Search results for: insurance estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2230

Search results for: insurance estimation

1030 Board Gender Diversity and Firm Sustainable Investment: An Empirical Evidence

Authors: Muhammad Atif, M. Samsul Alam

Abstract:

The purpose of this study is to investigate the effects of board room gender diversity on firm sustainable investment. We test the extent to which sustainable investment is affected by the presence of female directors on U.S. corporate boards. Using data of S&P 1500 indexed firms collected from Bloomberg covering the period 2004-2016, we estimate the baseline model to investigate the effects of board room gender diversity on firm sustainable investment. We find a positive relationship between board gender diversity and sustainable investment. We also find that boards with two or more women have a pronounced impact on sustainable investment, consistent with the critical mass theory. Female independent directors have a stronger impact on sustainable investment than female executive directors. Our findings are robust to different identification and estimation techniques. The study offers another perspective of the ongoing debate in the social responsibility literature about the accountability relationships between business and society.

Keywords: sustainable investment, gender diversity, environmental proctection, social responsibility

Procedia PDF Downloads 160
1029 Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain

Authors: M. Kakavand, S. A. Naeini

Abstract:

Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.

Keywords: dynamic properties, shear modulus, damping ratio, clean sand, density, confining pressure, resonant column/torsional simple shear, TSS

Procedia PDF Downloads 121
1028 Knowledge Representation Based on Interval Type-2 CFCM Clustering

Authors: Lee Myung-Won, Kwak Keun-Chang

Abstract:

This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.

Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation

Procedia PDF Downloads 321
1027 Rural Households' Sources of Water and Willingness to Pay for Improved Water Services in South-West, Nigeria

Authors: Alaba M. Dare, Idris A. Ayinde, Adebayo M. Shittu, Sam O. Sam-Wobo

Abstract:

Households' source of water is one of the core development indicators recently gaining pre-eminence in Nigeria. This study examined rural households' sources of water, Willingness to Pay (WTP) and factors influencing mean WTP. A cross-sectional survey which involved the use of questionnaire was used. A dichotomous choice (DC) with follow up was used as elicitation method. A multi-stage random sampling technique was used to select 437 rural households. Descriptive statistics and Tobit model were used for data estimation. The result revealed that about 70% fetched from unimproved water sources. Most (74.4%) respondents showed WTP for improved water sources. Age (p < 0.01), sex (p < 0.01), education (p < 0.01), occupation (p < 0.01), income (p < 0.01), price of water (P < 0.01), quantity of water (p < 0.01), household size (p < 0.01) and distance (p < 0.01) to existing water sources significantly influenced rural households' WTP for these services. The inference from this study showed that rural dweller sources of water is highly primitive and deplorable. Governments and stakeholders should prioritize the provision of rural water at an affordable price by rural dwellers.

Keywords: households, source of water, willingness to pay (WTP), tobit model

Procedia PDF Downloads 378
1026 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.

Keywords: piecewise regression, bayesian, reversible jump MCMC, segmentation

Procedia PDF Downloads 371
1025 Performance-Based Quality Evaluation of Database Conceptual Schemas

Authors: Janusz Getta, Zhaoxi Pan

Abstract:

Performance-based quality evaluation of database conceptual schemas is an important aspect of database design process. It is evident that different conceptual schemas provide different logical schemas and performance of user applications strongly depends on logical and physical database structures. This work presents the entire process of performance-based quality evaluation of conceptual schemas. First, we show format. Then, the paper proposes a new specification of object algebra for representation of conceptual level database applications. Transformation of conceptual schemas and expression of object algebra into implementation schema and implementation in a particular database system allows for precise estimation of the processing costs of database applications and as a consequence for precise evaluation of performance-based quality of conceptual schemas. Then we describe an experiment as a proof of concept for the evaluation procedure presented in the paper.

