Search results for: composite structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5769

Search results for: composite structures

4569 Suburban Large Residential Area Development Strategy with an Example of Liangzhu Culture Village in Hangzhou

Authors: Liang Fang

Abstract:

The development of the large suburban residential area is a product of the leap development during the rapid urbanization process in China. On the process of the large-scale development of large settlements in a short time, various problems arose in the suburban residential area, such as spatial layout being disorder, basic facilities construction lagging behind and being unreasonable, residential neighborhood space and street culture missing. Aimed at the contradictions mentioned above, exploring a way is imminent to construct appropriate residential area. We select a typical Liangzhu Culture Village in Hangzhou and put forward functional composite residential area of fine development strategy, along which business promotes and assists community autonomy and then a good community culture is constructed. All in all, the development and construction mode, contributing to an all-people and full-time participation, is beneficial to create a harmonious community of sustainable development, which gives good implication to a single enterprise development city real estate projects.

Keywords: community autonomy, development and construction mode, functional composite, suburban large residential area

Procedia PDF Downloads 340
4568 A Review on Concrete Structures in Fire

Authors: S. Iffat, B. Bose

Abstract:

Concrete as a construction material is versatile because it displays high degree of fire-resistance. Concrete’s inherent ability to combat one of the most devastating disaster that a structure can endure in its lifetime, can be attributed to its constituent materials which make it inert and have relatively poor thermal conductivity. However, concrete structures must be designed for fire effects. Structural components should be able to withstand dead and live loads without undergoing collapse. The properties of high-strength concrete must be weighed against concerns about its fire resistance and susceptibility to spalling at elevated temperatures. In this paper, the causes, effects and some remedy of deterioration in concrete due to fire hazard will be discussed. Some cost effective solutions to produce a fire resistant concrete will be conversed through this paper.

Keywords: concrete, fire, spalling, temperature, compressive strength, density

Procedia PDF Downloads 426
4567 Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates

Authors: Azad Mohammed Ali Saber, Lanja Saeed Omer

Abstract:

The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration.

Keywords: vibration, composite materials, finite element, APDL ANSYS

Procedia PDF Downloads 26
4566 Fabrication, Testing and Machinability Evaluation of Glass Fiber Reinforced Epoxy Composites

Authors: S. S. Panda, Arkesh Chouhan, Yogesh Deshpande

Abstract:

The present paper deals with designing and fabricating an apparatus for the speedy and accurate manufacturing of fiber reinforced composite lamina of different orientation, thickness and stacking sequences for testing. Properties derived through an analytical approach are verified through measuring the elastic modulus, ultimate tensile strength, flexural modulus and flexural strength of the samples. The 00 orientation ply looks stiffer compared to the 900 ply. Similarly, the flexural strength of 00 ply is higher than to the 900 ply. Sample machinability has been studied by conducting numbers of drilling based on Taguchi Design experiments. Multi Responses (Delamination and Damage grading) is obtained using the desirability approach and optimum cutting condition (spindle speed, feed and drill diameter), at which responses are minimized is obtained thereafter. Delamination increases nonlinearly with the increase in spindle speed. Similarly, the influence of the drill diameter on delamination is higher than the spindle speed and feed rate.

Keywords: delamination, FRP composite, Taguchi design, multi response optimization

Procedia PDF Downloads 254
4565 Boron Nitride Nanoparticle Enhanced Prepreg Composite Laminates

Authors: Qiong Tian, Lifeng Zhang, Demei Yu, Ajit D. Kelkar

Abstract:

Low specific weight and high strength is the basic requirement for aerospace materials. Fiber-reinforced epoxy resin composites are attractive materials for this purpose. Boron nitride nanoparticles (BNNPs) have good radiation shielding capacity, which is very important to aerospace materials. Herein a processing route for an advanced hybrid composite material is demonstrated by introducing dispersed BNNPs in standard prepreg manufacturing. The hybrid materials contain three parts: E-fiberglass, an aerospace-grade epoxy resin system, and BNNPs. A vacuum assisted resin transfer molding (VARTM) was utilized in this processing. Two BNNP functionalization approaches are presented in this study: (a) covalent functionalization with 3-aminopropyltriethoxysilane (KH-550); (b) non-covalent functionalization with cetyltrimethylammonium bromide (CTAB). The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction(XRD) and scanning electron microscope (SEM). The results showed that BN powder was successfully functionalized via the covalent and non-covalent approaches without any crystal structure change and big agglomerate particles were broken into platelet-like nanoparticles (BNNPs) after functionalization. Compared to pristine BN powder, surface modified BNNPs could result in significant improvement in mechanical properties such as tensile, flexural and compressive strength and modulus. CTAB functionalized BNNPs (CTAB-BNNPs) showed higher tensile and flexural strength but lower compressive strength than KH-550 functionalized BNNPs (KH550-BNNPs). These reinforcements are mainly attributed to good BNNPs dispersion and interfacial adhesion between epoxy matrix and BNNPs. This study reveals the potential in improving mechanical properties of BNNPs-containing composites laminates through surface functionalization of BNNPs.

