these systems deliver the drug at a specific time in regards to pathophysiological necessity, resulting in improved patient therapeutic efficacy and compliance. Polyurethane materials are well-known for industrial applications (elastomers and foams used in different insulations and automotive), but they are versatile biocompatible materials with many applications in medicine, as artificial skin for the premature neonate, membrane in the hybrid artificial pancreas, prosthetic heart valves, etc. This study aimed to obtain the physico-chemical characterization of a drug delivery system based on polyurethane microparticles. The synthesis is based on a polyaddition reaction between an aqueous phase (mixture of polyethylene-glycol M=200, 1,4-butanediol and Tween® 20) and an organic phase (lysin-diisocyanate in acetone) combined with simultaneous emulsification. Different active agents (omeprazole, amoxicillin, metoclopramide) were used to verify the release profile of the macromolecular particles in different pH mediums. Zetasizer measurements were performed using an instrument based on two modules: a Vasco size analyzer and a Wallis Zeta potential analyzer (Cordouan Technol., France) in samples that were kept in various solutions with different pH and the maximum absorbance in UV-Vis spectra were collected on a UVi Line 9,400 Spectrophotometer (SI Analytics, Germany). The results of this investigation have revealed that these particles are proper for a prolonged release in gastric medium where they can assure an almost constant concentration of the active agents for 1-2 weeks, while they can be disassembled faster in a medium with neutral pHs, such as the intestinal fluid.Keywords: lysin-diisocyanate, nanostructures, polyurethane, Zetasizer
Procedia PDF Downloads 184317 Development of Electrospun Porous Carbon Fibers from Cellulose/Polyacrylonitrile Blend
Authors: Zubair Khaliq, M. Bilal Qadir, Amir Shahzad, Zulfiqar Ali, Ahsan Nazir, Ali Afzal, Abdul Jabbar
Abstract:
Carbon fibers are one of the most demanding materials on earth due to their potential application in energy, high strength materials, and conductive materials. The nanostructure of carbon fibers offers enhanced properties of conductivity due to the larger surface area. The next generation carbon nanofibers demand the porous structure as it offers more surface area. Multiple techniques are used to produce carbon fibers. However, electrospinning followed by carbonization of the polymeric materials is easy to carry process on a laboratory scale. Also, it offers multiple diversity of changing parameters to acquire the desired properties of carbon fibers. Polyacrylonitrile (PAN) is the most used material for the production of carbon fibers due to its promising processing parameters. Also, cellulose is one of the highest yield producers of carbon fibers. However, the electrospinning of cellulosic materials is difficult due to its rigid chain structure. The combination of PAN and cellulose can offer a suitable solution for the production of carbon fibers. Both materials are miscible in the mixed solvent of N, N, Dimethylacetamide and lithium chloride. This study focuses on the production of porous carbon fibers as a function of PAN/Cellulose blend ratio, solution properties, and electrospinning parameters. These single polymer and blend with different ratios were electrospun to give fine fibers. The higher amount of cellulose offered more difficulty in electrospinning of nanofibers. After carbonization, the carbon fibers were studied in terms of their blend ratio, surface area, and texture. Cellulose contents offered the porous structure of carbon fibers. Also, the presence of LiCl contributed to the porous structure of carbon fibers.Keywords: cellulose, polyacrylonitrile, carbon nanofibers, electrospinning, blend
Procedia PDF Downloads 204316 Study of Composite Materials for Aisha Containment Chamber
Authors: G. Costa, F. Noto, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi
Abstract:
The ion sources for accelerators devoted to medical applications must provide intense ion beams, with high reproducibility, stability and brightness. AISHa (Advanced Ion Source for Hadron-therapy) is a compact ECRIS whose hybrid magnetic system consists of a permanent Halbach-type hexapole magnet and a set of independently energized superconducting coils. These coils will be enclosed in a compact cryostat with two cryocoolers for LHe-free operation. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadrontherapy center using heavy ions. In the paper, we designed an innovative solution for the plasma containment chamber that allows us to solve our isolation and structural problems. We analyzed the materials chosen for our aim (glass fibers and carbon fibers) and we illustrated the all process (spinning, curing and machining) of the assembly of our chamber. The glass fibers and carbon fibers are used to reinforce polymer matrices and give rise to structural composites and composites by molding.Keywords: hadron-therapy, carbon fiber, glass fiber, vacuum-bag, ECR, ion source
