Search results for: high energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25263

Search results for: high energy

24063 Performance Analysis of Photovoltaic Solar Energy Systems

Authors: Zakariyya Hassan Abdullahi, Zainab Suleiman Abdullahi, Nuhu Alhaji Muhammad

Abstract:

In this paper, a thorough review of photovoltaic and photovoltaic thermal systems is done on the basis of its performance based on electrical as well as thermal output. Photovoltaic systems are classified according to their use, i.e., electricity production, and thermal, Photovoltaic systems behave in an extraordinary and useful way, they react to light by transforming part of it into electricity useful way and unique, since photovoltaic and thermal applications along with the electricity production. The application of various photovoltaic systems is also discussed in detail. The performance analysis including all aspects, e.g., electrical, thermal, energy, and energy efficiency are also discussed. A case study for PV and PV/T system based on energetic analysis is presented.

Keywords: photovoltaic, renewable, performance, efficiency, energy

Procedia PDF Downloads 504
24062 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment

Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor

Abstract:

The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.

Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment

Procedia PDF Downloads 140
24061 YBa2Cu3O7-d Nanoparticles Doped by Ferromagnetic Nanoparticles of Y3Fe5O12

Authors: Samir Khene

Abstract:

Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of the scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBa2Cu3O7- and La1.85 Sr0.15CuO will be presented. It will be given special attention to the study of the YBa2Cu3O7- nanoparticles doped by ferromagnetic nanoparticles of Y3Fe5O12. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBa2Cu3O7- nanoparticles as a function of applied field H and temperature T will be studied.

Keywords: ferromagnetism, superconductivity, coexistence, magnetic material

Procedia PDF Downloads 71
24060 Analyzing the Effects of Real Income and Biomass Energy Consumption on Carbon Dioxide (CO2) Emissions: Empirical Evidence from the Panel of Biomass-Consuming Countries

Authors: Eyup Dogan

Abstract:

This empirical aims to analyze the impacts of real income and biomass energy consumption on the level of emissions in the EKC model for the panel of biomass-consuming countries over the period 1980-2011. Because we detect the presence of cross-sectional dependence and heterogeneity across countries for the analyzed data, we use panel estimation methods robust to cross-sectional dependence and heterogeneity. The CADF and the CIPS panel unit root tests indicate that carbon emissions, real income and biomass energy consumption are stationary at the first-differences. The LM bootstrap panel cointegration test shows that the analyzed variables are cointegrated. Results from the panel group-mean DOLS and the panel group-mean FMOLS estimators show that increase in biomass energy consumption decreases CO2 emissions and the EKC hypothesis is validated. Therefore, countries are advised to boost their production and increase the use of biomass energy for lower level of emissions.

Keywords: biomass energy, CO2 emissions, EKC model, heterogeneity, cross-sectional dependence

Procedia PDF Downloads 290
24059 Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator

Authors: Haithem Elderrat, Huw Davies, Emmanuel Brousseau

Abstract:

Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle.

Keywords: FFFluid, dry foam, anti-vibration devices, elastomeric polymer foam

Procedia PDF Downloads 332
24058 A Selective and Fast Hydrogen Sensor Using Doped-LaCrO₃ as Sensing Electrode

Authors: He Zhang, Jianxin Yi

Abstract:

As a clean energy, hydrogen shows many advantages such as renewability, high heat value, and extensive sources and may play an important role in the future society. However, hydrogen is a combustible gas because of its low ignition energy (0.02mJ) and wide explosive limit (4% ~ 74% in air). It is very likely to cause fire hazard or explosion once leakage is happened and not detected in time. Mixed-potential type sensor has attracted much attention in monitoring and detecting hydrogen due to its high response, simple support electronics and long-term stability. Typically, this kind of sensor is consisted of a sensing electrode (SE), a reference electrode (RE) and a solid electrolyte. The SE and RE materials usually display different electrocatalytic abilities to hydrogen. So hydrogen could be detected by measuring the EMF change between the two electrodes. Previous reports indicate that a high-performance sensing electrode is important for improving the sensing characteristics of the sensor. In this report, a planar type mixed-potential hydrogen sensor using La₀.₈Sr₀.₂Cr₀.₅Mn₀.₅O₃₋δ (LSCM) as SE, Pt as RE and yttria-stabilized zirconia (YSZ) as solid electrolyte was developed. The reason for selecting LSCM as sensing electrode is that it shows the high electrocatalytic ability to hydrogen in solid oxide fuel cells. The sensing performance of the fabricated LSCM/YSZ/Pt sensor was tested systemically. The experimental results show that the sensor displays high response to hydrogen. The response values for 100ppm and 1000ppm hydrogen at 450 ºC are -70 mV and -118 mV, respectively. The response time is an important parameter to evaluate a sensor. In this report, the sensor response time decreases with increasing hydrogen concentration and get saturated above 500ppm. The steady response time at 450 ºC is as short as 4s, indicating the sensor shows great potential in practical application to monitor hydrogen. An excellent response repeatability to 100ppm hydrogen at 450 ˚C and a good sensor reproducibility among three sensors were also observed. Meanwhile, the sensor exhibits excellent selectivity to hydrogen compared with several interfering gases such as NO₂, CH₄, CO, C₃H₈ and NH₃. Polarization curves were tested to investigate the sensing mechanism and the results indicated the sensor abide by the mixed-potential mechanism.