Keywords: boron nitride, epoxy, functionalization, prepreg, composite

Procedia PDF Downloads 420
4564 Durability of Wood Shavel Composites with Environmental Friendly Based Binder

Authors: Jul Endawati

Abstract:

The composite element of 20 mm in thickness were manufactured using high volume fly ash, silica fume as alternative hydraulic binders and Portland cement Type II. Pine wood shavel as by product of local small wood working industries were used as the composite filler. The elements were given in situ wet and dry treatment for 9 months. Visually there is no fiber degradation as a result of the interaction of the environment. The assessment were done to the elements bending strength and dimensional properties. Increase in MoR after 180 days of exposure shown that mechanically this degradation is not seen yet. The increment of MoR (213%) compare to that of 28 days might be affected by the formation of calcium hydroxide (CH) or ettringite in the transition zone. The use of pozzolan showed also a delay or minimize degradation of composites while improving the pore structure, and minimize the mineralization of the fiber bond with the cement matrix. The water absorption is 4,22% at 180 days, 7,94% at 120 days and 12,38% at 28 days, in line with the 68% decrease in Thickness Swelling (TS). This unoccured degradation could also be affected by the presence of silica fume in the binder matrix. After 270 days of exposure under tropical condition, the flexural strength started to decrease.

Keywords: durability, fly ash, natural fibre, silica fume

Procedia PDF Downloads 252
4563 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives

Authors: Dong Xie, Jun Zhao, Yiming Weng

Abstract:

One of the challenges in dental cement biomaterials is how to make a restorative with mechanical strengths and wear resistance that are comparable to contemporary dental resin composites. Currently none of the dental cement restoratives has been used in high stress-bearing sites due to their low mechanical strengths and poor wear-resistance. The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37 oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37-55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.

Keywords: dental materials, polymers, strength, biomaterials

Procedia PDF Downloads 427
4562 A Study on Performance-Based Design Analysis for Vertical Extension of Apartment Units

Authors: Minsun Kim, Ki-Sun Choi, Hyun-Jee Lee, Young-Chan You

Abstract:

There is no reinforcement example for the renovation of the vertical and horizontal extension to existing building structures which is a shear wall type in apartment units in Korea. Among these existing structures, the structures which are shear wall type are rare overseas, while Korea has many shear wall apartment units. Recently, in Korea, a few researchers are trying to confirm the possibility of the vertical extension in existing building with shear walls. This study evaluates the possibility of the renovation by applying performance-based seismic design to existing buildings with shear walls in the analysis phase of the structure. In addition, force-based seismic design, used by general structural engineers in Korea, is carried out to compare the amount of reinforcement of walls, which is a main component of wall structure. As a result, we suggest that performance-based design obtains more economical advantages than force-based seismic design.

Keywords: design for extension, performance-based design, remodeling, shear wall frame, structural analysis

Procedia PDF Downloads 210
4561 Water Absorption Studies on Natural Fiber Reinforced Polymer Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials.

Keywords: alkaline treatment, composites, natural fiber, water absorption

Procedia PDF Downloads 262
4560 An Experimental and Numerical Study on the Pultruded GFRP I-Sections Beams

Authors: Parinaz Arashnia, Farzad Hatami, Saeed Ghaffarpour Jahromi

Abstract:

Using steel in bridges’ construction because of their desired tensile and compressive strength and light weight especially in large spans was widely popular. Disadvantages of steel such as corrosion, buckling and weaknesses in high temperature and unsuitable weld could be solve with using Fibres Reinforced Polymer (FRP) profiles. The FRP is a remarkable class of composite polymers that can improve structural elements behaviour like corrosion resistance, fir resistance with good proofing and electricity and magnetic non-conductor. Nowadays except FRP reinforced bars and laminates, FRP I-beams are made and studied. The main reason for using FRP profiles is, prevent of corrosion and increase the load carrying capacity and durability, especially in large spans in bridges’ deck. In this paper, behaviour of I-section glass fibres reinforced polymer (GFRP) beam is discussed under point loads with numerical models and results has been compared and verified with experimental tests.