Procedia PDF Downloads 210315 The Taxonomic and Functional Diversity in Edaphic Microbial Communities from Antarctic Dry Valleys
Authors: Sean T. S. Wei, Joy D. Van Nostrand, Annapoorna Maitrayee Ganeshram, Stephen B. Pointing
Abstract:
McMurdo Dry Valleys are a largely ice-free polar desert protected by international treaty as an Antarctic special managed area. The terrestrial landscape is dominated by oligotrophic mineral soil with extensive rocky outcrops. Several environmental stresses: low temperature, lack of liquid water, UV exposure and oligotrophic substrates, restrict the major biotic component to microorganisms. The bacterial diversity and the putative physiological capacity of microbial communities of quartz rocks (hypoliths) and soil of a maritime-influenced Dry Valleys were interrogated by two metagenomic approaches: 454 pyro-sequencing and Geochp DNA microarray. The most abundant phylum in hypoliths was Cyanobacteria (46%), whereas in solils Actinobacteria (31%) were most abundant. The Proteobacteria and Bacteriodetes were the only other phyla to comprise >10% of both communities. Carbon fixation was indicated by photoautotrophic and chemoautotrophic pathways for both hypolith and soil communities. The fungi accounted for polymer carbon transformations, particularly for aromatic compounds. The complete nitrogen cycling was observed in both communities. The fungi in particular displayed pathways related to ammonification. Environmental stress response pathways were common among bacteria, whereas the nutrient stress response pathways were more widely present in bacteria, archaea and fungi. The diversity of bacterialphage was also surveyed by Geochip. Data suggested that different substrates supported different viral families: Leviviridae, Myoviridae, Podoviridae and Siphoviridiae were ubiquitous. However, Corticoviridae and Microviridae only occurred in wetter soils.Keywords: Antarctica, hypolith, soil, dry valleys, geochip, functional diversity, stress response
Procedia PDF Downloads 450314 Evaluation of Modified Asphalt Mixture with Hospital Spun-Bond Waste for Enhanced Crack Resistance
Authors: Ziba Talaeizadeh, Taghi Ebadi
Abstract:
Hospitals and medical centers generate a wide array of infectious waste on a daily basis, leading to pressing environmental concerns associated with proper disposal. Disposable plastic items and spun-bond clothing, commonly made from polypropylene, pose a significant risk of disease transmission, necessitating specialized waste management strategies. Incorporating these materials into bituminous asphalt production offers a potential solution, as it can modify asphalt mixtures and reduce susceptibility to cracking. This study aims to assess the crack resistance of asphalt mixtures modified with hospital spun-bond waste. Asphalt mixtures were prepared using the Marshall method, with spun-bond waste added in varying proportions (5% to 20%). The Semi-Circular Bending (SCB) test was conducted to evaluate asphalt fracture behavior under Mode I loading at controlled speeds of 5, 20, and 50 millimeters per minute and an average temperature of 25°C. Parameters such as fracture energy (FE) and Crack Resistance Index (CRI) were quantified. The results indicate that the addition of 10% to 15% spun-bond polypropylene polymer enhances the performance of the modified mixture, resulting in an 18% increase in fracture energy and an 11% reduction in cracking stiffness compared to the control sample. Further investigations involving factors like compaction level, bitumen type, and aggregate grading are recommended to address medical waste management and mitigate asphalt pavement cracking issues.Keywords: asphalt cracking, hospital waste, semi-circular bending test, spun-bond
Procedia PDF Downloads 60313 In-Silico Fusion of Bacillus Licheniformis Chitin Deacetylase with Chitin Binding Domains from Chitinases
Authors: Keyur Raval, Steffen Krohn, Bruno Moerschbacher
Abstract:
Chitin, the biopolymer of the N-acetylglucosamine, is the most abundant biopolymer on the planet after cellulose. Industrially, chitin is isolated and purified from the shell residues of shrimps. A deacetylated derivative of chitin i.e. chitosan has more market value and applications owing to it solubility and overall cationic charge compared to the parent polymer. This deacetylation on an industrial scale is performed chemically using alkalis like sodium hydroxide. This reaction not only is hazardous to the environment owing to negative impact on the marine ecosystem. A greener option to this process is the enzymatic process. In nature, the naïve chitin is converted to chitosan by chitin deacetylase (CDA). This enzymatic conversion on the industrial scale is however hampered by the crystallinity of chitin. Thus, this enzymatic action requires the substrate i.e. chitin to be soluble which is technically difficult and an energy consuming process. We in this project wanted to address this shortcoming of CDA. In lieu of this, we have modeled a fusion protein with CDA and an auxiliary protein. The main interest being to increase the accessibility of the enzyme towards crystalline chitin. A similar fusion work with chitinases had improved the catalytic ability towards insoluble chitin. In the first step, suitable partners were searched through the protein data bank (PDB) wherein the domain architecture were sought. The next step was to create the models of the fused product using various in silico techniques. The models were created by MODELLER and evaluated for properties such as the energy or the impairment of the binding sites. A fusion PCR has been designed based on the linker sequences generated by MODELLER and would be tested for its activity towards insoluble chitin.Keywords: chitin deacetylase, modeling, chitin binding domain, chitinases
Procedia PDF Downloads 242312 Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material
Authors: Anil Bhandari, Imran Khan Pathan, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit
Abstract:
The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.Keywords: embelin, gallic acid, Vidangadi Churna, colon targeted drug delivery
Procedia PDF Downloads 360311 4-Allylpyrocatechol Loaded Polymeric Micelles for Solubility Enhancing and Effects on Streptococcus mutans Biofilms
Authors: Siriporn Okonogi, Pimpak Phumat, Sakornrat Khongkhunthian
Abstract:
Piper betle has been extensively reported for various pharmacological effects including antimicrobial activity. 4-Allylpyrocatechol (AC) is a principle active compound found in P. betle. However, AC has a problem of solubility in water. The aims of the present study were to prepare AC loaded polymeric micelles for enhancing its water solubility and to evaluate its anti-biofilm activity against oral phathogenic bacteria. AC was loaded in polymeric micelles (PM) of Pluronic F127 by using thin film hydration method to obtain AC loaded PM (PMAC). The results revealed that AC in the form of PMAC possessed high water solubility. PMAC particles were characterized using a transmission electron microscope and photon correlation spectroscopy. Determination of entrapment efficiency (EE) and loading capacity (LC) of PMAC was done by using high-performance liquid chromatography. The highest EE (86.33 ± 14.27 %) and LC (19.25 ± 3.18 %) of PMAC were found when the weight ratio of polymer to AC was 4 to 1. At this ratio, the particles showed spherical in shape with the size of 38.83 ± 1.36 nm and polydispersity index of 0.28 ± 0.10. Zeta potential of the particles is negative with the value of 16.43 ± 0.55 mV. Crystal violet assay and confocal microscopy were applied to evaluate the effects of PMAC on Streptococcus mutans biofilms using chlorhexidine (CHX) as a positive control. PMAC contained 1.5 mg/mL AC could potentially inhibit (102.01 ± 9.18%) and significantly eradicate (85.05 ± 2.03 %) these biofilms (p < 0.05). Comparison with CHX, PMAC showed slightly similar biofilm inhibition but significantly stronger biofilm eradication (p < 0.05) than CHX. It is concluded that PMAC can enhance water solubility and anti-biofilm activity of AC.Keywords: pluronic, polymeric micelles, solubility, 4-allylpyrocathecol, Streptococcus mutans, anti-biofilm
Procedia PDF Downloads 144310 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems
Authors: Raouf Alizadeh, Kadijeh Hemmati
Abstract:
The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior
Procedia PDF Downloads 321309 Clay Effect on PET/Clay and PEN/Clay Nanocomposites Properties
Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour
Abstract:
Reinforced plastics or nanocomposites have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters, i.e., polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete, and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide-angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition.Keywords: exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing
Procedia PDF Downloads 326308 Enhancement in Bactericidal Activity of Hydantoin Based Microsphere from Smooth to Rough
Authors: Rajani Kant Rai, Jayakrishnan Athipet
Abstract:
There have been several attempts to prepare polymers with antimicrobial properties by doping with various N-halamines. Hydantoins (Cyclic N-halamine) is of importance due to their stability rechargeable chloroamide function, broad-spectrum anti-microbial action and ability to prevent resistance to the organisms. Polymerizable hydantoins are synthesized by tethering vinyl moieties to 5,5,-dialkyl hydantoin sacrificing the imide hydrogen in the molecule thereby restricting the halogen capture only to the amide nitrogen that results in compromised antibacterial activity. In order to increase the activity of the antimicrobial polymer, we have developed a scheme to maximize the attachment of chlorine to the amide and the imide moieties of hydantoin. Vinyl hydantoin monomer, (Z)-5-(4-((3-methylbuta-1,3-dien-2-yl)oxy)benzylidene)imidazolidine-2,4-dione (MBBID) was synthesized and copolymerized with a commercially available monomer, methyl methacrylate, by free radical polymerization. The antimicrobial activity of hydantoin is strongly dependent on their surface area and hence their microbial activity increases when incorporated in microspheres or nanoparticles as compared to their bulk counterpart. In this regard, smooth and rough surface microsphere of the vinyl monomer (MBBID) with commercial monomer was synthesized. The oxidative chlorine content of the copolymer ranged from 1.5 to 2.45 %. Further, to demonstrate the water purification potential, the thin column was packed with smooth or rough microspheres and challenged with simulated contaminated water that exhibited 6 log kill (total kill) of the bacteria in 20 minutes of exposure with smooth (25 mg/ml) and rough microsphere (15.0 mg/ml).Keywords: cyclic N-halamine, vinyl hydantoin monomer, rough surface microsphere, simulated contaminated water
Procedia PDF Downloads 146307 Formation of Nanochannels by Heavy Ions in Graphene Oxide Reinforced Carboxymethylcellulose Membranes for Proton Exchange Membrane Fuel Cells Applications
Authors: B. Kurbanova, M. Karibayev, N. Almas, K. Ospanov, K. Aimaganbetov, T. Kuanyshbekov, K. Akatan, S. Kabdrakhmanova
Abstract:
Proton exchange membranes (PEMs) operating at high temperatures above 100 °C with the excellent mechanical, chemical and thermochemical stability have been received much attention, because of their practical application of proton exchange membrane fuel cells (PEMFCs). Nowadays, a huge number of polymers and polymer-mixed various membranes have been investigated for this application, all of which offer both pros and cons. However, PEMFCs are still lack of ideal membranes with unique properties. In this work, carboxymethylcellulose (CMC) based membranes with dispersive graphene oxide (GO) sheets were fabricated and investigated for PEMFCs application. These membranes and pristine GO were studied by a combination of XRD, XPS, Raman, Brillouin, FTIR, thermo-mechanical analysis (TGA and Dynamic Mechanical Analysis) and SEM microscopy, while substantial studies on the proton transport properties were provided by Electrochemical Impedance Spectroscopy (EIS) measurements. It was revealed that the addition of CMC to the GO boosts proton conductivity of the whole membrane, while GO provides good mechanical and thermomechanical stability to the membrane. Further, the continuous and ordered nanochannels with well-tailored chemical structures were obtained by irradiation of heavy ions Kr⁺¹⁷ with an energy of 1.75 MeV/nucleon on the heavy ion accelerator. The formation of these nanochannels led to the significant increase of proton conductivity at 50% Relative Humidity. Also, FTIR and XPS measurement results show that ion irradiation eliminated the GO’s surface oxygen chemical bonds (C=O, C-O), and led to the formation of C = C, C – C bonds, whereas these changes connected with an increase in conductivity.Keywords: proton exchange membranes, graphene oxide, fuel cells, carboxymethylcellulose, ion irradiation
Procedia PDF Downloads 92306 Development and Characterization of Ceramic-Filled Composite Filaments and Functional Structures for Fused Deposition Modeling
Authors: B. Khatri, K. Lappe, M. Habedank, T. Müller, C. Megnin, T. Hanemann