Keywords: fire hazard, H₂ sensor, mixed-potential, perovskite

Procedia PDF Downloads 181
24057 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah

Abstract:

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 333
24056 Engineered Reactor Components for Durable Iron Flow Battery

Authors: Anna Ivanovskaya, Alexandra E. L. Overland, Swetha Chandrasekaran, Buddhinie S. Jayathilake

Abstract:

Iron-based redox flow batteries (IRFB) are promising for grid-scale storage because of their low-cost and environmental safety. Earth-abundant iron can enable affordable grid-storage to meet DOE’s target material cost <$20/kWh and levelized cost for storage $0.05/kWh. In conventional redox flow batteries, energy is stored in external electrolyte tanks and electrolytes are circulated through the cell units to achieve electrochemical energy conversions. However, IRFBs are hybrid battery systems where metallic iron deposition at the negative side of the battery controls the storage capacity. This adds complexity to the design of a porous structure of 3D-electrodes to achieve a desired high storage capacity. In addition, there is a need to control parasitic hydrogen evolution reaction which accompanies the metal deposition process, increases the pH, lowers the energy efficiency, and limits the durability. To achieve sustainable operation of IRFBs, electrolyte pH, which affects the solubility of reactants and the rate of parasitic reactions, needs to be dynamically readjusted. In the present study we explore the impact of complexing agents on maintaining solubility of the reactants and find the optimal electrolyte conditions and battery operating regime, which are specific for IRFBs with additives, and demonstrate the robust operation.

Keywords: flow battery, iron-based redox flow battery, IRFB, energy storage, electrochemistry

Procedia PDF Downloads 72
24055 Electric Vehicle Fleet Operators in the Energy Market - Feasibility and Effects on the Electricity Grid

Authors: Benjamin Blat Belmonte, Stephan Rinderknecht

Abstract:

The transition to electric vehicles (EVs) stands at the forefront of innovative strategies designed to address environmental concerns and reduce fossil fuel dependency. As the number of EVs on the roads increases, so too does the potential for their integration into energy markets. This research dives deep into the transformative possibilities of using electric vehicle fleets, specifically electric bus fleets, not just as consumers but as active participants in the energy market. This paper investigates the feasibility and grid effects of electric vehicle fleet operators in the energy market. Our objective centers around a comprehensive exploration of the sector coupling domain, with an emphasis on the economic potential in both electricity and balancing markets. Methodologically, our approach combines data mining techniques with thorough pre-processing, pulling from a rich repository of electricity and balancing market data. Our findings are grounded in the actual operational realities of the bus fleet operator in Darmstadt, Germany. We employ a Mixed Integer Linear Programming (MILP) approach, with the bulk of the computations being processed on the High-Performance Computing (HPC) platform ‘Lichtenbergcluster’. Our findings underscore the compelling economic potential of EV fleets in the energy market. With electric buses becoming more prevalent, the considerable size of these fleets, paired with their substantial battery capacity, opens up new horizons for energy market participation. Notably, our research reveals that economic viability is not the sole advantage. Participating actively in the energy market also translates into pronounced positive effects on grid stabilization. Essentially, EV fleet operators can serve a dual purpose: facilitating transport while simultaneously playing an instrumental role in enhancing grid reliability and resilience. This research highlights the symbiotic relationship between the growth of EV fleets and the stabilization of the energy grid. Such systems could lead to both commercial and ecological advantages, reinforcing the value of electric bus fleets in the broader landscape of sustainable energy solutions. In conclusion, the electrification of transport offers more than just a means to reduce local greenhouse gas emissions. By positioning electric vehicle fleet operators as active participants in the energy market, there lies a powerful opportunity to drive forward the energy transition. This study serves as a testament to the synergistic potential of EV fleets in bolstering both economic viability and grid stabilization, signaling a promising trajectory for future sector coupling endeavors.

