Search results for: bone mass density
6154 The Effect of Simultaneous Doping of Silicate Bioglass with Alkaline and Alkaline-Earth Elements on Biological Behavior
Authors: Tannaz Alimardani, Amirhossein Moghanian, Morteza Elsa
Abstract:
Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO₂-CaO-P₂O₅ glass with a nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of the opposite effect of Sr and Li of the dissolution of BG in the SBF, but also stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on the dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with the live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S bioactive glass exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.Keywords: alkaline, alkaline earth, bioglass, co-doping, ion release
Procedia PDF Downloads 2246153 Structural, Electronic and Optical Properties of LiₓNa1-ₓH for Hydrogen Storage
Authors: B. Bahloul
Abstract:
This study investigates the structural, electronic, and optical properties of LiH and NaH compounds, as well as their ternary mixed crystals LiₓNa1-ₓH, adopting a face-centered cubic structure with space group Fm-3m (number 225). The structural and electronic characteristics are examined using density functional theory (DFT), while empirical methods, specifically the modified Moss relation, are employed for analyzing optical properties. The exchange-correlation potential is determined through the generalized gradient approximation (PBEsol-GGA) within the density functional theory (DFT) framework, utilizing the projected augmented wave pseudopotentials (PAW) approach. The Quantum Espresso code is employed for conducting these calculations. The calculated lattice parameters at equilibrium volume and the bulk modulus for x=0 and x=1 exhibit good agreement with existing literature data. Additionally, the LiₓNa1-ₓH alloys are identified as having a direct band gap.Keywords: DFT, structural, electronic, optical properties
Procedia PDF Downloads 716152 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies
Authors: Rituparna Nath, Shawn J. Marshall
Abstract:
Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age
Procedia PDF Downloads 2686151 A Remote Sensing Approach to Calculate Population Using Roads Network Data in Lebanon
Authors: Kamel Allaw, Jocelyne Adjizian Gerard, Makram Chehayeb, Nada Badaro Saliba
Abstract:
In developing countries, such as Lebanon, the demographic data are hardly available due to the absence of the mechanization of population system. The aim of this study is to evaluate, using only remote sensing data, the correlations between the number of population and the characteristics of roads network (length of primary roads, length of secondary roads, total length of roads, density and percentage of roads and the number of intersections). In order to find the influence of the different factors on the demographic data, we studied the degree of correlation between each factor and the number of population. The results of this study have shown a strong correlation between the number of population and the density of roads and the number of intersections.Keywords: population, road network, statistical correlations, remote sensing
Procedia PDF Downloads 1616150 Effect of Chromium Behavior on Mechanical and Electrical Properties Of P/M Copper-Chromium Alloy Dispersed with VGCF
Authors: Hisashi Imai, Kuan-Yu Chen, Katsuyoshi Kondoh, Hung-Yin Tsai, Junko Umeda
Abstract:
Microstructural and electrical properties of copper-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity.Keywords: powder metallurgy Cu-Cr alloy powder, vapor-grown carbon fiber, electrical conductivity
Procedia PDF Downloads 4936149 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI
Authors: Ananya Ananya, Karthik Rao
Abstract:
Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net
Procedia PDF Downloads 2616148 First-Principles Density Functional Study of Nitrogen-Doped P-Type ZnO
Authors: Abdusalam Gsiea, Ramadan Al-habashi, Mohamed Atumi, Khaled Atmimi
Abstract:
We present a theoretical investigation on the structural, electronic properties and vibrational mode of nitrogen impurities in ZnO. The atomic structures, formation and transition energies and vibrational modes of (NO3)i interstitial or NO4 substituting on an oxygen site ZnO were computed using ab initio total energy methods. Based on Local density functional theory, our calculations are in agreement with one interpretation of bound-excition photoluminescence for N-doped ZnO. First-principles calculations show that (NO3)i defects interstitial or NO4 substituting on an Oxygen site in ZnO are important suitable impurity for p-type doping in ZnO. However, many experimental efforts have not resulted in reproducible p-type material with N2 and N2O doping. by means of first-principle pseudo-potential calculation we find that the use of NO or NO2 with O gas might help the experimental research to resolve the challenge of achieving p-type ZnO.Keywords: DFF, nitrogen, p-type, ZnO
Procedia PDF Downloads 4636147 Effects of Hydrogen-Ion Irritation on the Microstructure and Hardness of Fe-0.2wt.%V Alloy
Authors: Jing Zhang, Yongqin Chang, Yongwei Wang, Xiaolin Li, Shaoning Jiang, Farong Wan, Yi Long
Abstract:
Microstructural and hardening changes of Fe-0.2wt.%V alloy and pure Fe irradiated with 100 keV hydrogen ions at room temperature were investigated. It was found that dislocation density varies dramatically after irradiation, ranging from dislocation free to dense areas with tangled and complex dislocation configuration. As the irradiated Fe-0.2wt.%V samples were annealed at 773 K, the irradiation-induced dislocation loops disappear, while many small precipitates with enriched C distribute in the matrix. Some large precipitates with enriched V were also observed. The hardness of Fe-0.2wt.%V alloy and pure Fe increases after irradiation, which ascribes to the formation of dislocation loops in the irradiated specimens. Compared with pure Fe, the size of the irradiation-introduced dislocation loops in Fe-0.2wt.%V alloy decreases and the density increases, the change of the hardness also decreases.Keywords: irradiation, Fe-0.2wt.%V alloy, microstructures, hardness
Procedia PDF Downloads 3866146 Physical Fitness Factors of School Badminton Players in Kandy District
Authors: P. Cinthuja, J. A. O. A Jayakody, M. P. M. Perera, W. V. D. N. Weerarathna, S.E. Nirosha, D. K. D. C. Indeewari, T. Kaethieswaran, S. B. Adikari
Abstract:
The aims of the study was to measure physical fitness parameters of school badminton players in the Kandy district and determine the factors contributing to improve the physical fitness. Height, weight, handgrip was measured and sit and reach test, shoulder flexibility test, standing long jump test, 20m sprint speed test, agility T-test and 20 m multistage shuttle run test were performed on 183 school badminton players. Linear regression and correlation tests were performed using body mass index, practiced duration, age category, level of performance, additional sports involvement as independent variables and physical fitness parameter as dependent variables. Results: The present study showed that the upper body power, upper body strength and endurance and speed depended on body mass index both in male and female school badminton players. Speed, agility, flexibility of shoulders, explosive power of shoulder and aerobic endurance depended on the duration of practiced. Furthermore, involvement in additional sports other than badminton did not enhance the performance of badminton players. But it decreased player’s performance by decreasing agility and speed. Age had an effect on the upper body power, explosive power of lower limb, agility and speed both in both males and females. Conclusions: The performance of badminton players could be enhanced by maintaining a proper body mass index. Badminton specific parameter could be improved by increasing the duration of practiced. Involvement in other sports does not give an added advantage to badminton players to improve their performance.Keywords: agility, Body Mass Index, endurance, badminton
Procedia PDF Downloads 4256145 Solution Thermodynamics, Photophysical and Computational Studies of TACH2OX, a C-3 Symmetric 8-Hydroxyquinoline: Abiotic Siderophore Analogue of Enterobactin
Authors: B. K. Kanungo, Monika Thakur, Minati Baral
Abstract:
8-hydroxyquinoline, (8HQ), experiences a renaissance due to its utility as a building block in metallosupramolecular chemistry and its versatile use of its derivatives in various fields of analytical chemistry, materials science, and pharmaceutics. It forms stable complexes with a variety of metal ions. Assembly of more than one such unit to form a polydentate chelator enhances its coordinating ability and the related properties due to the chelate effect resulting in high stability constant. Keeping in view the above, a nonadentate chelator N-[3,5-bis(8-hydroxyquinoline-2-amido)cyclohexyl]-8-hydroxyquinoline-2-carboxamide, (TACH2OX), containing a central cis,cis-1,3,5-triaminocyclohexane appended to three 8-hydroxyquinoline at 2-position through amide linkage is developed, and its solution thermodynamics, photophysical and Density Functional Theory (DFT) studies were undertaken. The synthesis of TACH2OX was carried out by condensation of cis,cis-1,3,5-triaminocyclohexane, (TACH) with 8‐hydroxyquinoline‐2‐carboxylic acid. The brown colored solid has been fully characterized through melting point, infrared, nuclear magnetic resonance, electrospray ionization mass and electronic spectroscopy. In solution, TACH2OX forms protonated complexes below pH 3.4, which consecutively deprotonates to generate trinegative ion with the rise of pH. Nine protonation constants for the ligand were obtained that ranges between 2.26 to 7.28. The interaction of the chelator with two trivalent metal ion Fe3+ and Al3+ were studied in aqueous solution at 298 K. The metal-ligand formation constants (ML) obtained by potentiometric and spectrophotometric method agree with each other. The protonated and hydrolyzed species were also detected in the system. The in-silico studies of the ligand, as well as the complexes including their protonated and deprotonated species assessed by density functional theory technique, gave an accurate correlation with each observed properties such as the protonation constants, stability constants, infra-red, nmr, electronic absorption and emission spectral bands. The nature of electronic and emission spectral bands in terms of number and type were ascertained from time-dependent density functional theory study and the natural transition orbitals (NTO). The global reactivity indices parameters were used for comparison of the reactivity of the ligand and the complex molecules. The natural bonding orbital (NBO) analysis could successfully describe the structure and bonding of the metal-ligand complexes specifying the percentage of contribution in atomic orbitals in the creation of molecular orbitals. The obtained high value of metal-ligand formation constants indicates that the newly synthesized chelator is a very powerful synthetic chelator. The minimum energy molecular modeling structure of the ligand suggests that the ligand, TACH2OX, in a tripodal fashion firmly coordinates to the metal ion as hexa-coordinated chelate displaying distorted octahedral geometry by binding through three sets of N, O- donor atoms, present in each pendant arm of the central tris-cyclohexaneamine tripod.Keywords: complexes, DFT, formation constant, TACH2OX
Procedia PDF Downloads 1506144 IL-33 Production in Murine Macrophages via PGE2-E Prostanoid Receptor 2/4 Signaling
Authors: Sachin K. Samuchiwal, Barbara Balestrieri, Amanda Paskavitz, Hannah Raff, Joshua A. Boyce
Abstract:
IL-33, a recently discovered member of the IL-1 cytokine family, binds to the TLR/IL1R super family receptor ST2 and induces type 2 immune responses. IL-33 is constitutively expressed in structural cells at barrier sites such as skin, lung, and intestine, and also inducibly expressed by hematopoietic cells including macrophages. Stimulation of macrophages by Lipopolysaccharide (LPS) can induce de novo IL-33 expression, and also causes the production of prostaglandin-E2 (PGE2) via cyclooxygenase (COX)-2 and microsomal PGE2 synthase-1 (mPGES-1). Because PGE2 can regulate macrophage functions through both autocrine and paracrine mechanisms, the potential interplay of endogenous PGE2 on IL-33 production was explored. Bone-marrow derived murine macrophages (bmMF) that lack either mPGES-1 or EP2 receptor expression were stimulated with LPS in the absence or presence of exogenous PGE2 along with pharmacological agonists and antagonists. The study results demonstrate that endogenous PGE2 markedly enhances LPS-induced IL-33 production by bmMFs via EP2 receptors. Moreover, exogenous PGE2 can amplify LPS-induced IL-33 expression dominantly by EP2 and partly by EP4 receptors by a pathway involving cAMP and exchange protein activated by cAMP (EPAC), but not protein kinase A (PKA). Though both IL-33 production and PGE2 generation in response to LPS require activation of both p38 MAPK and NF-κB, PGE2 did not influence this activation. In conclusion, it is demonstrated that endogenous PGE2 signaling through EP2 and EP4 receptors is a prerequisite for LPS-induced IL-33 production in bmMFs and the underlying cAMP mediated pathway involves EPAC. Since IL-33 is a critical pro-inflammatory cytokine in various pathological disorders, this PGE2-EP2/EP4-cAMP mediated pathway can be exploited to intervene in IL-33 driven pathologies.Keywords: bone marrow macrophages, EPAC, IL-33, PGE2
Procedia PDF Downloads 1886143 Producing and Mechanical Testing of Urea-Formaldehyde Resin Foams Reinforced by Waste Phosphogypsum
Authors: Krasimira Georgieva, Yordan Denev
Abstract:
Many of thermosetting resins have application only in filled state, reinforced with different mineral fillers. The co-filling of polymers with mineral filler and gases creates a possibility for production of polymer composites materials with low density. This processing leads to forming of new materials – gas-filled plastics (polymer foams). The properties of these materials are determined mainly by the shape and size of internal structural elements (pores). The interactions on the phase boundaries have influence on the materials properties too. In the present work, the gas-filled urea-formaldehyde resins were reinforced by waste phosphogypsum. The waste phosphogypsum (CaSO4.2H2O) is a solid by-product in wet phosphoric acid production processes. The values of the interactions polymer-filler were increased by using two modifying agents: polyvinyl acetate for polymer matrix and sodium metasilicate for filler. Technological methods for gas-filling and recipes of urea-formaldehyde based materials with apparent density 20-120 kg/m3 were developed. The heat conductivity of the samples is between 0.024 and 0.029 W/moK. Tensile analyses were carried out at 10 and 50% deformation and show values 0.01-0.14 MPa and 0.01-0.09 MPa, respectively. The apparent density of obtained materials is between 20 and 92 kg/m3. The changes in the tensile properties and density of these materials according to sodium metasilicate content were studied too. The mechanism of phosphogypsum adsorption modification was studied using methods of FT-IR spectroscopy. The structure of the gas-filled urea-formaldehyde resins was described by results of electron scanning microscopy at three different magnification ratios – x50, x150 and x 500. The aim of present work is to study the possibility of the usage of phosphogypsum as mineral filler for urea-formaldehyde resins and development of a technology for the production of gas-filled reinforced polymer composite materials. The structure and the properties of obtained composite materials are suitable for thermal and sound insulation applications.Keywords: urea formaldehyde resins, gas-filled thermostes, phosphogypsum, mechanical properties
Procedia PDF Downloads 1086142 Density Interaction in Determinate and Indeterminate Faba Bean Types
Authors: M. Abd El Hamid Ezzat
Abstract:
Two field trials were conducted to study the effect of plant densities i.e., 190, 222, 266, 330 and 440 10³ plants ha⁻¹ on morphological characters, physiological and yield attributes of two faba bean types viz. determinate (FLIP-87 -117 strain) and indeterminate (c.v. Giza-461). The results showed that the indeterminate plants significantly surpassed the determinate plants in plant height at 75 and 90 days from sowing, number of leaves at all growth stages and dry matter accumulation at 45 and 90 days from sowing. Determinate plants possessed greater number of side branches than that of the indeterminate plants, but it was only significant at 90 days from sowing. Greater number of flowers were produced by the indeterminate plants than that of the determinate plants at 75 and 90 days from sowing, and although shedding was obvious in both types, it was greater in the determinate plants as compared with the indeterminate one at 90 days from sowing. Increasing plant density resulted in reductions in number of leaves, branches flowers and dry matter accumulation per plant of both faba bean types. However, plant height criteria took a reversible magnitude. Moreover, under all rates of plant densities the indeterminate type plants surpassed the determinate plants in all growth characters studied except for number of branches per plant at 90 days from sowing. The indeterminate plant leaves significantly contained greater concentrations of photosynthetic pigments i.e., chl. a, b and carotenoids than those found in the determinate plant leaves. Also, the data showed significant reduction in photosynthetic pigments concentration as planting density increases. Light extinction coefficient (K) values reached their maximum level at 60 days from sowing, then it declined sharply at 75 days from sowing. The data showed that the illumination inside the determinate faba bean canopies was better than the indeterminate plants. (K) values tended to increase as planting density increases, meanwhile, significant interactions were reported between faba bean type as planting density on (K) at all growth stages. Both of determinate and indeterminate faba bean plant leaves reached their maximum expansion at 75 days from sowing reflecting the highest LAI values, then their declined in the subsequent growth stage. The indeterminate faba bean plants significantly surpassed the determinate plants in LAI up to 75 days from sowing. Growth analysis showed that NAR, RGR and CGR reached their maximum rates at (60-75 days growth stage). Faba bean types did not differ significantly in NAR at the early growth stage. The indeterminate plants were able to grow faster with significant CGR values than the determinate plants. The indeterminate faba bean plants surpassed the determinate ones in number of seeds/pod and per plant, 100-seed weight, seed yield per plant and per hectare at all rates of plant density. Seed yield increased with increasing plant densities of both types. The highest seed yield was attained for both types 440 103 plants ha⁻¹.Keywords: determinate, indeterminate faba bean, Physiological attributes, yield attributes
Procedia PDF Downloads 2366141 A Study on the Effects of Urban Density, Sociodemographic Vulnerability, and Medical Service on the Impact of COVID-19
Authors: Jang-hyun Oh, Kyoung-ho Choi, Jea-sun Lee
Abstract:
The outbreak of the COVID-19 pandemic brought reconsiderations and doubts about urban density as compact cities became epidemic hot spots. Density, though, provides an upside in that medical services required to protect citizens against the spread of disease are concentrated within compact cities, which helps reduce the mortality rate. Sociodemographic characteristics are also a crucial factor in determining the vulnerability of the population, and the purpose of this study is to empirically discover how these three urban factors affect the severity of the epidemic impacts. The study aimed to investigate the influential relationships between urban factors and epidemic impacts and provide answers to whether superb medical service in compact cities can scale down the impacts of COVID-19. SEM (Structural Equation Modeling) was applied as a suitable research method for verifying interrelationships between factors based on theoretical grounds. The study accounted for 144 municipalities in South Korea during periods from the first emergence of COVID-19 to December 31st, 2022. The study collected data related to infection and mortality cases from each municipality, and it holds significance as primary research that enlightens the aspects of epidemic impact concerning urban settings and investigates for the first time the mediated effects of medical service. The result of the evaluation shows that compact cities are most likely to have lower sociodemographic vulnerability and better quality of medical service, while cities with low density contain a higher portion of vulnerable populations and poorer medical services. However, the quality of medical service had no significant influence in reducing neither the infection rate nor the mortality rate. Instead, density acted as the major influencing factor in the infection rate, while sociodemographic vulnerability was the major determinant of the mortality rate. Thus, the findings strongly paraphrase that compact cities, although with high infection rates, tend to have lower mortality rates due to less vulnerability in sociodemographics, Whereas death was more frequent in less dense cities due to higher portions of vulnerable populations such as the elderly and low-income classes. Findings suggest an important lesson for post-pandemic urban planning-intrinsic characteristics of urban settings, such as density and population, must be taken into account to effectively counteract future epidemics and minimize the severity of their impacts. Moreover, the study is expected to contribute as a primary reference material for follow-up studies that further investigate related subjects, including urban medical services during the pandemic.Keywords: urban planning, sociodemographic vulnerability, medical service, COVID-19, pandemic
