Search results for: assembly code
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1932

Search results for: assembly code

732 Information Visualization Methods Applied to Nanostructured Biosensors

Authors: Osvaldo N. Oliveira Jr.

Abstract:

The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.

Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique

Procedia PDF Downloads 334
731 Natural Frequency Analysis of a Porous Functionally Graded Shaft System

Authors: Natural Frequency Analysis of a Porous Functionally Graded Shaft System

Abstract:

The vibration characteristics of a functionally graded (FG) rotor model having porosities and micro-voids is investigated using three-dimensional finite element analysis. The FG shaft is mounted with a steel disc located at the midspan. The shaft ends are supported on isotropic bearings. The FG material is composed of a metallic (stainless-steel) and ceramic phase (zirconium oxide) as its constituent phases. The layer wise material property variation is governed by power law. Material property equations are developed for the porosity modelling. Python code is developed to assign the material properties to each layer including the effect of porosities. ANSYS commercial software is used to extract the natural frequencies and whirl frequencies for the FG shaft system. The obtained results show the influence of porosity volume fraction and power-law index, on the vibration characteristics of the ceramic-based FG shaft system.

Keywords: Finite element method, Functionally graded material, Porosity volume fraction, Power law

Procedia PDF Downloads 203
730 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition

Procedia PDF Downloads 156
729 The Healthcare Costs of BMI-Defined Obesity among Adults Who Have Undergone a Medical Procedure in Alberta, Canada

Authors: Sonia Butalia, Huong Luu, Alexis Guigue, Karen J. B. Martins, Khanh Vu, Scott W. Klarenbach

Abstract:

Obesity is associated with significant personal impacts on health and has a substantial economic burden on payers due to increased healthcare use. A contemporary estimate of the healthcare costs associated with obesity at the population level are lacking. This evidence may provide further rationale for weight management strategies. Methods: Adults who underwent a medical procedure between 2012 and 2019 in Alberta, Canada were categorized into the investigational cohort (had body mass index [BMI]-defined class 2 or 3 obesity based on a procedure-associated code) and the control cohort (did not have the BMI procedure-associated code); those who had bariatric surgery were excluded. Characteristics were presented and healthcare costs ($CDN) determined over a 1-year observation period (2019/2020). Logistic regression and a generalized linear model with log link and gamma distribution were used to assess total healthcare costs (comprised of hospitalizations, emergency department visits, ambulatory care visits, physician visits, and outpatient prescription drugs); potential confounders included age, sex, region of residence, and whether the medical procedure was performed within 6-months before the observation period in the partial adjustment, and also the type of procedure performed, socioeconomic status, Charlson Comorbidity Index (CCI), and seven obesity-related health conditions in the full adjustment. Cost ratios and estimated cost differences with 95% confidence intervals (CI) were reported; incremental cost differences within the adjusted models represent referent cases. Results: The investigational cohort (n=220,190) was older (mean age: 53 standard deviation [SD]±17 vs 50 SD±17 years), had more females (71% vs 57%), lived in rural areas to a greater extent (20% vs 14%), experienced a higher overall burden of disease (CCI: 0.6 SD±1.3 vs 0.3 SD±0.9), and were less socioeconomically well-off (material/social deprivation was lower [14%/14%] in the most well-off quintile vs 20%/19%) compared with controls (n=1,955,548). Unadjusted total healthcare costs were estimated to be 1.77-times (95% CI: 1.76, 1.78) higher in the investigational versus control cohort; each healthcare resource contributed to the higher cost ratio. After adjusting for potential confounders, the total healthcare cost ratio decreased, but remained higher in the investigational versus control cohort (partial adjustment: 1.57 [95% CI: 1.57, 1.58]; full adjustment: 1.21 [95% CI: 1.20, 1.21]); each healthcare resource contributed to the higher cost ratio. Among urban-dwelling 50-year old females who previously had non-operative procedures, no procedures performed within 6-months before the observation period, a social deprivation index score of 3, a CCI score of 0.32, and no history of select obesity-related health conditions, the predicted cost difference between those living with and without obesity was $386 (95% CI: $376, $397). Conclusions: If these findings hold for the Canadian population, one would expect an estimated additional $3.0 billion per year in healthcare costs nationally related to BMI-defined obesity (based on an adult obesity rate of 26% and an estimated annual incremental cost of $386 [21%]); incremental costs are higher when obesity-related health conditions are not adjusted for. Results of this study provide additional rationale for investment in interventions that are effective in preventing and treating obesity and its complications.