Keywords: electric vehicle fleet, sector coupling, optimization, electricity market, balancing market

Procedia PDF Downloads 69
24054 Development of Expanded Perlite-Caprylicacid Composite for Temperature Maintainance in Buildings

Authors: Akhila Konala, Jagadeeswara Reddy Vennapusa, Sujay Chattopadhyay

Abstract:

The energy consumption of humankind is growing day by day due to an increase in the population, industrialization and their needs for living. Fossil fuels are the major source of energy to satisfy energy needs, which are non-renewable energy resources. So, there is a need to develop green resources for energy production and storage. Phase change materials (PCMs) derived from plants (green resources) are well known for their capacity to store the thermal energy as latent heat during their phase change from solid to liquid. This property of PCM could be used for storage of thermal energy. In this study, a composite with fatty acid (caprylic acid; M.P 15°C, Enthalpy 179kJ/kg) as a phase change material and expanded perlite as support porous matrix was prepared through direct impregnation method for thermal energy storage applications. The prepared composite was characterized using Differential scanning calorimetry (DSC), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR) spectrometer. The melting point of the prepared composite was 15.65°C, and the melting enthalpy was 82kJ/kg. The surface nature of the perlite was observed through FESEM. It was observed that there are micro size pores in the perlite surface, which were responsible for the absorption of PCM into perlite. In TGA thermogram, the PCM loss from composite was started at ~90°C. FTIR curves proved there was no chemical interaction between the perlite and caprylic acid. So, the PCM composite prepared in this work could be effective to use in temperature maintenance of buildings.

Keywords: caprylic acid, composite, phase change materials, PCM, perlite, thermal energy

Procedia PDF Downloads 117
24053 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors

Authors: Girts Bumanis, Diana Bajare

Abstract:

With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.

Keywords: alkaline material, buffer capacity, biogas production, bioreactors

Procedia PDF Downloads 239
24052 A Comparison of the Environmental Impacts of Edible and Non-Edible Oil Crops in Biodiesel Production

Authors: Halit Tutar, Omer Eren, Oguz Parlakay

Abstract:

The demand for food and energy of mankind has been increasing every passing day. Renewable energy sources have been pushed to forefront since fossil fuels will be run out in the near future and their negative effects to the environment. As in every sector, the transport sector benefits from biofuel (biogas, bioethanol and biodiesel) one of the renewable energy sources as well. The edible oil crops are used in production of biodiesel. Utilizing edible oil crops as renewable energy source may raise a debate in the view of that there is a shortage in raw material of edible oil crops in Turkey. Researches related to utilization of non-edible oil crops as biodiesel raw materials have been recently increased, and especially studies related to their vegetative production and adaptation have been accelerated in Europe. In this review edible oil crops are compared to non-edible oil crops for biodiesel production in the sense of biodiesel production, some features of non-edible oil crops and their harmful emissions to environment are introduced. The data used in this study, obtained from articles, thesis, reports relevant to edible and non edible oil crops in biodiesel.

Keywords: biodiesel, edible oil crops, environmental impacts, renewable energy

Procedia PDF Downloads 427
24051 Application of a Modified Crank-Nicolson Method in Metallurgy

Authors: Kobamelo Mashaba

Abstract:

The molten slag has a high substantial temperatures range between 1723-1923, carrying a huge amount of useful energy for reducing energy consumption and CO₂ emissions under the heat recovery process. Therefore in this study, we investigated the performance of the modified crank Nicolson method for a delayed partial differential equation on the heat recovery of molten slag in the metallurgical mining environment. It was proved that the proposed method converges quickly compared to the classic method with the existence of a unique solution. It was inferred from numerical result that the proposed methodology is more viable and profitable for the mining industry.