Procedia PDF Downloads 606140 The Effect of Nanoclay on the Hydraulic Conductivity of Clayey Sand Soils
Authors: Javad Saeidaskari, Mohammad Hassan Baziar
Abstract:
Soil structures have been frequently damaged during piping, earthquake and other types of failures. As far as adverse circumstances were developed subsequent to piping or other similar failure types, hydraulic parameters of soil such as hydraulic conductivity should be considered. As a result, acquiring an approach to diminish soil permeability is inevitable. There are many ground improvement methods to reduce seepage, which are classified under soil treatment and stabilization methods. Recently, one of the soil improvement methods is known as nanogeotechnology. This study aims to investigate the influence of Cloisite 30B nanoclay on permeability of compacted clayey sand soils. The samples are prepared by mixing two soil types, including Kaolin clay and Firouzkooh sand, in 1:9 and 1:5 clay:sand (by mass) proportions. In experimental procedure, initially, the optimum water content and maximum dry unit weight of each samples were obtained for compaction. Then, series of permeability tests were conducted by triaxial apparatus on prepared specimens with identical relative density of 95% of maximum dry density and water content of 1% wet of optimum for different weight percentages of nanoclay (1% to 4%). Therefore, in this paper, the effect of time on treated specimen was appraised, as well as two approaches of manual mixing and ball milling were compared to reveal the importance of dispersion issue. The results show that adding nanoclay up to 3%, as its optimum content, causes notable reduction in permeability (1.60e-03 to 5.51e-05 cm/s and 3.32e-04 to 8.44e-07 cm/s in samples with 1:9 and 1:5 mixture proportions, respectively). The hydraulic conductivity of treated clayey sand (1:5 mixture proportion with 3% nanoclay) decreases gradually from 8.44e-07 to 3.00e-07 cm/s within 90 days and then tends to be consistent. The influence of mixing method on permeability results shows that the utilization of ball mill mixing effectively leads to lower values than those of manual mixing, in other words, by adding 3% nanoclay, hydraulic conductivity of specimen declines from 8.44e-07 to 2.00e-07 cm/s. In order to evaluate the interaction between soil particles and, to ensure proper dispersion of nanoparticles through clayey sand mixture, they were magnified by means of scanning electron microscope (SEM). In conclusion, the nanoclay particles in vicinity of moisture can cause soil stabilization to prevent water penetration, which eventually result in lower usage of clay and operation costs.Keywords: nanoclay, cloisite 30b, clayey sand, hydraulic conductivity
Procedia PDF Downloads 3496139 Immigration Solutions for the United States
Authors: Philip Robert Alldritt
Abstract:
The continuing increase in human migration is at crisis levels in all areas of the planet. The causes are varied, and the risks are high for the migrants. Migration has been ongoing since the beginning of human emergence on the planet, but for the first time in our historic memory has the, migration reached this level of critical mass. The causes are many. Climate collapse, economic opportunity, drug cartel activity, political upheaval, and gang wars. Many locations are seemingly “within reach” of the migrants, and the push factors are so loaded with hopelessness that almost anyone would be willing to risk anything to improve their conditions. There is no argument about that mass migrations are occurring and will increase in the future. The solutions to this increase are complex. This paper will examine the causes of migration and attempt to provide some reasonable solutions to mitigate the migrations with equitable outcomes that may guide immigration policy in impacted areas.Keywords: immigration, crisis, climate, cartels
Procedia PDF Downloads 726138 The Soft and Hard Palate Cleft’s Impact on the Auditory Tube Function
Authors: Fedor Semenov
Abstract:
One of the most widespread facial bones’ malformations – the congenital palatoschisis – significant impact on drainage and ventilation of the middle ear through the incorrect work of soft palate muscles, which results in recurrent middle ear inflammation and subsequently leads to the hearing dysfunction. The purpose of this research is to evaluate the auditory tube function and hearing condition before the operative treatment (uranoplasty) and after 3 and 12 months. 42 patients aged from 6 months to 17 years who had soft and hard palate cleft and B and C type tympanogram were included in that study. The examination includes otoscopy, pure tone audiometry (for patients older than 8 years – 11 patients), tympanometry. According to the otoscopy results all the patients were divided into two groups: those who had a retracted eardrum and those who had a normal one. The results of pure tone audiometry showed that there were six patients with an air-bone gap of more than 10 dB and the five with normal audiograms. According to the results of this research, uranoplasty demonstrated strongly positive effects on the auditory tube function: normalization of eardrum view upon otoscopy was observed in 64% of children with a retracted eardrum three month after surgery and 85 % twelve months. The quantity of patients with A-type of tympanogram improved in 25 children out of 41 in 3 month and in 35 out of 41 in twelve months after operation. While before the operative treatment, six patients older than 8 years had had an air-bone gap of more than 10 dB; only two of them still had it in 12 months, and the others’ audiograms were normal. To sum it up, the uranoplasty showed a significant contribution in the restoration of auditory tube functioning. Some patients had signs of auditory dysfunction even after the operative treatment. That group of children needs further treatment by an otorhinolaryngologist.Keywords: auditory tube dysfunction, palatoschisis, uranoplasy, otitis
Procedia PDF Downloads 66137 Leptin Levels in Cord Blood and Their Associations with the Birth of Small, Large and Appropriate for Gestational Age Infants in Southern Sri Lanka
Authors: R. P. Hewawasam, M. H. A. D. de Silva, M. A. G. Iresha
Abstract:
In recent years childhood obesity has increased to pan-epidemic proportions along with a concomitant increase in obesity-associated morbidity. Birth weight is an important determinant of later adult health, with neonates at both ends of the birth weight spectrum at risk of future health complications. Consequently, infants who are born large for gestational age (LGA) are more likely to be obese in childhood and adolescence and are at risk of cardiovascular and metabolic complications later in life. Adipose tissue plays a role in linking events in fetal growth to the subsequent development of adult diseases. In addition to its role as a storage depot for fat, adipose tissue produces and secrets a number of hormones of importance in modulating metabolism and energy homeostasis. Cord blood leptin level has been positively correlated with fetal adiposity at birth. It is established that Asians have lower skeletal muscle mass, low bone mineral content and excess body fat for a given body mass index indicating a genetic predisposition in the occurrence of obesity. To our knowledge, studies have never been conducted in Sri Lanka to determine the relationship between adipocytokine profile in cord blood and anthropometric parameters in newborns. Thus, the objective of this study is to establish the above relationship for the Sri Lankan population to implement awareness programs to minimize childhood obesity in the future. Umbilical cord blood was collected from 90 newborns (Male 40, Female 50; gestational age 35-42 weeks) after double clamping the umbilical cord before separation of the placenta and the concentration of leptin was measured by ELISA technique. Anthropometric parameters of the newborn such as birth weight, length, ponderal index, occipital frontal, chest, hip and calf circumferences were measured. Pearson’s correlation was used to assess the relationship between leptin and anthropometric parameters while the Mann-Whitney U test was used to assess the differences in cord blood leptin levels between small for gestational age (SGA), appropriate for gestational age (AGA) and LGA infants. There was a significant difference (P < 0.05) between the cord blood leptin concentrations of LGA infants (12.67 ng/mL ± 2.34) and AGA infants (7.10 ng/mL ± 0.90). However, a significant difference was not observed between leptin levels of SGA infants (8.86 ng/mL ± 0.70) and AGA infants. In both male and female neonates, umbilical leptin levels showed significant positive correlations (P < 0.05) with birth weight of the newborn, pre-pregnancy maternal weight and pre pregnancy BMI between the infants of large and appropriate for gestational ages. Increased concentrations of leptin levels in the cord blood of large for gestational age infants suggest that they may be involved in regulating fetal growth. Leptin concentration of Sri Lankan population was not significantly deviated from published data of Asian populations. Fetal leptin may be an important predictor of neonatal adiposity; however, interventional studies are required to assess its impact on the possible risk of childhood obesity.Keywords: appropriate for gestational age, childhood obesity, leptin, anthropometry
Procedia PDF Downloads 1886136 Design, Modeling, Fabrication, and Testing of a Scaled down Hybrid Rocket Engine
Authors: Pawthawala Nancy Manish, Syed Alay Hashim
Abstract:
A hybrid rocket is a rocket engine which uses propellants in two different states of matter- one is in solid and the other either gas or liquid. A hybrid rocket exhibit advantages over both liquid rockets and solid rockets especially in terms of simplicity, stop-start-restart capabilities, safety and cost. This paper deals the design and development of a hybrid rocket having paraffin wax as solid fuel and liquid oxygen as oxidizer. Due to variation of pressure in combustion chamber there is significantly change in mass flow rate, burning rate and uneven regression along the length of the grain. This project describes the working model of a hybrid propellant rocket motor. We have designed a hybrid rocket thrust chamber based on the predetermined combustion chamber pressure and the properties of hybrid propellant. This project is all ready in working condition with normal oxygen injector. Now we have planned to modify the injector design to improve the combustion property. We will use spray type injector for injecting the oxidizer. This idea will increase the performance followed by the regression rate of the solid fuel. By employing mass conservation law, oxygen mass flux, oxidizer/fuel ratio and regression rate the thrust coefficient can be obtained for our current design. CATIA V5 R20 is our design software for the complete setup. This project is fully based on experimental evaluation and the collection of combustion and flow parameters. The thrust chamber is made of stainless steel and the duration of test is around 15-20 seconds (Maximum). These experiments indicates that paraffin based fuel provides the opportunity to satisfy a broad range of mission requirements for the next generation of the hybrid rocket system.Keywords: burning rate, liquid oxygen, mass flow rate, paraffin wax and sugar
Procedia PDF Downloads 3356135 Coalescence of Insulin and Triglyceride/High Density Lipoprotein Cholesterol Ratio for the Derivation of a Laboratory Index to Predict Metabolic Syndrome in Morbid Obese Children
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Morbid obesity is a health threatening condition particularly in children. Generally, it leads to the development of metabolic syndrome (MetS) characterized by central obesity, elevated fasting blood glucose (FBG), triglyceride (TRG), blood pressure values and suppressed high density lipoprotein cholesterol (HDL-C) levels. However, some ambiguities exist during the diagnosis of MetS in children below 10 years of age. Therefore, clinicians are in the need of some surrogate markers for the laboratory assessment of pediatric MetS. In this study, the aim is to develop an index, which will be more helpful during the evaluation of further risks detected in morbid obese (MO) children. A total of 235 children with normal body mass index (N-BMI), with varying degrees of obesity; overweight (OW), obese (OB), MO as well as MetS participated in this study. The study was approved by the Institutional Ethical Committee. Informed consent forms were obtained from the parents of the children. Obesity states of the children were classified using BMI percentiles adjusted for age and sex. For the purpose, tabulated data prepared by WHO were used. MetS criteria were defined. Systolic and diastolic blood pressure values were measured. Parameters related to glucose and lipid metabolisms were determined. FBG, insulin (INS), HDL-C, TRG concentrations were determined. Diagnostic Obesity Notation Model Assessment Laboratory (DONMALAB) Index [ln TRG/HDL-C*INS] was introduced. Commonly used insulin resistance (IR) indices such as Homeostatic Model Assessment for IR (HOMA-IR) as well as ratios such as TRG/HDL-C, TRG/HDL-C*INS, HDL-C/TRG*INS, TRG/HDL-C*INS/FBG, log, and ln versions of these ratios were calculated. Results were interpreted using statistical package program (SPSS Version 16.0) for Windows. The data were evaluated using appropriate statistical tests. The degree for statistical significance was defined as 0.05. 35 N, 20 OW, 47 OB, 97 MO children and 36 with MetS were investigated. Mean ± SD values of TRG/HDL-C were 1.27 ± 0.69, 1.86 ± 1.08, 2.15 ± 1.22, 2.48 ± 2.35 and 4.61 ± 3.92 for N, OW, OB, MO and MetS children, respectively. Corresponding values for the DONMALAB index were 2.17 ± 1.07, 3.01 ± 0.94, 3.41 ± 0.93, 3.43 ± 1.08 and 4.32 ± 1.00. TRG/HDL-C ratio significantly differed between N and MetS groups. On the other hand, DONMALAB index exhibited statistically significant differences between N and all the other groups except the OW group. This index was capable of discriminating MO children from those with MetS. Statistically significant elevations were detected in MO children with MetS (p < 0.05). Multiple parameters are commonly used during the assessment of MetS. Upon evaluation of the values obtained for N, OW, OB, MO groups and for MO children with MetS, the [ln TRG/HDL-C*INS] value was unique in discriminating children with MetS.Keywords: children, index, laboratory, metabolic syndrome, obesity