Keywords: conceptual schema, implementation schema, logical schema, object algebra, performance evaluation, query processing

Procedia PDF Downloads 290
1024 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model

Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo

Abstract:

Considering the energetic crisis that is hitting Europe, it becomes more and more necessary to change the energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy not only to satisfy energy needs and fulfill the required consumption but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energetic communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next ten years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.

Keywords: ARIMA, electricity consumption, forecasting models, time series

Procedia PDF Downloads 173
1023 Analysis of Exponential Distribution under Step Stress Partially Accelerated Life Testing Plan Using Adaptive Type-I Hybrid Progressive Censoring Schemes with Competing Risks Data

Authors: Ahmadur Rahman, Showkat Ahmad Lone, Ariful Islam

Abstract:

In this article, we have estimated the parameters for the failure times of units based on the sampling technique adaptive type-I progressive hybrid censoring under the step-stress partially accelerated life tests for competing risk. The failure times of the units are assumed to follow an exponential distribution. Maximum likelihood estimation technique is used to estimate the unknown parameters of the distribution and tampered coefficient. Confidence interval also obtained for the parameters. A simulation study is performed by using Monte Carlo Simulation method to check the authenticity of the model and its assumptions.

Keywords: adaptive type-I hybrid progressive censoring, competing risks, exponential distribution, simulation, step-stress partially accelerated life tests

Procedia PDF Downloads 342
1022 Economic and Environmental Benefits of the Indium Recycling from the Waste Liquid Crystal Displays in China

Authors: Wu Yufeng, Gu Yifan, Wang Hengguang, Gongyu, Zuo Tieyong

Abstract:

Indium is one the scarce resources which can be only used less than 30 years, and more than 70% of the indium is used for the production of the LCD. The benefit of recycling Indium from waste LCD is large. Take the LCD-TV for example, the yield of which was close to 90 million units in 2010. If it was available to recycle the indium effectively, the yield of the secondary-indium could reach up to 110 metric ton, which accounted for one third of the primary indium production in China. And compared with the dispersion and long process extraction of the primary indium resources, secondary indium concentrates in the waste LCD, the exploitation has great economic and environmental benefits. However, the potential benefits were indefinite, resulting in China’s government did not pay enough attention to the indium recycling industry. In our study, an estimation model was constructed to analyze the potential of the indium in the waste LCD. The different types of LCD were detected to find out the content of indium. Then, the potential of the indium in the waste LCD was estimated in China. Furthermore, the pollution emissions of the product process of the primary and secondary indium was analyzed respectively to calculate the economic and environmental benefits of the indium recycling from the waste LCD in China.

Keywords: indium recycling, waste liquid crystal displays, benefits, China

Procedia PDF Downloads 423
1021 Estimation of Global and Diffuse Solar Radiation Studies of Islamabad, Capital City of Pakistan

Authors: M. Akhlaque Ahmed, Maliha Afshan, Adeel Tahir

Abstract:

Global and diffuse solar radiation studies have been carried out for the Capital city of Pakistan, Islamabad ( latitude 330 43’N and Longitude 370 71’E) to assess the solar potential of the area. The global and diffuse solar radiation were carried out using sunshine hour data for the above-mentioned area. Monthly total solar radiation is calculated through regression constants a and b through declination angle of the sun and sunshine hours and KT that is cloudiness index are used to calculate the diffuse solar radiation. Result obtained shows variation in the direct and diffuse component of solar radiation in summer and winter months for Islamabad. Diffuse solar radiation was found maximum in July, i.e., 32% whereas direct or beam radiation was found to be high in April to June, i.e., 73%. During July, August, and December, the sky was found cloudy. From the result, it appears that with the exception of monsoon month July and August the solar energy can be utilized very efficiently throughout the year in Islamabad.