Keywords: delayed partial differential equation, modified Crank-Nicolson Method, molten slag, heat recovery, parabolic equation

Procedia PDF Downloads 96
24050 Mitigation of Size Effects in Woven Fabric Composites Using Finite Element Analysis Approach

Authors: Azeez Shaik, Yagnik Kalariya, Amit Salvi

Abstract:

High-performance requirements and emission norms were forcing the automobile industry to opt for lightweight materials which improve the fuel efficiency and absorb energy during crash applications. In such scenario, the woven fabric composites are providing better energy absorption compared to metals. Woven fabric composites have a repetitive unit cell (RUC) and the mechanical properties of these materials are highly dependent on RUC. This work investigates the importance of detailed modelling of the RUC, the size effects associated and the mitigation techniques to avoid them using Finite element analysis approach.

Keywords: repetitive unit cell, representative volume element, size effects, cohesive zone, finite element analysis

Procedia PDF Downloads 247
24049 Estimating the Power Influence of an Off-Grid Photovoltaic Panel on the Indicting Rate of a Storage System (Batteries)

Authors: Osamede Asowata

Abstract:

The current resurgence of interest in the use of renewable energy is driven by the need to reduce the high environmental impact of fossil-based energy. The aim of this paper is to evaluate the effect of a stationary PV panel on the charging rate of deep-cycle valve regulated lead-acid (DCVRLA) batteries. Stationary PV panels are set to a fixed tilt and orientation angle, which plays a major role in dictating the output power of a PV panel and subsequently on the charging time of a DCVRLA battery. In a basic PV system, an energy storage device that stores the power from the PV panel is necessary due to the fluctuating nature of the PV voltage caused by climatic conditions. The charging and discharging times of a DCVRLA battery were determined for a twelve month period from January through December 2012. Preliminary results, which include regression analysis (R2), conversion-time per week and work-time per day, indicate that a 36 degrees tilt angle produces a good charging rate for a latitude of 26 degrees south throughout the year.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation.

Procedia PDF Downloads 236
24048 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades

Authors: Farhana Arzu, Roslan Hashim

Abstract:

Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.

Keywords: variable length blade, performance, tidal turbine, power generation

Procedia PDF Downloads 270
24047 Use of Improved Genetic Algorithm in Cloud Computing to Reduce Energy Consumption in Migration of Virtual Machines

Authors: Marziyeh Bahrami, Hamed Pahlevan Hsseini, Behnam Ghamami, Arman Alvanpour, Hamed Ezzati, Amir Salar Sadeghi

Abstract:

One of the ways to increase the efficiency of services in the system of agents and, of course, in the world of cloud computing, is to use virtualization techniques. The aim of this research is to create changes in cloud computing services that will reduce as much as possible the energy consumption related to the migration of virtual machines and, in some way, the energy related to the allocation of resources and reduce the amount of pollution. So far, several methods have been proposed to increase the efficiency of cloud computing services in order to save energy in the cloud environment. The method presented in this article tries to prevent energy consumption by data centers and the subsequent production of carbon and biological pollutants as much as possible by increasing the efficiency of cloud computing services. The results show that the proposed algorithm, using the improvement in virtualization techniques and with the help of a genetic algorithm, improves the efficiency of cloud services in the matter of migrating virtual machines and finally saves consumption. becomes energy.

Keywords: consumption reduction, cloud computing, genetic algorithm, live migration, virtual Machine

Procedia PDF Downloads 51
24046 Docking Studie of Biologically Active Molecules: Exploring Medical Applications

Authors: Sihame Amakrane, Zineb Ouahdi, Mohammed Salah, Said Belaaouad

Abstract:

\This research explores the efficacy of novel pyrimidine derivatives on bacterial strains such as Escherichia coli, Staphylococcus aureus, and Myccobacterium tuberculosis, utilizing bending energy calculations. Of the 25 compounds examined, 13 displayed potent activity against all the bacterial strains under study, exhibiting bending energy measurements between -7.4 and -10.7 kcal/mol. The -7.4 kcal/mol value corresponds to the bending energy of the SA12 and SA13 compounds with the 2xct protein (Staphylococcus aureus), whereas the -10.7 kcal/molis linked with the bending energy of SA6 and SA11 compounds with the 6GAV protein (Myccobacterium tuberculosis). Further research will involve a QSAR (Quantitative Structure-Activity Relationship) study aimed at constructing a reliable model to combat the aforementioned bacterial strains and a molecular dynamics study to evaluate the stability of ligand-protein complexes.