Keywords: administrative data, body mass index-defined obesity, healthcare cost, real world evidence

Procedia PDF Downloads 107
728 Mathematical Modeling Pressure Losses of Trapezoidal Labyrinth Channel and Bi-Objective Optimization of the Design Parameters

Authors: Nina Philipova

Abstract:

The influence of the geometric parameters of trapezoidal labyrinth channel on the pressure losses along the labyrinth length is investigated in this work. The impact of the dentate height is studied at fixed values of the dentate angle and the dentate spacing. The objective of the work presented in this paper is to derive a mathematical model of the pressure losses along the labyrinth length depending on the dentate height. The numerical simulations of the water flow movement are performed by using Commercial codes ANSYS GAMBIT and FLUENT. Dripper inlet pressure is set up to be 1 bar. As a result, the mathematical model of the pressure losses is determined as a second-order polynomial by means Commercial code STATISTIKA. Bi-objective optimization is performed by using the mean algebraic function of utility. The optimum value of the dentate height is defined at fixed values of the dentate angle and the dentate spacing. The derived model of the pressure losses and the optimum value of the dentate height are used as a basis for a more successful emitter design.

Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model

Procedia PDF Downloads 153
727 Numerical Study of Heat Transfer in Silica Aerogel

Authors: Amal Maazoun, Abderrazak Mezghani, Ali Ben Moussa

Abstract:

Aerogel consists of a ramified and inter-connected solid skeleton enclosing a very important number of nano-sized pores filled with air that occupies most of the volume and makes very low density. The thermal conductivity of this material can reach lower values than those of any other material, and it changes with the type of the aerogel and its composition. So, in order to explain the causes of the super-insulation of our material and to determine the factors in which depends on its conductivity we used a numerical simulation. We have developed a numerical code that generates random fractal structure of silica aerogel with pre-defined concentration, properties of the backbone and the gas in the pores as well as the size of the particles. The calculation of the conductivity at any point of domain shows that it is not constant and that it depends on the pore size and the location in the pore. A numerical method based on resolution by inversion of block tridiagonal matrices is used to calculate the equivalent thermal conductivity of the whole fractal structure. The average conductivity calculated for each concentration is in good agreement with those of typical aerogels. And we found that the equivalent thermal conductivity of a silica aerogel depends strongly not only on the porosity but also on the tortuosity of the solid backbone.

Keywords: aerogel, fractal structure, numerical study, porous media, thermal conductivity

Procedia PDF Downloads 286
726 Effects of pH, Load Capacity and Contact Time in the Sulphate Sorption onto a Functionalized Mesoporous Structure

Authors: Jaime Pizarro, Ximena Castillo

Abstract:

The intensive use of water in agriculture, industry, human consumption and increasing pollution are factors that reduce the availability of water for future generations; the challenge is to advance in sustainable and low-cost solutions to reuse water and to facilitate the availability of the resource in quality and quantity. The use of new low-cost materials with sorbent capacity for pollutants is a solution that contributes to the improvement and expansion of water treatment and reuse systems. Fly ash, a residue from the combustion of coal in power plants that is produced in large quantities in newly industrialized countries, contains a high amount of silicon oxides and aluminum oxides, whose properties can be used for the synthesis of mesoporous materials. Properly functionalized, this material allows obtaining matrixes with high sorption capacity. The mesoporous materials have a large surface area, thermal and mechanical stability, uniform porous structure, and high sorption and functionalization capacities. The goal of this study was to develop hexagonal mesoporous siliceous material (HMS) for the adsorption of sulphate from industrial and mining waters. The silica was extracted from fly ash after calcination at 850 ° C, followed by the addition of water. The mesoporous structure has a surface area of 282 m2 g-1 and a size of 5.7 nm and was functionalized with ethylene diamine through of a self-assembly method. The material was characterized by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The capacity of sulphate sorption was evaluated according to pH, maximum load capacity and contact time. The sulphate maximum adsorption capacity was 146.1 mg g-1, which is three times higher than commercial sorbents. The kinetic data were fitted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model.

Keywords: fly ash, mesoporous siliceous, sorption, sulphate

Procedia PDF Downloads 154
725 Theoretical Analysis and Numerical Evaluation of the Flow inside the Supersonic Nozzle for Chemical Lasers

Authors: Mohammedi Ferhate, Hakim Chadli, Laggoun Chaouki

Abstract:

The main objectives of work in this area are, first, obtaining the high laser energies in short time durations needed for the feasibility studies of laser induced thermodynamically exothermic chemical reactions , second, investigating the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using dense gaseous media.. We present results from the early development of an F atom source appropriate for HF and DF chemical laser research. We next explain the very important difficulties encountered in working with dense gases for that purpose, and we shall describe how, especially at Evaluation of downstream-mixing scheme –levels transitions (001) → (100) and (001) → (020) gas dynamic laser The physical phenomena that control the operation of presently existing laser devices are now sufficiently well understood, so that it is possible to predict that new generations of lasers could be designed in the future. The proposed model of excitation and relaxation levels was finally proved by the computational numerical code of Matlab toolboxes of different parameters of nozzle.