Keywords: global radiation, Islamabad, diffuse radiation, sky condition, sunshine hour

Procedia PDF Downloads 167
1020 The TarMed Reform of 2014: A Causal Analysis of the Effects on the Behavior of Swiss Physicians

Authors: Camila Plaza, Stefan Felder

Abstract:

In October 2014, the TARMED reform was implemented in Switzerland. In an effort to even out the financial standing of general practitioners (including pediatricians) relative to that of specialists in the outpatient sector, the reform tackled two aspects: on the one hand, GPs would be able to bill an additional 9 CHF per patient, once per consult per day. This is referred to as the surcharge position. As a second measure, it reduced the fees for certain technical services targeted to specialists (e.g., imaging, surgical technical procedures, etc.). Given the fee-for-service reimbursement system in Switzerland, we predict that physicians reacted to the economic incentives of the reform by increasing the consults per patient and decreasing the average amount of time per consult. Within this framework, our treatment group is formed by GPs and our control group by those specialists who were not affected by the reform. Using monthly insurance claims panel data aggregated at the physician praxis level (provided by SASIS AG), for the period of January 2013-December 2015, we run difference in difference panel data models with physician and time fixed effects in order to test for the causal effects of the reform. We account for seasonality, and control for physician characteristics such as age, gender, specialty, and physician experience. Furthermore, we run the models on subgroups of physicians within our sample so as to account for heterogeneity and treatment intensities. Preliminary results support our hypothesis. We find evidence of an increase in consults per patients and a decrease in time per consult. Robustness checks do not significantly alter the results for our outcome variable of consults per patient. However, we do find a smaller effect of the reform for time per consult. Thus, the results of this paper could provide policymakers a better understanding of physician behavior and their sensitivity to financial incentives of reforms (both past and future) under the current reimbursement system.

Keywords: difference in differences, financial incentives, health reform, physician behavior

Procedia PDF Downloads 126
1019 Effect of Specimen Thickness on Probability Distribution of Grown Crack Size in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The fatigue crack growth is stochastic because of the fatigue behavior having an uncertainty and a randomness. Therefore, it is necessary to determine the probability distribution of a grown crack size at a specific fatigue crack propagation life for maintenance of structure as well as reliability estimation. The essential purpose of this study is to present the good probability distribution fit for the grown crack size at a specified fatigue life in a rolled magnesium alloy under different specimen thickness conditions. Fatigue crack propagation experiments are carried out in laboratory air under three conditions of specimen thickness using AZ31 to investigate a stochastic crack growth behavior. The goodness-of-fit test for probability distribution of a grown crack size under different specimen thickness conditions is performed by Anderson-Darling test. The effect of a specimen thickness on variability of a grown crack size is also investigated.

Keywords: crack size, fatigue crack propagation, magnesium alloys, probability distribution, specimen thickness

Procedia PDF Downloads 497
1018 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness

Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers

Abstract:

The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).

Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning

Procedia PDF Downloads 285
1017 Association of Clostridium difficile Infection and Bone Cancer

Authors: Daniela Prado, Lexi Frankel, Amalia Ardeljan, Lokesh Manjani, Matthew Cardeiro, Omar Rashid

Abstract:

Background: Clostridium difficile (C. diff) is a gram-positive bacterium that is known to cause life-threatening diarrhea and severe inflammation of the colon. It originates as an alteration of the gut microbiome and can be transmitted through spores. Recent studies have shown a high association between the development of C. diff in cancer patients due to extensive hospitalization. However, research is lacking regarding C. diff’s association in the causation or prevention of cancer. The objective of this study was to therefore assess the correlation between Clostridium difficile infection (CDI) and the incidence of bone cancer. Methods: This retrospective analysis used data provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate the patients infected versus patients not infected with C. diff using ICD-10 and ICD-9 codes. Access to the database was granted by the Holy Cross Health, Fort Lauderdale, for the purpose of academic research. Standard statistical methods were used. Results: Between January 2010 and December 2019, the query was analyzed and resulted in 78863 patients in both the infected and control group, respectively. The two groups were matched by age range and CCI score. The incidence of bone cancer was 659 patients (0.835%) in the C. diff group compared to 1941 patients (2.461%) in the control group. The difference was statistically significant by a P-value < 2.2x10^-16 with an odds ratio (OR)= 0.33 (0.31-0.37) with a 95% confidence interval (CI). Treatment for CDI was analyzed for both C. diff infected and noninfected populations. 91 out of 16,676 (0.55%) patients with a prior C. diff infection and treated with antibiotics were compared to the control group were 275 out of 16,676 (1.65%) patients with no history of CDI and received antibiotic treatment. Results remained statistically significant by P-value <2.2x10-16 with an OR= 0.42 (0.37, 0.48). and a 95% CI. Conclusion: The study shows a statistically significant correlation between C. diff and a reduced incidence of bone cancer. Further evaluation is recommended to assess the potential of C. difficile in reducing bone cancer incidence.