Keywords: glass fibres reinforced polymer, composite, I-section beam, durability, finite element method, numerical model

Procedia PDF Downloads 247
4559 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel

Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung

Abstract:

In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.

Keywords: Basalt Fiber Reinforced Polymer (BFRP), buckling performance, FEM analysis, sandwich infill panel

Procedia PDF Downloads 426
4558 A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis

Authors: Jure Galović, Peter Hofmann

Abstract:

Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed.

Keywords: dynamic applications, LiBr composite, methanol, performance of TCES system, sorption process, thermochemical energy storage

Procedia PDF Downloads 145
4557 Fabricating an Infrared-Radar Compatible Stealth Surface with Frequency Selective Surface and Structured Radar-Absorbing Material

Authors: Qingtao Yu, Guojia Ma

Abstract:

Approaches to microwave absorption and low infrared emissivity are often conflicting, as the low-emissivity layer, usually consisting of metals, increases the reflection of microwaves, especially in high frequency. In this study, an infrared-radar compatible stealth surface was fabricated by first depositing a layer of low-emissivity metal film on the surface of a layer of radar-absorbing material. Then, ultrafast laser was used to generate patterns on the metal film, forming a frequency selective surface. With proper pattern design, while the majority of the frequency selective surface is covered by the metal film, it has relatively little influence on the reflection of microwaves between 2 to 18 GHz. At last, structures on the radar-absorbing layer were fabricated by ultra-fast laser to further improve the absorbing bandwidth of the microwave. This study demonstrates that the compatibility between microwave absorption and low infrared emissivity can be achieved by properly designing patterns and structures on the metal film and the radar-absorbing layer accordingly.

Keywords: frequency selective surface, infrared-radar compatible, low infrared emissivity, radar-absorbing material, patterns, structures

Procedia PDF Downloads 115
4556 Design of Reinforced Concrete (RC) Walls Considering Shear Amplification by Nonlinear Dynamic Behavior

Authors: Sunghyun Kim, Hong-Gun Park

Abstract:

In the performance-based design (PBD), by using the nonlinear dynamic analysis (NDA), the actual performance of the structure is evaluated. Unlike frame structures, in the wall structures, base shear force which is resulted from the NDA, is greatly amplified than that from the elastic analysis. This shear amplifying effect causes repeated designs which make designer difficult to apply the PBD. Therefore, in this paper, factors which affect shear amplification were studied. For the 20-story wall model, the NDA was performed. From the analysis results, the base shear amplification factor was proposed.

Keywords: performance based design, shear amplification factor, nonlinear dynamic analysis, RC shear wall

Procedia PDF Downloads 369
4555 Structural Optimization of Shell and Arched Structures

Authors: Mitchell Gohnert, Ryan Bradley

Abstract:

This paper reviews some fundamental concepts of structural optimization, which are based on the type of materials used in construction and the shape of the structure. The first step in structural optimization is to break down all internal forces in a structure into fundamental stresses, which are tensions and compressions. Knowing the stress patterns directs our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand all construction materials have flaws, or micro-cracks, which reduce the capacity of the material, especially when subjected to tensions. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure also has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.

Keywords: arches, economy of stresses, material strength, optimization, shells

Procedia PDF Downloads 100
4554 Strength of the Basement Wall Combined with a Temporary Retaining Wall for Excavation

Authors: Soo-yeon Seo, Su-jin Jung

Abstract:

In recent years, the need for remodeling of many apartments built 30 years ago is increasing. Therefore, researches on the structural reinforcement technology of existing apartments have been conducted. On the other hand, there is a growing need for research on the existing underground space expansion technology to expand the parking space required for remodeling. When expanding an existing underground space, for earthworks, an earth retaining wall must be installed between the existing apartment building and it. In order to maximize the possible underground space, it is necessary to minimize the thickness of the portion of earth retaining wall and underground basement wall. In this manner, the calculation procedure is studied for the evaluation of shear strength of the composite basement wall corresponding to shear span-to-depth ratio in this study. As a result, it was shown that the proposed calculation procedure can be used to evaluate the shear strength of the composite basement wall as safe. On the other hand, when shear span-to-depth ratio is small, shear strength is very underestimated.