Keywords: hydrogen, combust, chemical laser, halogen atom

Procedia PDF Downloads 83
724 Proposed Solutions Based on Affective Computing

Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla

Abstract:

A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.

Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition

Procedia PDF Downloads 366
723 Community Based Disaster Risk Reduction in Mizoram, India

Authors: Lalrokima Chenkual

Abstract:

Legal provision and various guidelines issued by the National Disaster Management Authority in India strives for setting up of disaster management authority from the central government to the district level. Community-Based Disaster Risk Reduction practice is still relevant as the communities are the victim as well as the first responder in any incidents. The primary goal of Community Based Disaster Risk Reduction is to reduce vulnerability of the concerned community and strengthen its existing capacity to cope with disaster. By involving the community in the preparedness phase, it not only increases the likelihood of coordinated action by the communities to help in mitigating disasters and lessening the impact of disaster but also brings the community together to address the issue collectively. Community participation ensures local ownership, addresses local needs, and promotes volunteerism and mutual help to prevent and minimise damage. Community-Based Disaster Risk Reduction is very much relevant for Mizoram as the society is closed knit, population is very less, religion homogeneity i.e Christianity, very active and widespread community-based organization viz, Young Mizo Association, MHIP (Women Federation), MUP (Elders Clubs which are guided together by Mizo code of morals conduct termed as Tlawmngaihna.

Keywords: community, close-knit, first responder, Tlawmngaihna

Procedia PDF Downloads 140
722 Smart Trash Can Interface between Origin and Destination Waste Management

Authors: Fatemeh Ghorbani

Abstract:

The increase in population in the cities has also led to the increase and accumulation of urban waste. Managing and organizing waste is an action that must be taken to prevent environmental pollution. Separation of waste from the source is the first step that must be taken to determine whether the waste should be buried, burned, recycled, or used in the industry according to its type. Separation of trash is a cultural work that the general public must learn the necessity of doing; then, it is necessary to provide suitable conditions for collecting this waste. It is necessary to put segregated garbage cans in the city so that people can put the garbage in the right place. In this research, a smart trash can has been designed, which is connected to the central system of the municipality and has information on the units of each neighborhood separately. By entering the postal code on the page connected to each bin and entering the type of waste, the section related to the waste in the existing bin is opened and the person places the waste in the desired section. In addition, all the bins are connected to the municipal system, and the sensors in it warn each relevant body about the fullness and emptiness of the bins. Also, people can know how full and empty the bins around their building are through the designed application connected to the system. In this way, each organization collects its desired waste, wet and dry waste are separated from the beginning, and city pollution and unpleasant odors are also prevented.

Keywords: connector, smart trash can, waste management

Procedia PDF Downloads 65
721 Damage Assessment of Current Facades in Turkey throughout the Seismic Actions

Authors: Büşra Elibol, İsmail Sait Soyer, Hamid Farrokh Ghatte

Abstract:

The continuity of the structural and non-structural elements within the envelope of the buildings is one of the fundamental factors in buildings during seismic actions. This investigation aims to make a comparison between Van and İzmir earthquakes in terms of damage assessment of the various facades. A strong earthquake (magnitude 7.2) struck the city of Van in the east of Turkey on 23 October 2011, and similarly, another strong earthquake struck the city of İzmir (magnitude 6.9) in Turkey on 30 October 2020. This paper presents the damage assessment of the current facade systems from multi-story buildings in Van and İzmir, Turkey. This investigation covers the buildings greater than three stories in height, excluding most unreinforced masonry facades. Regarding a building that can have more than one facade system, any of the facade systems are considered individually. Observation of different kinds of damages in the facade is discussed and represented in terms of its performance level throughout the seismic actions. Furthermore, presenting the standard design guidelines (i.e., Turkish seismic design code) is required not only for designers but also for installers of facade systems.