Keywords: bone cancer, colitis, clostridium difficile, microbiome

Procedia PDF Downloads 276
1016 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis

Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu

Abstract:

In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.

Keywords: supervised, functional principal component analysis, functional response, functional linear regression

Procedia PDF Downloads 73
1015 The Impact of Board of Directors on CEO Compensation: Evidence from the UK

Authors: Saleh Alagla, Murya Habbash

Abstract:

The paper investigates whether the board of directors plays a monitoring role or not in CEO compensation for the UK firms during the eve of the recent financial crisis, 2004-2008. The use of heteroscedastic and autocorrelated error consistent estimation of the panel data shows, surprisingly, that four board characteristics variables are found to play a significant role in increasing the level of CEO compensation. This insightful result would suggest evidence of the managerial power theory in general and the cronyism hypothesis in particular. Moreover, the interesting evidence supporting managerial power perspective is that CEO-Chair duality reduces long-term compensation while increasing short-term compensation, thus suggesting that CEOs are risk averse who prefer short-term compensation to long-term compensation. Finally, consistent with the agency perspective board size is found to increase all compensation variables as expected.

Keywords: corporate governance, CEO compensation, board of directors, internal governance mechanisms, agency theory, managerial power theory, cronyism hypothesis

Procedia PDF Downloads 800
1014 Post-Disaster Recovery and Impacts on Construction Resources: Case Studies of Queensland Catastrophic Events

Authors: Scott A. Abbott

Abstract:

This paper examines the increase in the occurrence of natural disasters worldwide and the need to support vulnerable communities in post-disaster recovery. Preparation and implementation of post-disaster recovery projects need to be improved to allow communities to recover infrastructure, housing, economically and socially following a catastrophe. With the continual rise in catastrophic events worldwide due to climate change, impacts on construction resources affect the ability for post-disaster recovery to be undertaken. This research focuses on case studies of catastrophic events in Queensland, Australia, to contribute to the body of knowledge and gain valuable insights on lessons learned from past events and how they have been managed. The aim of this research is to adopt qualitative data using semi-structured interviews from participants predominantly from the insurance sector to understand barriers that have previously and currently exist in post-disaster recovery. Existing literature was reviewed to reveal gaps in knowledge that needed to be tested. Qualitative data was collected and summarised from field research with the results analysed and discussed. Barriers that impacted post-disaster recovery included time, cost, and resource capability and capacity. Causal themes that impacted time and cost were identified as decision making, pre-planning, and preparedness, as well as effective communication across stakeholders. The research study applied a qualitative approach to the existing literature and case studies across Queensland, Australia, to identify existing and new barriers that impact post-disaster recovery. It was recommended to implement effective procurement strategies to assist in cost control; implement pre-planning and preparedness strategies across funder, contractor, and local governments; more effective and timely decision making to reduce time and cost impacts.

Keywords: construction recovery, cost, disaster recovery, resources, time

Procedia PDF Downloads 125
1013 Economic Loss due to Ganoderma Disease in Oil Palm

Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho

Abstract:

Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.