Procedia PDF Downloads 1486134 Increase of Atmosphere CO2 Concentration and Its Effects on Culture/Weed Interaction
Authors: J. I. Santos, A. E. Cesarin, C. A. R. Sales, M. B. B. Triano, P. F. R. B. Martins, A. F. Braga, N. J. Neto, A., A. M. Barroso, P. L. C. A. Alves, C. A. M. Huaman
Abstract:
Climate change projections based on the emission of greenhouse effect gases suggest an increase in the concentration of atmospheric carbon dioxide, in up to 750 ppm. In this scenario, we have significant changes in plant development, and consequently, in agricultural systems. This study aims to evaluate the interaction between culture (Glycine max) and weed (Amaranthus viridis and Euphorbia heterophylla) in two conditions of CO2, 400 and 800 ppm. The results showed that the coexistence of culture with both weed species resulted in a mutual loss, with decrease in dry mass productivity of culture + weeds, in both conditions of CO2. However, when the culture is grown in association with E. heterophylla, total dry mass of culture + weed was smaller at 800 ppm. Soybean was more aggressive in comparison to the A. viridis in both the concentrations of CO2, but not in relation to the E. heterophylla.Keywords: plants interaction, increase of [CO₂], plants of metabolismo C3, glycine max
Procedia PDF Downloads 3996133 Analysis of Secondary Peak in Hα Emission Profile during Gas Puffing in Aditya Tokamak
Authors: Harshita Raj, Joydeep Ghosh, Rakesh L. Tanna, Prabal K. Chattopadhyay, K. A. Jadeja, Sharvil Patel, Kaushal M. Patel, Narendra C. Patel, S. B. Bhatt, V. K. Panchal, Chhaya Chavda, C. N. Gupta, D. Raju, S. K. Jha, J. Raval, S. Joisa, S. Purohit, C. V. S. Rao, P. K. Atrey, Umesh Nagora, R. Manchanda, M. B. Chowdhuri, Nilam Ramaiya, S. Banerjee, Y. C. Saxena
Abstract:
Efficient gas fueling is a critical aspect that needs to be mastered in order to maintain plasma density, to carry out fusion. This requires a fair understanding of fuel recycling in order to optimize the gas fueling. In Aditya tokamak, multiple gas puffs are used in a precise and controlled manner, for hydrogen fueling during the flat top of plasma discharge which has been instrumental in achieving discharges with enhanced density as well as energy confinement time. Following each gas puff, we observe peaks in temporal profile of Hα emission, Soft X-ray (SXR) and chord averaged electron density in a number of discharges, indicating efficient gas fueling. Interestingly, Hα temporal profile exhibited an additional peak following the peak corresponding to each gas puff. These additional peak Hα appeared in between the two gas puffs, indicating the presence of a secondary hydrogen source apart from the gas puffs. A thorough investigation revealed that these secondary Hα peaks coincide with Hard X- ray bursts which come from the interaction of runaway electrons with vessel limiters. This leads to consider that the runaway electrons (REs), which hit the wall, in turn, bring out the absorbed hydrogen and oxygen from the wall and makes the interaction of REs with limiter a secondary hydrogen source. These observations suggest that runaway electron induced recycling should also be included in recycling particle source in the particle balance calculations in tokamaks. Observation of two Hα peaks associated with one gas puff and their roles in enhancing and maintaining plasma density in Aditya tokamak will be discussed in this paper.Keywords: fusion, gas fueling, recycling, Tokamak, Aditya
Procedia PDF Downloads 4026132 Improving Predictions of Coastal Benthic Invertebrate Occurrence and Density Using a Multi-Scalar Approach
Authors: Stephanie Watson, Fabrice Stephenson, Conrad Pilditch, Carolyn Lundquist
Abstract:
Spatial data detailing both the distribution and density of functionally important marine species are needed to inform management decisions. Species distribution models (SDMs) have proven helpful in this regard; however, models often focus only on species occurrences derived from spatially expansive datasets and lack the resolution and detail required to inform regional management decisions. Boosted regression trees (BRT) were used to produce high-resolution SDMs (250 m) at two spatial scales predicting probability of occurrence, abundance (count per sample unit), density (count per km2) and uncertainty for seven coastal seafloor taxa that vary in habitat usage and distribution to examine prediction differences and implications for coastal management. We investigated if small scale regionally focussed models (82,000 km2) can provide improved predictions compared to data-rich national scale models (4.2 million km2). We explored the variability in predictions across model type (occurrence vs abundance) and model scale to determine if specific taxa models or model types are more robust to geographical variability. National scale occurrence models correlated well with broad-scale environmental predictors, resulting in higher AUC (Area under the receiver operating curve) and deviance explained scores; however, they tended to overpredict in the coastal environment and lacked spatially differentiated detail for some taxa. Regional models had lower overall performance, but for some taxa, spatial predictions were more differentiated at a localised ecological scale. National density models were often spatially refined and highlighted areas of ecological relevance producing more useful outputs than regional-scale models. The utility of a two-scale approach aids the selection of the most optimal combination of models to create a spatially informative density model, as results contrasted for specific taxa between model type and scale. However, it is vital that robust predictions of occurrence and abundance are generated as inputs for the combined density model as areas that do not spatially align between models can be discarded. This study demonstrates the variability in SDM outputs created over different geographical scales and highlights implications and opportunities for managers utilising these tools for regional conservation, particularly in data-limited environments.Keywords: Benthic ecology, spatial modelling, multi-scalar modelling, marine conservation.