Keywords: damage, earthquake, facade, structural element, seismic action

Procedia PDF Downloads 159
720 Seismic Hazard Response of Bhairabi-Sairang Tunnel Due to the Effect of Faulting

Authors: Tauhidur Rahman, Subhrajit Pathak

Abstract:

In this study, structural response of Bhairabi-Sairang Tunnel due to presence of seismic faults has been thoroughly examined. There may be several active faults located in and around the project. Faults are the key seismic sources from where earthquakes are originated. The magnitude of earthquake will depend on the length of the fault. A long fault more than 200 km can produce earthquake of magnitude (Mw ) more than 8.0 and smaller length less than 10 km will produce small magnitude earthquake. Now-a-days it is very much essential to identify the distance and length of a fault from the project site. Based on this, in the present paper, a case study of the Bhairabi Sairang Tunnel of 1.73 Km length located in the North Eastern Region of India has been selected to calculate the seismic hazard from the surrounding effect of faults. A comparative study of seismic hazard at the tunnel site has been made based on the location of faults with the seismic hazard obtained from the Indian Standards code of Practice. In this paper, a practical problem of a tunnel has been analysed based on the available faults around the project site accounting the soil factor.

Keywords: seismic hazard, effect of fault, soil factor, Bhairabi Sairang tunnel

Procedia PDF Downloads 564
719 Between the Pen and the Dish Towel: Paradox of Globalization

Authors: Sandra Maria Cerqueira Da Silva

Abstract:

In Brazil, women are the majority of the country's population. They have advanced in terms of years of education and professional training. However, this has not prevented the differences in the labor market from being sustained, particularly the wage gap and inequalities concerning the access to command positions and promotions, i.e., in the gender relations and treatment. One of the conditions which constitute a barrier to career advancement is the necessary support chain to support women when they are in the labor market. Therefore, the purpose of this research is to demonstrate, describe, and criticize some of the current conformations of support chains and how these compete to promote the phenomenon known as glass ceiling in the country. However, this support may come even from inside a woman's own home, with a fairer division of household activities between men and women. Such behavior can free an entire network of women within the same family. In addition, it can serve as pressure to structure better conditions for women as a whole, improving the living conditions of the poor population. This can occur through programs and projects for qualification and retraining of adult women. In answer to the question that guides this study, it is concluded that a family support system is critical to the success of women in management positions. To meet this demand, one of the ways could be the development of specific gender policies by the public authorities, in accordance with the emerging global economic policies, in order to provide and structure the necessary support. This would respond to feminist manifestations - which should go on pointing needs – although the legislative assembly should also propose ideas to change this picture. This is a qualitative research, with a poststructuralist approach, featuring a cutout corpus of three interviews carried out with women holding leadership positions in the academia. Questions related to this very discussion are many. New studies could address points as the promotion of qualification and expansion of skills of women in subaltern condition. There is also need to investigate possible support systems, considering the inequalities and local economic conditions.

Keywords: gender and labor market, glass ceiling, post-structuralism, support chain

Procedia PDF Downloads 231
718 Performance of Coded Multi-Line Copper Wire for G.fast Communications in the Presence of Impulsive Noise

Authors: Israa Al-Neami, Ali J. Al-Askery, Martin Johnston, Charalampos Tsimenidis

Abstract:

In this paper, we focus on the design of a multi-line copper wire (MLCW) communication system. First, we construct our proposed MLCW channel and verify its characteristics based on the Kolmogorov-Smirnov test. In addition, we apply Middleton class A impulsive noise (IN) to the copper channel for further investigation. Second, the MIMO G.fast system is adopted utilizing the proposed MLCW channel model and is compared to a single line G-fast system. Second, the performance of the coded system is obtained utilizing concatenated interleaved Reed-Solomon (RS) code with four-dimensional trellis-coded modulation (4D TCM), and compared to the single line G-fast system. Simulations are obtained for high quadrature amplitude modulation (QAM) constellations that are commonly used with G-fast communications, the results demonstrate that the bit error rate (BER) performance of the coded MLCW system shows an improvement compared to the single line G-fast systems.

Keywords: G.fast, Middleton Class A impulsive noise, mitigation techniques, Copper channel model

Procedia PDF Downloads 131
717 Experiences during the First Year of Practice among New Nurses

Authors: Chanya Thanomlikhit, Pataraporn Kheawwan

Abstract:

Transition from student to staff nurse can be difficult for nurses beginning their nursing profession. Objective: The purpose of this study was to explore the transition experiences during the first year of practice among new nurses in Thailand. Methods: A descriptive design using a survey questionnaire was used. One hundred seventy-eight new graduate nurses from one tertiary hospital in Thailand participated in this study. Data were collected using paper-and-pencil format of the Revised Casey-Fink Graduate Nurse Experience Survey. Results: Participants reported three types of difficulties they were experiencing during the first year of practice including role expectation, lack of confidence, and workload. New nurses reported uncomfortable to perform high risk skills such as code/emergency, ventilator care, EKG, and chest tube care. Organizing, prioritizing and communication were rated as difficult tasks during 12-month transition period. New nurses satisfied the benefit package they received from the institution, however, salary was lowest satisfied. Conclusion: Results inform transition program development for new nurses. Initiative of systems that support for the graduate nurse during the first year of practice is suggested.