Keywords: docking, QSAR, bending energy, e. coli

Procedia PDF Downloads 75
24045 Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage

Authors: Awni H. Alkhazaleh, Baljinder K. Kandola

Abstract:

In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications.

Keywords: building materials, flammability, phase change materials, thermal energy storage

Procedia PDF Downloads 327
24044 Design and Development of a Lead-Free BiFeO₃-BaTiO₃ Quenched Ceramics for High Piezoelectric Strain Performance

Authors: Muhammad Habib, Lin Tang, Guoliang Xue, Attaur Rahman, Myong-Ho Kim, Soonil Lee, Xuefan Zhou, Yan Zhang, Dou Zhang

Abstract:

Designing a high-performance, lead-free ceramic has become a cutting-edge research topic due to growing concerns about the toxic nature of lead-based materials. In this work, a convenient strategy of compositional design and domain engineering is applied to the lead-fee BiFeO₃-BaTiO₃ ceramics, which provides a flexible polarization-free-energy profile for domain switching. Here, simultaneously enhanced dynamic piezoelectric constant (d33* = 772 pm/V) and a good thermal-stability (d33* = 26% over the temperature of 20-180 ᵒC) are achieved with a high Curie temperature (TC) of 432 ᵒC. This high piezoelectric strain performance is collectively attributed to multiple effects such as thermal quenching, suppression of defect charges by donor doping, chemically induced local structure heterogeneity, and electric field-induced phase transition. Furthermore, the addition of BT content decreased octahedral tilting, reduced anisotropy for domain switching and increased tetragonality (cₜ/aₜ), providing a wider polar length for B-site cation displacement, leading to high piezoelectric strain performance. Atomic-resolution transmission electron microscopy and piezoelectric force microscopy combined with X-ray diffraction results strongly support the origin of high piezoelectricity. The high and temperature-stable piezoelectric strain response of this work is superior to those of other lead-free ceramics. The synergistic approach of composition design and the concept present here for the origin of high strain response provides a paradigm for the development of materials for high-temperature piezoelectric actuator applications.

Keywords: Piezoelectric, BiFeO3-BaTiO3, Quenching, Temperature-insensitive

Procedia PDF Downloads 71
24043 Viability Study of the Use of Solar Energy for Water Heating in Homes in Brazil

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The sun is an inexhaustible source and harnessing its potential both for heating and for power generation is one of the most promising and necessary alternatives, mainly due to environmental issues. However, it should be noted that this has always been present in the generation of energy on the planet, only indirectly, as it is responsible for virtually all other energy sources, such as: Generates the evaporation source of the water cycle, which allows the impoundment and the consequent generation of electricity (hydroelectricity); Winds are caused by large-scale atmospheric induction caused by solar radiation; Oil, coal and natural gas were generated from waste plants and animals that originally obtained the energy needed for its development of solar radiation. Thus, the idea of using solar energy for practical purposes for the benefit of man is not new, as it accompanies the story since the beginning of time, which means that the sun was always of utmost importance in the design of shelters, or homes is, constructed by taking into consideration the use of sunlight, practicing what was being lost through the centuries, until a time when the buildings started to be designed completely independent of the sun. However, the climatic rigors still needed to be fought, only artificially and today seen as unsustainable, with additional facilities fueled by energy consumption. This paper presents a study on the feasibility of using solar energy for heating water in homes, developing a simplified methodology covering the mode of operation of solar water heaters, solar potential existing alternative systems of Brazil, the international market, and barriers encountered.

Keywords: solar energy, solar heating, solar project, water heating

Procedia PDF Downloads 326
24042 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency

Authors: F. Ahwide, Y. Aldali

Abstract:

This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).