Procedia PDF Downloads 776131 The Impact of the Great Irish Famine on Irish Mass Migration to the United States at the Turn of the Twentieth Century
Authors: Gayane Vardanyan, Gaia Narciso, Battista Severgnini
Abstract:
This paper investigates the long-run impact of the Great Irish Famine on emigration from Ireland at the turn of the twentieth century. To do it we combine the 1901 and the 1911 Irish Census data sets with the Ellis Island Administrative Records on Irish migrants to the United States. We find that the migrants were more likely to be Catholic, literate, unmarried, young and Gaelic speaking compared to the ones that stay. Running individual level specifications, our preliminary findings suggest that being born in a place where the Famine was more severe increases the probability of becoming a migrant in the long-run. We also intend to explore the mechanisms through which this impact occurs.Keywords: Great Famine, mass migration, long-run impact, mechanisms
Procedia PDF Downloads 2386130 Examining the Development of Complexity, Accuracy and Fluency in L2 Learners' Writing after L2 Instruction
Authors: Khaled Barkaoui
Abstract:
Research on second-language (L2) learning tends to focus on comparing students with different levels of proficiency at one point in time. However, to understand L2 development, we need more longitudinal research. In this study, we adopt a longitudinal approach to examine changes in three indicators of L2 ability, complexity, accuracy, and fluency (CAF), as reflected in the writing of L2 learners when writing on different tasks before and after a period L2 instruction. Each of 85 Chinese learners of English at three levels of English language proficiency responded to two writing tasks (independent and integrated) before and after nine months of English-language study in China. Each essay (N= 276) was analyzed in terms of numerous CAF indices using both computer coding and human rating: number of words written, number of errors per 100 words, ratings of error severity, global syntactic complexity (MLS), complexity by coordination (T/S), complexity by subordination (C/T), clausal complexity (MLC), phrasal complexity (NP density), syntactic variety, lexical density, lexical variation, lexical sophistication, and lexical bundles. Results were then compared statistically across tasks, L2 proficiency levels, and time. Overall, task type had significant effects on fluency and some syntactic complexity indices (complexity by coordination, structural variety, clausal complexity, phrase complexity) and lexical density, sophistication, and bundles, but not accuracy. L2 proficiency had significant effects on fluency, accuracy, and lexical variation, but not syntactic complexity. Finally, fluency, frequency of errors, but not accuracy ratings, syntactic complexity indices (clausal complexity, global complexity, complexity by subordination, phrase complexity, structural variety) and lexical complexity (lexical density, variation, and sophistication) exhibited significant changes after instruction, particularly for the independent task. We discuss the findings and their implications for assessment, instruction, and research on CAF in the context of L2 writing.Keywords: second language writing, Fluency, accuracy, complexity, longitudinal
Procedia PDF Downloads 1536129 Mechanical, Physical and Durability Properties of Cement Mortars Added with Recycled PP/PE-Based Food Packaging Waste Material
Authors: Livia Guerini, Christian Paglia
Abstract:
In Switzerland, only a fraction of plastic waste from food packaging is collected and recycled for further use in the food industry. Therefore, reusing these waste plastics for building applications can be an attractive alternative to disposal in order to reduce the problem of waste management and to make up for the depletion of raw materials needed for construction. In this study, experiments were conducted on the mechanical properties (compressive and flexural strength, elastic modulus), physical properties (density, workability, porosity, and water permeability) and durability (freeze/thaw resistance) of cementitious mortars with additions of recycled low-/high-density polyethylene (LDPE/HDPE)/ polypropylene (PP) regrind (addition of 5% and 10% by weight) and LDPE sheets (addition of 0.5% and 1.5% by weight) coming from food packaging. The results show that as the addition of plastic material increases, the density and mechanical properties of the mortars decrease compared to conventional ones. Porosity is similar in all the mixtures made, while the workability and the permeability are affected not only by the amount added but also by the shape of the plastic aggregate. Freeze/thaw resistance, on the other hand, is significantly higher in mortars with plastic aggregates than in traditional mortar. This feature may be interesting for the realization of outdoor mortars in cold environments.Keywords: food packaging waste, durability properties, mechanical properties, mortar, recycled PE, recycled PP
Procedia PDF Downloads 1456128 Aflatoxins Characterization in Remedial Plant-Delphinium denudatum by High-Performance Liquid Chromatography–Tandem Mass Spectrometry
Authors: Nadeem A. Siddique, Mohd Mujeeb, Kahkashan
Abstract:
Introduction: The objective of the projected work is to study the occurrence of the aflatoxins B1, B2, G1and G2 in remedial plants, exclusively in Delphinium denudatum. The aflatoxins were analysed by high-performance liquid chromatography–tandem quadrupole mass spectrometry with electrospray ionization (HPLC–MS/MS) and immunoaffinity column chromatography were used for extraction and purification of aflatoxins. PDA media was selected for fungal count. Results: A good quality linear relationship was originated for AFB1, AFB2, AFG1 and AFG2 at 1–10 ppb (r > 0.9995). The analyte precision at three different spiking levels was 88.7–109.1 %, by means of low per cent relative standard deviations in each case. Within 5 to7 min aflatoxins can be separated using an Agilent XDB C18-column. We found that AFB1 and AFB2 were not found in D. denudatum. This was reliable through exceptionally low figures of fungal colonies observed after 6 hr of incubation. The developed analytical method is straightforward, be successfully used to determine the aflatoxins. Conclusion: The developed analytical method is straightforward, simple, accurate, economical and can be successfully used to find out the aflatoxins in remedial plants and consequently to have power over the quality of products. The presence of aflatoxin in the plant extracts was interrelated to the least fungal load in the remedial plants examined.Keywords: aflatoxins, delphinium denudatum, liquid chromatography, mass spectrometry
Procedia PDF Downloads 2136127 Restoring Total Form and Function in Patients with Lower Limb Bony Defects Utilizing Patient-Specific Fused Deposition Modelling- A Neoteric Multidisciplinary Reconstructive Approach
Authors: Divya SY. Ang, Mark B. Tan, Nicholas EM. Yeo, Siti RB. Sudirman, Khong Yik Chew
Abstract:
Introduction: The importance of the amalgamation of technological and engineering advances with surgical principles of reconstruction cannot be overemphasized. With earlier detection of cancer, consequences of high-speed living and neglect, like traumatic injuries and infection, resulting in increasingly younger patients with bone defects. This may result in malformations and suboptimal function that is more noticeable and palpable in the younger, active demographic. Our team proposes a technique that encapsulates a mesh of multidisciplinary effort, tissue engineering and reconstructive principles. Methods/Materials: Our patient was a young competitive footballer in his early 30s who was diagnosed with submandibular adenoid cystic carcinoma with bony involvement. He was thus counselled for a right hemi mandibulectomy, the floor of mouth resection, right selective neck dissection, tracheostomy, and free fibular flap reconstruction of his mandible and required post-operative radiotherapy. Being young and in his prime sportsman years, he was unable to accept the morbidities associated with using his fibula to reconstruct his mandible despite it being the gold standard reconstructive option. The fibula is an ideal vascularized bone flap because it’s reliable and easily shaped with relatively minimal impact on functional outcomes. The fibula contributes to 30% of weightbearing and is the attachment for the lateral compartment muscles; it is stronger in footballers concerning lateral bending. When harvesting the fibula, the distal 6-8cm and up to 10% of the total length is preserved to maintain the ankle’s stability, thus, minimizing the impact on daily activities. There are studies that have noted gait variability post-operatively. Therefore, returning to a premorbid competitive level may be doubtful. To improve his functional outcomes, the decision was made to try and restore the fibula's form and function. Using the concept of Fused Deposition Modelling (FDM), our team comprising of Plastics, Otolaryngology, Orthopedics and Radiology, worked with Osteopore to design a 3D bioresorbable implant to regenerate the fibula defect (14.5cm). Bone marrow was harvested via reaming the contralateral hip prior to the wide resection. 30mls of his blood was obtained for extracting platelet rich plasma. These were packed into the Osteopore 3D-printed bone scaffold. This was then secured into the fibula defect with titanium plates and screws. The flexor hallucis longus and soleus were anchored along the construct and intraosseous membrane, done in a single setting. Results: He was reviewed closely as an outpatient over 10 months post operatively. He reported no discernable loss or difference in ankle function. He is satisfied and back in training and our team has video and photographs that substantiate his progress. Conclusion: FDM allows regeneration of long bone defects. However, we aimed to also restore his eversion and inversion that is imperative for footballers and hence reattached his previously dissected muscles along the length of the Osteopore implant. We believe that the reattachment of the muscle stabilizes not only the construct but allows optimum muscle tensioning when moving his ankle. This is a simple but effective technique in restoring complete function and form in a young patient whose minute muscle control is imperative to life.Keywords: fused deposition modelling, functional reconstruction, lower limb bony defects, regenerative surgery, 3D printing, tissue engineering
Procedia PDF Downloads 736126 Improving the Dimensional Stability of Medium-Density Fiberboard with Bio-Based Additives
Authors: Reza Hosseinpourpia, Stergios Adamopoulos, Carsten Mai
Abstract:
Medium density fiberboard (MDF) is a common category of wood-based panels that are widely used in the furniture industry. Fine lignocellulosic fibres are combined with a synthetic resin, mostly urea formaldehyde (UF), and joined together under heat and pressure to form panels. Like solid wood, MDF is a hygroscopic material; therefore, its moisture content depends on the surrounding relative humidity and temperature. In addition, UF is a hydrophilic resin and susceptible to hydrolysis under certain conditions of elevated temperatures and humidity, which cause dimensional instability of the panels. The latter directly affect the performance of final products such as furniture, when they are used in situations of high relative humidity. Existing water-repellent formulations, such as paraffin, present limitations related to their non-renewable nature, cost and highest allowed added amount. Therefore, the aim of the present study was to test the suitability of renewable water repellents as alternative chemicals for enhancing the dimensional stability of MDF panels. A small amount of tall oil based formulations were used as water-repellent agents in the manufacturing of laboratory scale MDF. The effects on dimensional stability, internal bond strength and formaldehyde release of MDF were tested. The results indicated a good potential of tall oil as a bio-based substance of water repellent formulations for improving the dimensional stability of MDF.Keywords: dimensional stability, medium density fiberboard, tall oil, urea formaldehyde
Procedia PDF Downloads 2406125 Neuron Point-of-Care Stem Cell Therapy: Intrathecal Transplant of Autologous Bone Marrow-Derived Stem Cells in Patients with Cerebral Palsy
Authors: F. Ruiz-Navarro, M. Matzner, G. Kobinia
Abstract:
Background: Cerebral palsy (CP) encompasses the largest group of childhood movement disorders, the patterns and severity varies widely. Today, the management focuses only on a rehabilitation therapy that tries to secure the functions remained and prevents complications. However the treatments are not aimed to cure the disease. Stem cells (SCs) transplant via intrathecal is a new approach to the disease. Method: Our aim was to performed a pilot study under the condition of unproven treatment on clinical practice to assessed the safety and efficacy of Neuron Point-of-care Stem cell Therapy (N-POCST), an ambulatory procedure of autologous bone marrow derived SCs (BM-SCs) harvested from the posterior superior iliac crest undergo an on-site cell separation for intrathecal infusion via lumbar puncture. Results: 82 patients were treated in a period of 28 months, with a follow-up after 6 months. They had a mean age of 6,2 years old and male predominance (65,9%). Our preliminary results show that: A. No patient had any major side effects, B. Only 20% presented mild headache due to LP, C. 53% of the patients had an improvement in spasticity, D. 61% improved the coordination abilities, 23% improved the motor function, 15% improved the speech, 23% reduced the number of convulsive events with the same doses or less doses of anti-convulsive medication and 94% of the patients report a subjective general improvement. Conclusions: These results support previous worldwide publications that described the safety and effectiveness of autologous BM-SCs transplant for patients wit CP.Keywords: autologous transplant, cerebral palsy, point of care, childhood movement disorders
Procedia PDF Downloads 414