Keywords: underground space expansion, combined structure, temporary retaining wall, basement wall, shear connectors

Procedia PDF Downloads 128
4553 Tensile Properties of Aluminum Silicon Nickel Iron Vanadium High Entropy Alloys

Authors: Sefiu A. Bello, Nasirudeen K. Raji, Jeleel A. Adebisi, Sadiq A. Raji

Abstract:

Pure metals are not used in most cases for structural applications because of their limited properties. Presently, high entropy alloys (HEAs) are emerging by mixing comparative proportions of metals with the aim of maximizing the entropy leading to enhancement in structural and mechanical properties. Aluminum Silicon Nickel Iron Vanadium (AlSiNiFeV) alloy was developed using stir cast technique and analysed. Results obtained show that the alloy grade G0 contains 44 percentage by weight (wt%) Al, 32 wt% Si, 9 wt% Ni, 4 wt% Fe, 3 wt% V and 8 wt% for minor elements with tensile strength and elongation of 106 Nmm-2 and 2.68%, respectively. X-ray diffraction confirmed intermetallic compounds having hexagonal closed packed (HCP), orthorhombic and cubic structures in cubic dendritic matrix. This affirmed transformation from the cubic structures of elemental constituents of the HEAs to the precipitated structures of the intermetallic compounds. A maximum tensile strength of 188 Nmm-2 with 4% elongation was noticed at 10wt% of silica addition to the G0. An increase in tensile strength with an increment in silica content could be attributed to different phases and crystal geometries characterizing each HEA.

Keywords: HEAs, phases model, aluminium, silicon, tensile strength, model

Procedia PDF Downloads 107
4552 The Role of Graphene Oxide on Titanium Dioxide Performance for Photovoltaic Applications

Authors: Abdelmajid Timoumi, Salah Alamri, Hatem Alamri

Abstract:

TiO₂ Graphene Oxide (TiO₂-GO) nanocomposite was prepared using the spin coating technique of suspension of Graphene Oxide (GO) nanosheets and Titanium Tetra Isopropoxide (TIP). The prepared nanocomposites samples were characterized by X-ray diffractometer, Scanning Electron Microscope and Atomic Force Microscope to examine their structures and morphologies. UV-vis transmittance and reflectance spectroscopy was employed to estimate band gap energies. From the TiO₂-GO samples, a 0.25 μm thin layer on a piece of glass 2x2 cm was created. The X-ray diffraction analysis revealed that the as-deposited layers are amorphous in nature. The surface morphology images demonstrate that the layers grew in distributed with some spherical/rod-like and partially agglomerated TiGO on the surface of the composite. The Atomic Force Microscopy indicated that the films are smooth with slightly larger surface roughness. The analysis of optical absorption data of the layers showed that the values of band gap energy decreased from 3.46 eV to 1.40 eV, depending on the grams of GO doping. This reduction might be attributed to electron and/or hole trapping at the donor and acceptor levels in the TiO₂ band structure. Observed results have shown that the inclusion of GO in the TiO₂ matrix have exhibited significant and excellent properties, which would be promising for application in the photovoltaic application.

Keywords: titanium dioxide, graphene oxide, thin films, solar cells

Procedia PDF Downloads 144
4551 Synthesis and Characterization of Zinc (II) Complex and Its Catalytic Activity on C(SP3)-H Oxidation Reactions

Authors: Yalçın Kılıç, İbrahim Kani

Abstract:

The conversion of hydrocarbons to carbonyl compounds by oxidation reaction is one of the most important reactions in the synthesis of fine chemicals. As a result of the oxidation of hydrocarbons containing aliphatic sp3-CH groups in their structures, aldehydes, ketones or carboxylic acids can be obtained. In this study, OSSO-type 2,2'-[1,4-butanedylbis(thio)]bis-benzoic acid (tsabutH2) ligand and [Zn(µ-tsabut)(phen)]n complex (where phen = 1,10-phenantroline) were synthesized and their structures were characterized by single crystal x-ray diffraction method. The catalytic efficiency of the complex in the catalytic oxidation studies of organic compounds such as cyclohexane, ethylbenzene, diphenylmethane, and p-xylene containing sp3-C-H in its structure was investigated.