Keywords: new graduate nurse, transition, nurse residency program, clinical education

Procedia PDF Downloads 236
716 Heat Transfer Enhancement Using Aluminium Oxide Nanofluid: Effect of the Base Fluid

Authors: M. Amoura, M. Benmoussa, N. Zeraibi

Abstract:

The flow and heat transfer is an important phenomenon in engineering systems due to its wide application in electronic cooling, heat exchangers, double pane windows etc.. The enhancement of heat transfer in these systems is an essential topic from an energy saving perspective. Lower heat transfer performance when conventional fluids, such as water, engine oil and ethylene glycol are used hinders improvements in performance and causes a consequent reduction in the size of such systems. The use of solid particles as an additive suspended into the base fluid is a technique for heat transfer enhancement. Therefore, the heat transfer enhancement in a horizontal circular tube that is maintained at a constant temperature under laminar regime has been investigated numerically. A computational code applied to the problem by use of the finite volume method was developed. Nanofluid was made by dispersion of Al2O3 nanoparticles in pure water and ethylene glycol. Results illustrate that the suspended nanoparticles increase the heat transfer with an increase in the nanoparticles volume fraction and for a considered range of Reynolds numbers. On the other hand, the heat transfer is very sensitive to the base fluid.

Keywords: Al2O3 nanoparticles, circular tube, heat transfert enhancement, numerical simulation

Procedia PDF Downloads 319
715 The Behavior of Masonry Wall Constructed Using Biaxial Interlocking Concrete Block, Solid Concrete Block and Cement Sand Brick Subjected to the Compressive Load

Authors: Fauziah Aziz, Mohd.fadzil Arshad, Hazrina Mansor, Sedat Kömürcü

Abstract:

Masonry is an isotropic and heterogeneous material due to the presence of the different components within the assembly process. Normally the mortar plays a significant role in the compressive behavior of the traditional masonry structures. Biaxial interlocking concrete block is a masonry unit that comes out with the interlocking concept. This masonry unit can improve the quality of the construction process, reduce the cost of labor, reduce high skill workmanship, and speeding the construction time. Normally, the interlocking concrete block masonry unit in the market place was designed in a way interlocking concept only either x or y-axis, shorter in length, and low compressive strength value. However, the biaxial interlocking concrete block is a dry-stack concept being introduced in this research, offered the specialty compared to the normal interlocking concrete available in the market place due to its length and the geometry of the groove and tongue. This material can be used as a non-load bearing wall, or load-bearing wall depends on the application of the masonry. But, there is a lack of technical data that was produced before. This paper presents a finding on the compressive resistance of the biaxial interlocking concrete block masonry wall compared to the other traditional masonry walls. Two series of biaxial interlocking concrete block masonry walls, namely M1 and M2, a series of solid concrete block and cement sand brick walls M3, and M4 have tested the compressive resistance. M1 is the masonry wall of a hollow biaxial interlocking concrete block meanwhile; M2 is the grouted masonry wall, M3 is a solid concrete block masonry wall, and M4 is a cement sand brick masonry wall. All the samples were tested under static compressive load. The results examine that M2 is higher in compressive resistance compared to the M1, M3, and M4. It shows that the compressive strength of the concrete masonry units plays a significant role in the capacity of the masonry wall.

Keywords: interlocking concrete block, compressive resistance, concrete masonry unit, masonry

Procedia PDF Downloads 165
714 Host Cell Membrane Lipid Rafts Are Required for Influenza A Virus Adsorption to Host Cell Surface

Authors: Dileep K. Verma, Sunil K. Lal

Abstract:

Influenza still remains one of the most challenging diseases posing significant threat to public health causing seasonal epidemics and pandemics. Previous studies suggest that influenza hemagglutinin is essential for viral attachment to host sialic acid receptors and concentrate in lipid rafts for efficient viral fusion. Studies also reported selective nature of Influenza virus to utilize rafts micro-domain for efficient virus assembly and budding. However, the detailed mechanism of Influenza A Virus (IAV) binding to host cell membrane and entry inside the host remains elusive. In the present study, we investigated if host membrane lipid rafts play any significant role in early life cycle events of influenza A virus. Role of host lipid rafts was studied using raft disruption method by extraction of cholesterol and Methyl-β-Cyclodextrin was used to remove membrane cholesterol. We observed co-localization of Influenza A Virus to lipid rafts by visualization of known lipid raft marker GM1 on host cell membrane. Co-localization suggest direct involvement of these micro-domain in initiation of IAV life cycle. We found significant reduction in influenza A virus adsorption in raft disrupted target host cells indicating poor binding and attachment in absence of coherent membrane rafts. Taken together, the results of present study provide evidence for critical involvement of host lipid rafts and its constituents in adsorption process of Influenza A Virus and suggests crucial involvement in other early events of IAV life cycle. The present study opens a new domain to study influenza virus-host interaction and to combat flu at the very early steps of viral life cycle.

Keywords: lipid raft, adsorption, cholesterol, methyl-β-cyclodextrin, GM1

Procedia PDF Downloads 297
713 First Principls Study of Structural, Electronic, Magnetic and Optical Properties of SiNi₂O₄ Spinel Oxide

Authors: Karkour Selma

Abstract:

We conducted first principles full potential calculations using the Wien2k code to explore the structural, electronic, magnetic, and optical properties of SiNi₂O₄, a cubic normal spinel oxide. Our calculations, based on the GGA-PBEsol of the generalized gradient approximation, revealed several key findings. The spinel oxides exhibited a stable cubic structure in the ferromagnetic phase and showed 100% spin polarization. We determined the equilibrium lattice constant and internal parameter values. In terms of the electronic properties, we observed a direct bandgap of 2.68 eV for the spin-up configuration, while the spin-down configuration exhibited an indirect bandgap of 0.82 eV. Additionally, we calculated the total density of states and partial densities for each atom, finding a magnetic moment spin density of states of 8.0 μB per formula unit. The optical properties have been calculated. The real, Ԑ₁(ω) and the imaginary, Ԑ₂(ω) parts of the complex dielectric constants, refractivity, reflection and energy loss when light scattered from the material. The absorption region spanned from 1.5 eV to 14 eV, with significant intensity. The calculated results confirm the suitability of this material for optical and spintronic devices application.

Keywords: DFT, spintronic, GGA, spinel

Procedia PDF Downloads 74
712 Subjective Time as a Marker of the Present Consciousness

Authors: Anastasiya Paltarzhitskaya

Abstract:

Subjective time plays an important role in consciousness processes and self-awareness at the moment. The concept of intrinsic neural timescales (INT) explains the difference in perceiving various time intervals. The capacity to experience the present builds on the fundamental properties of temporal cognition. The challenge that both philosophy and neuroscience try to answer is how the brain differentiates the present from the past and future. In our work, we analyze papers which describe mechanisms involved in the perception of ‘present’ and ‘non-present’, i.e., future and past moments. Taking into account that we perceive time intervals even during rest or relaxation, we suppose that the default-mode network activity can code time features, including the present moment. We can compare some results of time perceptual studies, where brain activity was shown in states with different flows of time, including resting states and during “mental time travel”. According to the concept of mental traveling, we employ a range of scenarios which demand episodic memory. However, some papers show that the hippocampal region does not activate during time traveling. It is a controversial result that is further complicated by the phenomenological aspect that includes a holistic set of information about the individual’s past and future.

Keywords: temporal consciousness, time perception, memory, present

Procedia PDF Downloads 75
711 Influence of Behavior Models on the Response of a Reinforced Concrete Frame: Multi-Fiber Approach

Authors: A. Kahil, A. Nekmouche, N. Khelil, I. Hamadou, M. Hamizi, Ne. Hannachi

Abstract:

The objective of this work is to study the influence of the nonlinear behavior models of the concrete (concrete_BAEL and concrete_UNI) as well as the confinement brought by the transverse reinforcement on the seismic response of reinforced concrete frame (RC/frame). These models as well as the confinement are integrated in the Cast3m finite element calculation code. The consideration of confinement (TAC, taking into account the confinement) provided by the transverse reinforcement and the non-consideration of confinement (without consideration of containment, WCC) in the presence and absence of a vertical load is studied. The application was made on a reinforced concrete frame (RC/frame) with 3 levels and 2 spans. The results show that on the one hand, the concrete_BAEL model slightly underestimates the resistance of the RC/frame in the plastic field, whereas the concrete_uni model presents the best results compared to the simplified model "concrete_BAEL", on the other hand, for the concrete-uni model, taking into account the confinement has no influence on the behavior of the RC/frame under imposed displacement up to a vertical load of 500 KN.