Keywords: power plant, efficiency improvement, carbon dioxide emissions, energy situation in Libya

Procedia PDF Downloads 471
24041 A Case Study at Lara's Landfill: Solid Waste Management and Energy Recovery

Authors: Kelly Danielly Da Silva Alcantara, Daniel Fernando Molina Junqueira, Graziella Colato Antonio

Abstract:

The Law No. 12,305/10, established by the National Solid Waste Policy (PNRS), provides major changes in the management and managing scenario of solid waste in Brazil. The PNRS established since changes from population behavior as environmental and the consciousness and commitment of the companies with the waste produced. The objective of this project is to conduct a benchmarking study of the management models of Waste Management Municipal Solid (MSW) in national and international levels emphasizing especially in the European Union (Portugal, France and Germany), which are reference countries in energy development, sustainability and consequently recovery of waste generated. The management that encompasses all stages that are included in this sector will be analyzed by benchmarking, as the collection, transportation, processing/treatment and final disposal of waste. Considering the needs to produce clean energy in Brazil, this study will allow the determination to the best treatment of the waste in order to reduce the amount of waste and increase the lifetime of the landfill. Finally, it intends to identify the energy recovery potential through a study analysis of economic viability, energy and sustainable based on a holistic approach.

Keywords: benchmarking, energy recovery, landfill, municipal solid waste

Procedia PDF Downloads 417
24040 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 81
24039 Cleaner Production Options for Fishery Wastes Around Lake Tana-Ethiopia

Authors: Abate Getnet Demisash, Beshatu Taye Hatew, Ababo Geleta Gudisa

Abstract:

As consumption trends of fish are rising in Ethiopia, assessment of the environmental performance of Fisheries becomes vital. Hence, Cleaner Production Assessment was conducted on Lake Tana No.1 Fish Supply Association. This paper focuses on determining the characteristics, quantity and setting up cleaner production option for the site with experimental investigation. The survey analysis showed that illegal waste dumping in Lake Tana is common practice in the area and some of the main reasons raised were they have no option than doing this for discharging fish wastes. Quantifying a fish waste by examination of records at the point of generation resulted in generation rate of 72,822.61 kg per year which is a significant amount of waste and needs management system. The result of the proximate analysis showed high free fat content of about 12.33% and this was a good candidate for the production of biodiesel that has been set as an option for fish waste utilization. Among the different waste management options, waste reduction by product optimization which involves biodiesel production was chosen as a potential method. Laboratory scale experiments were performed to produce renewable energy source from the wastes. The resulting biodiesel was characterized and found to have a density of 0.756kg/L, viscosity 0.24p and 153°C flash points which shows the product has values in compliance with American Society for Testing and Materials (ASTM) standards.

Keywords: biodiesel, cleaner production, renewable energy, clean energy, waste to energy

Procedia PDF Downloads 137
24038 Renewable Energy Integration in Cities of Developing Countries: The Case Study of Tema City, Ghana

Authors: Marriette Sakah, Christoph Kuhn, Samuel Gyamfi

Abstract:

Global electricity demand of households in 2005 is estimated to double by 2025 and nearly double again in 2030. The residential sector promises considerable demand growth through infrastructural and equipment investments, the majority of which is projected to occur in developing countries. This lays bare the urgency for enhanced efficiency in all energy systems combined with exploitation of local potential for renewable energy systems. This study explores options for reducing energy consumption, particularly in residential buildings and providing robust, decentralized and renewable energy supply for African cities. The potential of energy efficiency measures and the potential of harnessing local resources for renewable energy supply are quantitatively assessed. The scale of research specifically addresses the city level, which is regulated by local authorities. Local authorities can actively promote the transition to a renewable-based energy supply system by promoting energy efficiency and the use of alternative renewable fuels in existing buildings, and particularly in planning and development of new settlement areas through the use of incentives, regulations, and demonstration projects. They can also support a more sustainable development by shaping local land use and development patterns in such ways that reduce per capita energy consumption and are benign to the environment. The subject of the current case study, Tema, is Ghana´s main industrial hub, a port city and home to 77,000 families. Residential buildings in Tema consumed 112 GWh of electricity in 2013 or 1.45 MWh per household. If average household electricity demand were to decline at an annual rate of just 2 %, by 2035 Tema would consume only 134 GWh of electricity despite an expected increase in the number of households by 84 %. The work is based on a ground survey of the city’s residential sector. The results show that efficient technologies and decentralized renewable energy systems have great potential for meeting the rapidly growing energy demand of cities in developing countries.

Keywords: energy efficiency, energy saving potential, renewable energy integration, residential buildings, urban Africa

Procedia PDF Downloads 280
24037 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers

Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash

Abstract:

Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.

Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system

Procedia PDF Downloads 415
24036 Energy Efficiency Line Guides for School Buildings in Florence in a Postgraduate Master Course

Authors: Lucia Ceccherini Nelli, Alessandra Donato

Abstract:

The ABITA Master course of the University of Florence offered by the Department of Architecture covers nearly all the energy-relevant issues that can arise in public and private companies and sectors. The main purpose of the Master course, active since 2003, is to analyse the energy consumption of building technologies, components, and structures at the conceptual design stage, so it could be very helpful, for designers, when making decisions related to the selection of the most suitable design alternatives and for the materials choice that will be used in an energy-efficient building. The training course provides a solid basis for increasing the knowledge and skills of energy managers and is developed with an emphasis on practical experiences related to the knowledge through case studies, measurements, and verification of energy-efficient solutions in buildings, in the industry and in the cities. The main objectives are: i)To raise the professional standards of those engaged in energy auditing, ii) To improve the practice of energy auditors by encouraging energy auditing professionals in a continuing education program of professional development, iii) Implement in the use of instrumentations for the typical measurements, iv) To propose an integrated methodology that links energy analysis tools with green building certification systems. This methodology will be applied at the early design stage of a project’s life. The final output of the practical training is to achieve an elevated professionalism in the study of environmental design and Energy management in buildings. The results are the redaction of line guides instruction for the energy refurbishment of Public schools in Florence. The school heritage of the Municipality of Florence requires interventions for the control of energy performance, as old construction buildings are often made without taking into account the necessary envelope performance. For this reason, every year, the Master's course aims to study groups of public schools to enable the Municipality to carry out energy redevelopment interventions on the existing building heritage. The future challenges of the education and training program are related to follow-up activities, the development of interactive tools and the curriculum's customization to meet the constantly growing needs of energy experts from industry.

Keywords: expert in energy, energy auditing, public buildings, thermal analysis

Procedia PDF Downloads 183
24035 A Study on Long Life Hybrid Battery System Consists of Ni-63 Betavoltaic Battery and All Solid Battery

Authors: Bosung Kim, Youngmok Yun, Sungho Lee, Chanseok Park

Abstract:

There is a limitation to power supply and operation by the chemical or physical battery in the space environment. Therefore, research for utilizing nuclear energy in the universe has been in progress since the 1950s, around the major industrialized countries. In this study, the self-rechargeable battery having a long life relative to the half-life of the radioisotope is suggested. The hybrid system is composed of betavoltaic battery, all solid battery and energy harvesting board. Betavoltaic battery can produce electrical power at least 10 years over using the radioisotope from Ni-63 and the silicon-based semiconductor. The electrical power generated from the betavoltaic battery is stored in the all-solid battery and stored power is used if necessary. The hybrid system board is composed of input terminals, boost circuit, charging terminals and output terminals. Betavoltaic and all solid batteries are connected to the input and output terminal, respectively. The electric current of 10 µA is applied to the system board by using the high-resolution power simulator. The system efficiencies are measured from a boost up voltage of 1.8 V, 2.4 V and 3 V, respectively. As a result, the efficiency of system board is about 75% after boosting up the voltage from 1V to 3V.

Keywords: isotope, betavoltaic, nuclear, battery, energy harvesting

Procedia PDF Downloads 315
24034 Technology Valuation of Unconventional Gas R&D Project Using Real Option Approach

Authors: Young Yoon, Jinsoo Kim

Abstract:

The adoption of information and communication technologies (ICT) in all industry is growing under industry 4.0. Many oil companies also are increasingly adopting ICT to improve the efficiency of existing operations, take more accurate and quicker decision making and reduce entire cost by optimization. It is true that ICT is playing an important role in the process of unconventional oil and gas development and companies must take advantage of ICT to gain competitive advantage. In this study, real option approach has been applied to Unconventional gas R&D project to evaluate ICT of them. Many unconventional gas reserves such as shale gas and coal-bed methane(CBM) has developed due to technological improvement and high energy price. There are many uncertainties in unconventional development on the three stage(Exploration, Development, Production). The traditional quantitative benefits-cost method, such as net present value(NPV) is not sufficient for capturing ICT value. We attempted to evaluate the ICT valuation by applying the compound option model; the model is applied to real CBM project case, showing how it consider uncertainties. Variables are treated as uncertain and a Monte Carlo simulation is performed to consider variables effect. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).

Keywords: information and communication technologies, R&D, real option, unconventional gas

Procedia PDF Downloads 227