Keywords: metal complex, OSSO-type ligand, catalysis, oxidation

Procedia PDF Downloads 85
4550 Proposal for an Inspection Tool for Damaged Structures after Disasters

Authors: Karim Akkouche, Amine Nekmouche, Leyla Bouzid

Abstract:

This study focuses on the development of a multifunctional Expert System (ES) called post-seismic damage inspection tool (PSDIT), a powerful tool which allows the evaluation, the processing, and the archiving of the collected data stock after earthquakes. PSDIT can be operated by two user types; an ordinary user (ingineer, expert, or architect) for the damage visual inspection and an administrative user for updating the knowledge and / or for adding or removing the ordinary user. The knowledge acquisition is driven by a hierarchical knowledge model, the Information from investigation reports and those acquired through feedback from expert / engineer questionnaires are part.

Keywords: .disaster, damaged structures, damage assessment, expert system

Procedia PDF Downloads 66
4549 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma

Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov

Abstract:

Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.

Keywords: electrical contact, material, nanocomposite, plasma, synthesis

Procedia PDF Downloads 223
4548 Thermo-Elastic and Self-Healing Polyacrylamide: 2D Polymer Composite Hydrogels for Water Shutoff Treatment

Authors: Edreese H. Alsharaeh, Feven Mattews Michael, Ayman Almohsin

Abstract:

Self-healing hydrogels have many advantages since they can resist various types of stresses, including tension, compression, and shear, making them attractive for various applications. In this study, thermo-elastic and self-healing polymer composite hydrogels were prepared from polyacrylamide (PAM) and 2D fillers using in-situ method. In addition, the PAM and fillers were prepared in presence of organic crosslinkers, i.e., hydroquinone (HQ) and hexamethylenediamine (HMT). The swelling behavior of the prepared hydrogels was studied by hydrating the dried hydrogels. The thermal and rheological properties of the prepared hydrogels were evaluated before and after swelling study using thermogravimetric analysis, differential scanning calorimetric technique and dynamic mechanical analysis. From the results obtained, incorporating fillers into the PAM matrix enhanced the swelling degree of the hydrogels with satisfactory mechanical properties, attaining up to 77% self-healing efficiency compared to the neat-PAM (i.e., 29%). This, in turn, indicates addition of 2D fillers improved self-healing properties of the polymer hydrogel, thus, making the prepared hydrogels applicable for water shutoff treatments under high temperature.

Keywords: polymer hydrogels, 2D fillers, elastic self-healing hydrogels, water shutoff, swelling properties

Procedia PDF Downloads 125
4547 Study of Methods to Reduce Carbon Emissions in Structural Engineering

Authors: Richard Krijnen, Alan Wang

Abstract:

As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.

Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design

Procedia PDF Downloads 23
4546 Evaluation of Response Modification Factor and Behavior of Seismic Base-Isolated RC Structures

Authors: Mohammad Parsaeimaram, Fang Congqi

Abstract:

In this paper, one of the significant seismic design parameter as response modification factor in reinforced concrete (RC) buildings with base isolation system was evaluated. The seismic isolation system is a capable approach to absorbing seismic energy at the base and transfer to the substructure with lower response modification factor as compared to non-isolated structures. A response spectrum method and static nonlinear pushover analysis in according to Uniform Building Code (UBC-97), have been performed on building models involve 5, 8, 12 and 15 stories building with fixed and isolated bases consist of identical moment resisting configurations. The isolation system is composed of lead rubber bearing (LRB) was designed with help UBC-97 parameters. The force-deformation behavior of isolators was modeled as bi-linear hysteretic behavior which can be effectively used to create the isolation systems. The obtained analytical results highlight the response modification factor of considered base isolation system with higher values than recommended in the codes. The response modification factor is used in modern seismic codes to scale down the elastic response of structures.

Keywords: response modification factor, base isolation system, pushover analysis, lead rubber bearing, bi-linear hysteretic

Procedia PDF Downloads 303
4545 Relationship of Arm Acupressure Points and Thai Traditional Massage

Authors: Boonyarat Chaleephay

Abstract:

The purpose of this research paper was to describe the relationship of acupressure points on the anterior surface of the upper limb in accordance with Applied Thai Traditional Massage (ATTM) and the deep structures located at those acupressure points. There were 2 population groups; normal subjects and cadaver specimens. Eighteen males with age ranging from 20-40 years old and seventeen females with ages ranging from 30-97 years old were studies. This study was able to obtain a fundamental knowledge concerning acupressure point and the deep structures that related to those acupressure points. It might be used as the basic knowledge for clinically applying and planning treatment as well as teaching in ATTM.