Keywords: reinforced concrete, nonlinear calculation, behavior laws, fiber model confinement, numerical simulation

Procedia PDF Downloads 162
710 A Novel Way to Create Qudit Quantum Error Correction Codes

Authors: Arun Moorthy

Abstract:

Quantum computing promises to provide algorithmic speedups for a number of tasks; however, similar to classical computing, effective error-correcting codes are needed. Current quantum computers require costly equipment to control each particle, so having fewer particles to control is ideal. Although traditional quantum computers are built using qubits (2-level systems), qudits (more than 2-levels) are appealing since they can have an equivalent computational space using fewer particles, meaning fewer particles need to be controlled. Currently, qudit quantum error-correction codes are available for different level qudit systems; however, these codes have sometimes overly specific constraints. When building a qudit system, it is important for researchers to have access to many codes to satisfy their requirements. This project addresses two methods to increase the number of quantum error correcting codes available to researchers. The first method is generating new codes for a given set of parameters. The second method is generating new error-correction codes by using existing codes as a starting point to generate codes for another level (i.e., a 5-level system code on a 2-level system). So, this project builds a website that researchers can use to generate new error-correction codes or codes based on existing codes.

Keywords: qudit, error correction, quantum, qubit

Procedia PDF Downloads 158
709 First-Principles Calculations and Thermo-Calc Study of the Elastic and Thermodynamic Properties of Ti-Nb-ZR-Ta Alloy for Biomedical Applications

Authors: M. Madigoe, R. Modiba

Abstract:

High alloyed beta (β) phase-stabilized titanium alloys are known to have a low elastic modulus comparable to that of the human bone (≈30 GPa). The β phase in titanium alloys exhibits an elastic Young’s modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, a theoretical investigation of structural stability and thermodynamic stability, as well as the elastic properties of a quaternary Ti-Nb-Ta-Zr alloy, will be presented with an attempt to lower Young’s modulus. The structural stability and elastic properties of the alloy were evaluated using the first-principles approach within the density functional theory (DFT) framework implemented in the CASTEP code. The elastic properties include bulk modulus B, elastic Young’s modulus E, shear modulus cʹ and Poisson’s ratio v. Thermodynamic stability, as well as the fraction of β phase in the alloy, was evaluated using the Thermo-Calc software package. Thermodynamic properties such as Gibbs free energy (Δ?⁰?) and enthalpy of formation will be presented in addition to phase proportion diagrams. The stoichiometric compositions of the alloy is Ti-Nbx-Ta5-Zr5 (x = 5, 10, 20, 30, 40 at.%). An optimum alloy composition must satisfy the Born stability criteria and also possess low elastic Young’s modulus. In addition, the alloy must be thermodynamically stable, i.e., Δ?⁰? < 0.

Keywords: elastic modulus, phase proportion diagram, thermo-calc, titanium alloys

Procedia PDF Downloads 185
708 Evaluation of Cyclic Thermo-Mechanical Responses of an Industrial Gas Turbine Rotor

Authors: Y. Rae, A. Benaarbia, J. Hughes, Wei Sun

Abstract:

This paper describes an elasto-visco-plastic computational modelling method which can be used to assess the cyclic plasticity responses of high temperature structures operating under thermo-mechanical loadings. The material constitutive equation used is an improved unified multi-axial Chaboche-Lemaitre model, which takes into account non-linear kinematic and isotropic hardening. The computational methodology is a three-dimensional framework following an implicit formulation and based on a radial return mapping algorithm. The associated user material (UMAT) code is developed and calibrated across isothermal hold-time low cycle fatigue tests for a typical turbine rotor steel for use in finite element (FE) implementation. The model is applied to a realistic industrial gas turbine rotor, where the study focuses its attention on the deformation heterogeneities and critical high stress areas within the rotor structure. The potential improvements of such FE visco-plastic approach are discussed. An integrated life assessment procedure based on R5 and visco-plasticity modelling, is also briefly addressed.