Keywords: ganoderma, oil palm, regression model, yield loss, economic loss

Procedia PDF Downloads 385
1012 System Security Impact on the Dynamic Characteristics of Measurement Sensors in Smart Grids

Authors: Yiyang Su, Jörg Neumann, Jan Wetzlich, Florian Thiel

Abstract:

Smart grid is a term used to describe the next generation power grid. New challenges such as integration of renewable and decentralized energy sources, the requirement for continuous grid estimation and optimization, as well as the use of two-way flows of energy have been brought to the power gird. In order to achieve efficient, reliable, sustainable, as well as secure delivery of electric power more and more information and communication technologies are used for the monitoring and the control of power grids. Consequently, the need for cybersecurity is dramatically increased and has converged into several standards which will be presented here. These standards for the smart grid must be designed to satisfy both performance and reliability requirements. An in depth investigation of the effect of retrospectively embedded security in existing grids on it’s dynamic behavior is required. Therefore, a retrofitting plan for existing meters is offered, and it’s performance in a test low voltage microgrid is investigated. As a result of this, integration of security measures into measurement architectures of smart grids at the design phase is strongly recommended.

Keywords: cyber security, performance, protocols, security standards, smart grid

Procedia PDF Downloads 321
1011 Mechanical Properties and Microstructural Analysis of Al6061-Red Mud Composites

Authors: M. Gangadharappa, M. Ravi Kumar, H. N. Reddappa

Abstract:

The mechanical properties and morphological analysis of Al6061-Red mud particulate composites were investigated. The compositions of the composite include a matrix of Al6061 and the red mud particles of 53-75 micron size as reinforcement ranging from 0% to 12% at an interval of 2%. Stir casting technique was used to fabricate Al6061-Red mud composites. Density measurement, estimation of percentage porosity, tensile properties, fracture toughness, hardness value, impact energy, percentage elongation and percentage reduction in area. Further, the microstructures and SEM examinations were investigated to characterize the composites produced. The result shows that a uniform dispersion of the red mud particles along the grain boundaries of the Al6061 alloy. The tensile strength and hardness values increases with the addition of Red mud particles, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the red mud, an industrial waste can be used to enhance the properties of Al6061 alloy for engineering applications.

Keywords: Al6061, red mud, tensile strength, hardness and microstructures

Procedia PDF Downloads 558
1010 Method for Evaluating the Monetary Value of a Customized Version of the Digital Twin for the Additive Manufacturing

Authors: Fabio Oettl, Sebastian Hoerbrand, Tobias Wittmeir, Johannes Schilp

Abstract:

By combining the additive manufacturing (AM)- process with digital concepts, like the digital twin (DT) or the downsized and basing concept of the digital part file (DPF), the competitiveness of additive manufacturing is enhanced and new use cases like decentral production are enabled. But in literature, one can´t find any quantitative approach for valuing the usage of a DT or DPF in AM. Out of this fact, such an approach will be developed within this paper in order to further promote or dissuade the usage of these concepts. The focus is set on the production as an early lifecycle phase, which means that the AM-production process gets analyzed regarding the potential advantages of using DPF in AM. These advantages are transferred to a monetary value with this approach. By calculating the costs of the DPF, an overall monetary value is a result. Thereon a tool, based on a simulation environment is constructed, where the algorithms are transformed into a program. The results of applying this tool show that an overall value of 20,81 € for the DPF can be realized for one special use case. For the future application of the DPF there is the recommendation to integrate especially sustainable information because out of this, a higher value of the DPF can be expected.

Keywords: additive manufacturing, digital concept costs, digital part file, digital twin, monetary value estimation

Procedia PDF Downloads 198
1009 Regression for Doubly Inflated Multivariate Poisson Distributions

Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta

Abstract:

Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.

Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios

Procedia PDF Downloads 155
1008 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 437
1007 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 115
1006 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction

Authors: Sudhir Kumar Tiwari

Abstract:

The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.