Abstract:
We present a process flow for the development of ceramic-filled polymer composite filaments compatible with the fused deposition modeling (FDM) 3D printing process. Thermoplastic-ceramic composites were developed using acrylonitrile butadiene styrene (ABS) and 10- and 20 vol.% barium titanate (BaTiO3) powder (corresponding to 39.47- and 58.23 wt.% respectively) and characterized for their flow properties. To make them compatible with the existing FDM process, the composites were extruded into filaments. These composite filaments were subsequently structured into tensile stress specimens using a commercially available FDM 3D printer and characterized for their mechanical properties. Rheometric characterization of the material composites revealed non-Newtonian behavior with the viscosity logarithmically decreasing over increasing shear rates, as well as higher viscosities for samples with higher BaTiO3 filler content for a given shear rate (with the ABS+20vol.% BaTiO3 composite being over 50% more viscous compared to pure ABS at a shear rate of 1x〖10〗^3 s^(-1)). Mechanical characterization of the tensile stress specimens exhibited increasingly brittle behavior as well as a linearly decreasing ultimate tensile strength of the material composites with increasing volumetric ratio of BaTiO3 (from σ_max=32.4MPa for pure ABS to σ_max=21.3MPa for ABS+20vol.% BaTiO3). Further studies being undertaken include the development of composites with higher filler concentrations, sintering of the printed composites to yield pure dielectric structures and the determination of the dielectric characteristics of the composites.Keywords: ceramic composites, fused deposition modeling, material characterization, rapid prototyping
Procedia PDF Downloads 333305 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells
Authors: Amina Farooq, Nauman Zafar Butt
Abstract:
This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.Keywords: impedance, biochip, cell counting, microfluidics
Procedia PDF Downloads 162304 Electrochemical Coordination Polymers of Copper(II) Synthesis by Using Rigid and Felexible Ligands
Authors: P. Mirahmadpour, M. H. Banitaba, D. Nematollahi
Abstract:
The chemistry of coordination polymers in recent years has grown exponentially not only because of their interesting architectures but also due to their various technical applications in many fields including ion exchange, chemical catalysis, small molecule separations, and drug release. The use of bridging ligands for the controlled self-assembly of one, two or three dimensional metallo-supramolecular species is the subject of serious study in last decade. Numerous different synthetic methods have been offered for the preparation of coordination polymers such as (a) diffusion from the gas phase, (b) slow diffusion of the reactants into a polymeric matrix, (c) evaporation of the solvent at ambient or reduced temperatures, (d) temperature controlled cooling, (e) precipitation or recrystallisation from a mixture of solvents and (f) hydrothermal synthesis. The electrosynthetic process suggested several advantages over conventional approaches. A general advantage of electrochemical synthesis is that it allows synthesis under milder conditions than typical solvothermal or microwave synthesis. In this work we have introduced a simple electrochemical method for growing metal coordination polymers based on copper with a flexible 2,2’-thiodiacetic acid (TDA) and rigid 1,2,4,5-benzenetetracarboxylate (BTC) ligands. The structure of coordination polymers were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), elemental analysis, thermal gravimetric (TG) and differential thermal analyses (DTA). The single-crystal X-ray diffraction analysis revealed that different conformations of the ligands and different coordination modes of the carboxylate group as well as different coordination geometries of the copper atoms. Electrochemical synthesis of coordination polymers has different advantages such as faster synthesis at lower temperature in compare with conventional chemical methods and crystallization of desired materials in a single synthetic step.Keywords: 1, 2, 4, 5-benzenetetracarboxylate, coordination polymer, copper, 2, 2’-thiodiacetic acid
Procedia PDF Downloads 207303 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites
Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar
Abstract:
Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.Keywords: multi-functional, polymer composites, radiation shielding, sandwich composites
Procedia PDF Downloads 286