Keywords: unified visco-plasticity, thermo-mechanical, turbine rotor, finite element modelling

Procedia PDF Downloads 129
707 Acceleration of Lagrangian and Eulerian Flow Solvers via Graphics Processing Units

Authors: Pooya Niksiar, Ali Ashrafizadeh, Mehrzad Shams, Amir Hossein Madani

Abstract:

There are many computationally demanding applications in science and engineering which need efficient algorithms implemented on high performance computers. Recently, Graphics Processing Units (GPUs) have drawn much attention as compared to the traditional CPU-based hardware and have opened up new improvement venues in scientific computing. One particular application area is Computational Fluid Dynamics (CFD), in which mature CPU-based codes need to be converted to GPU-based algorithms to take advantage of this new technology. In this paper, numerical solutions of two classes of discrete fluid flow models via both CPU and GPU are discussed and compared. Test problems include an Eulerian model of a two-dimensional incompressible laminar flow case and a Lagrangian model of a two phase flow field. The CUDA programming standard is used to employ an NVIDIA GPU with 480 cores and a C++ serial code is run on a single core Intel quad-core CPU. Up to two orders of magnitude speed up is observed on GPU for a certain range of grid resolution or particle numbers. As expected, Lagrangian formulation is better suited for parallel computations on GPU although Eulerian formulation represents significant speed up too.

Keywords: CFD, Eulerian formulation, graphics processing units, Lagrangian formulation

Procedia PDF Downloads 412
706 Use of Computer and Machine Learning in Facial Recognition

Authors: Neha Singh, Ananya Arora

Abstract:

Facial expression measurement plays a crucial role in the identification of emotion. Facial expression plays a key role in psychophysiology, neural bases, and emotional disorder, to name a few. The Facial Action Coding System (FACS) has proven to be the most efficient and widely used of the various systems used to describe facial expressions. Coders can manually code facial expressions with FACS and, by viewing video-recorded facial behaviour at a specified frame rate and slow motion, can decompose into action units (AUs). Action units are the most minor visually discriminable facial movements. FACS explicitly differentiates between facial actions and inferences about what the actions mean. Action units are the fundamental unit of FACS methodology. It is regarded as the standard measure for facial behaviour and finds its application in various fields of study beyond emotion science. These include facial neuromuscular disorders, neuroscience, computer vision, computer graphics and animation, and face encoding for digital processing. This paper discusses the conceptual basis for FACS, a numerical listing of discrete facial movements identified by the system, the system's psychometric evaluation, and the software's recommended training requirements.

Keywords: facial action, action units, coding, machine learning

Procedia PDF Downloads 104
705 Functions of Bilingualism in Hong Kong: Comparing the Linguistic Landscape of Tsim Sha Tsui and Tai Wai

Authors: Xinyi Huang

Abstract:

As a former British colony and one of the most famous world financial centers today, Hong Kong attracts countless businessmen and tourists to visit or settle down every year. Hong Kong is a land that leads western culture to blossom in Asia, and in the meantime, it inherits the unique charm of Chinese traditional culture. The Chinese-English bilingual phenomenon can be seen everywhere in Hong Kong. The public presentation, code choice, and practical use of these two languages can also reflect the economic and social status, population distribution, and individual identity construction of a specific area. This paper mainly compares the linguistic landscape of two areas with different social functions in Hong Kong: Tsim Sha Tsui, a large commercial center in Kowloon, and Tai Wai, a residential area in New Territories. By adopting the methodology of the Walking Tour, the bilingual data of 75 photos are collected unintentionally during the field trip in the two areas. Through the methods of quantitative analysis and linguistic landscape studies, this paper deeply analyzes the similarities and differences in language distribution and the respective social functions of two languages in the two places.

Keywords: bilingualism, linguistic landscape, identity construction, commodification

Procedia PDF Downloads 152
704 Algorithmic Generation of Carbon Nanochimneys

Authors: Sorin Muraru

Abstract:

Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.

Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures

Procedia PDF Downloads 168
703 High Performance Field Programmable Gate Array-Based Stochastic Low-Density Parity-Check Decoder Design for IEEE 802.3an Standard

Authors: Ghania Zerari, Abderrezak Guessoum, Rachid Beguenane

Abstract:

This paper introduces high-performance architecture for fully parallel stochastic Low-Density Parity-Check (LDPC) field programmable gate array (FPGA) based LDPC decoder. The new approach is designed to decrease the decoding latency and to reduce the FPGA logic utilisation. To accomplish the target logic utilisation reduction, the routing of the proposed sub-variable node (VN) internal memory is designed to utilize one slice distributed RAM. Furthermore, a VN initialization, using the channel input probability, is achieved to enhance the decoder convergence, without extra resources and without integrating the output saturated-counters. The Xilinx FPGA implementation, of IEEE 802.3an standard LDPC code, shows that the proposed decoding approach attain high performance along with reduction of FPGA logic utilisation.

Keywords: low-density parity-check (LDPC) decoder, stochastic decoding, field programmable gate array (FPGA), IEEE 802.3an standard

Procedia PDF Downloads 295