Keywords: acupressure point (AP), applie Thai traditional medicine (ATTM), paresthesia, numbness

Procedia PDF Downloads 231
4544 A Review on Design and Analysis of Structure Against Blast Forces

Authors: Akshay Satishrao Kawtikwar

Abstract:

The effect of blast masses on structures is an essential aspect that need to be considered. This type of assault could be very horrifying, who where we take it into consideration in the course of the design system. While designing a building, now not only the wind and seismic masses however also the consequences of the blast have to be take into consideration. Blast load is the burden implemented to a structure form a blast wave that comes straight away after an explosion. A blast in or close to a constructing can reason catastrophic harm to the interior and exterior of the building, inner structural framework, wall collapsing, and so on. The most important feature of blast resistant construction is the ability to absorb blast energy without causing catastrophic failure of the structure as a whole. Construction materials in blastprotective structures must have ductility as well as strength.

Keywords: blast resistant design, blast load, explosion, ETABS

Procedia PDF Downloads 83
4543 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites

Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar

Abstract:

In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.

Keywords: linear low density polyethylene, nanocomposite, organoclay, plasticizer

Procedia PDF Downloads 272
4542 Central Composite Design for the Optimization of Fenton Process Parameters in Treatment of Hydrocarbon Contaminated Soil using Nanoscale Zero-Valent Iron

Authors: Ali Gharaee, Mohammad Reza Khosravi Nikou, Bagher Anvaripour, Ali Asghar Mahjoobi

Abstract:

Soil contamination by petroleum hydrocarbon (PHC) is a major concern facing the oil and gas industry. Particularly, condensate liquids have been found to contaminate soil at gas production sites. The remediation of PHCs is a difficult challenge due to the complex interaction between contaminant and soil. A study has been conducted to enhance degradation of PHCs by Fenton oxidation and using Nanoscale Zero-Valent Iron as catalyst. The various operating conditions such as initial H2O2 concentration, nZVI dosage, reaction time, and initial contamination dose were investigated. Central composite design was employed to optimize and analyze the effect of operational parameters on the PHC removal efficiency. It was found that optimal molar ratio of H2O2/Fe0 was 58 with maximum TPH removal of 84% and 3hr reaction time and initial contaminant concentration was 15g oil /kg soil. Based on the results, combination of Nanoscale ZVI and Fenton has proved to be a promising remedy for contaminated soil.

Keywords: oil contaminated Soil, fenton oxidation, zero valent iron nano-particles

Procedia PDF Downloads 272
4541 A Simple Approach to Reliability Assessment of Structures via Anomaly Detection

Authors: Rims Janeliukstis, Deniss Mironovs, Andrejs Kovalovs

Abstract:

Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts.

Keywords: operational modal analysis, reliability assessment, anomaly detection, damage, mahalanobis squared distance

Procedia PDF Downloads 91
4540 Fabrication of Wollastonite/Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process

Authors: Jong Kook Lee, Sangcheol Eum, Jaehong Kim

Abstract:

Wollastonite/hydroxyapatite composite coatings on zirconia were obtained by room temperature spray process. Wollastonite powder was synthesized by solid-state reaction between calcite and silica powder. Hydroxyapatite powder was prepared from bovine bone by the calcination at 1200oC 1h. From two starting raw powders, three kinds of powder mixture were obtained by the ball milling for 24h. By using these powders, wollastonite/hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process, and their microstructure and biological behavior were investigated and compared with pure wollastonite and hydroxyapatite coatings. Wollastonite/hydroxyapatite coatings on zirconia substrates were homogeneously formed in microstructure and had a nanoscaled grain size. The phase composition of the resultant wollastonite/hydroxyapatite coatings was similar to that of the starting powders, however, the grain size of the wollastonite or hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. The wollastonite/hydroxyapatite coating layer exhibited bioactivity in a stimulated body fluid and forming ability of new hydroxyapatite precipitates of 25 nm during in vitro test in SBF solution, which was enhanced by the increasing wollastonite content.

Keywords: wollastonite, hydroxyapatite composite coatings, room temperature spay process, zirconia

Procedia PDF Downloads 466