Keywords: multi-disciplinary optimization, aircraft load, finite element analysis, stick model

Procedia PDF Downloads 350
1005 Estimation of Respiratory Parameters in Pressure Controlled Ventilation System with Double Lungs on Secretion Clearance

Authors: Qian Zhang, Dongkai Shen, Yan Shi

Abstract:

A new mechanical ventilator with automatic secretion clearance function can improve the secretion clearance safely and efficiently. However, in recent modeling studies on various mechanical ventilators, it was considered that human had one lung, and the coupling effect of double lungs was never illustrated. In this paper, to expound the coupling effect of double lungs, a mathematical model of a ventilation system of a bi-level positive airway pressure (BiPAP) controlled ventilator with secretion clearance was set up. Moreover, an experimental study about the mechanical ventilation system of double lungs on BiPAP ventilator was conducted to verify the mathematical model. Finally, the coupling effect of double lungs of the mathematical ventilation was studied by simulation and orthogonal experimental design. This paper adds to previous studies and can be referred to optimization methods in medical researches.

Keywords: double lungs, coupling effect, secretion clearance, orthogonal experimental design

Procedia PDF Downloads 602
1004 Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice

Authors: S. Zolghadri, M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani

Abstract:

In this study, the absorbed dose of human organs after injection of 177Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, 177Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy.

Keywords: ¹⁷⁷Lu, breast cancer, compartmental modeling, dosimetry

Procedia PDF Downloads 149
1003 Observer-Based Control Design for Double Integrators Systems with Long Sampling Periods and Actuator Uncertainty

Authors: Tomas Menard

Abstract:

The design of control-law for engineering systems has been investigated for many decades. While many results are concerned with continuous systems with continuous output, nowadays, many controlled systems have to transmit their output measurements through network, hence making it discrete-time. But it is well known that the sampling of a system whose control-law is based on the continuous output may render the system unstable, especially when this sampling period is long compared to the system dynamics. The control design then has to be adapted in order to cope with this issue. In this paper, we consider systems which can be modeled as double integrator with uncertainty on the input since many mechanical systems can be put under such form. We present a control scheme based on an observer using only discrete time measurement and which provides continuous time estimation of the state, combined with a continuous control law, which stabilized a system with second-order dynamics even in the presence of uncertainty. It is further shown that arbitrarily long sampling periods can be dealt with properly setting the control scheme parameters.

Keywords: dynamical system, control law design, sampled output, observer design

Procedia PDF Downloads 186
1002 Estimation of Subgrade Resilient Modulus from Soil Index Properties

Authors: Magdi M. E. Zumrawi, Mohamed Awad

Abstract:

Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.

Keywords: Consistency factor, resilient modulus, subgrade soil, properties

Procedia PDF Downloads 190
1001 Personalized Intervention through Causal Inference in mHealth

Authors: Anna Guitart Atienza, Ana Fernández del Río, Madhav Nekkar, Jelena Ljubicic, África Periáñez, Eura Shin, Lauren Bellhouse

Abstract:

The use of digital devices in healthcare or mobile health (mHealth) has increased in recent years due to the advances in digital technology, making it possible to nudge healthy behaviors through individual interventions. In addition, mHealth is becoming essential in poor-resource settings due to the widespread use of smartphones in areas where access to professional healthcare is limited. In this work, we evaluate mHealth interventions in low-income countries with a focus on causal inference. Counterfactuals estimation and other causal computations are key to determining intervention success and assisting in empirical decision-making. Our main purpose is to personalize treatment recommendations and triage patients at the individual level in order to maximize the entire intervention's impact on the desired outcome. For this study, collected data includes mHealth individual logs from front-line healthcare workers, electronic health records (EHR), and external variables data such as environmental, demographic, and geolocation information.

Keywords: causal inference, mHealth, intervention, personalization

Procedia PDF Downloads 130