Search results for: Adult dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2458

Search results for: Adult dataset

1258 English Syllabus in the Iranian Education System

Authors: Shaghayegh Mirshekari, Atiyeh Ghorbani

Abstract:

EThe Iranian system of education has been politically influenced by the thoughts of the governing religious party. It has brought many religious books into the educational system from grade one up to graduation from high school, and therefore, teaching English as a non-Islamic language has been put aside the system, focusing on the Islamic language of Arabic. Teaching English has been widely talked about in international academia, but the Iranian educational system has not brought in any of its outcomes due to the general policy of keeping people away from international Western thoughts. Because of the increasing interest among Iranians in learning English, this language is being taught and studied in public and private schools, commercial and adult schools, language institutes, colleges, universities, and numerous homes throughout the country. Methods and techniques of teaching English, the attitude of the teachers and learners towards the language, and the availability of textbooks and other language materials are quite different in any one of the different institutions. This paper has evaluated the outcome of the Iranian educational system in teaching English in terms of their methods of teaching, as well as the policies regarding the educational system. The results show that not only has there been no progress in the system in terms of teaching English, rather there is backwardness in this regard due to the political policy of preventing people from learning English. Therefore, we see the majority of the youth not speaking English properly at the age where they need to enter the international arena.

Keywords: English, public school, language, Iran, teaching

Procedia PDF Downloads 66
1257 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 108
1256 Women's Cyber Intimate Partner Violence Victimization

Authors: Mylène Fernet, Geneviève Brodeur, Martine Hébert

Abstract:

Background: The growth of information and communication technologies has led to an increase in the prevalence of cyber intimate partner violence among women in early adulthood. However, there is a lack of research addressing the intervention needs of women who have been victims of cyber intimate partner violence. This qualitative study aimed to identify the knowledge, resources, and tools that women require to better respond to such violence. Methodology: Semi-structured individual interviews and four online discussion groups were conducted with 28 Canadian women aged 18 to 29 who had experienced cyber intimate partner violence by a romantic or intimate partner or an ex-partner. The data were analyzed using thematic analysis. Findings: The key elements identified suggest that women need information to help them recognize the signs and varied forms of cyber intimate partner violence, particularly those that are more nuanced and harder to detect. Furthermore, participants emphasized the importance of having access to both online and offline support to aid in their recovery from cyber intimate partner violence. Additionally, the women's narratives also highlighted their need for resources on how to protect themselves from cyber intimate partner violence. Conclusion: Based on the findings from this study, it is essential to develop prevention and intervention strategies for cyber intimate partner violence that address these knowledge gaps, provide support options, and offer prevention tools tailored to adult women.

Keywords: women, cyberviolence, intimate partner violence, prevention strategies

Procedia PDF Downloads 20
1255 Heart Rate Variability Responses Pre-, during, and Post-Exercise among Special Olympics Athletes

Authors: Kearney Dover, Viviene Temple, Lynneth Stuart-Hill

Abstract:

Heart Rate Variability (HRV) is the beat-to-beat variation in adjacent heartbeats. HRV is a non-invasive measure of the autonomic nervous system (ANS) and provides information about the sympathetic (SNS) and parasympathetic (PNS) nervous systems. The HRV of a well-conditioned heart is generally high at rest, whereas low HRV has been associated with adverse outcomes/conditions, including congestive heart failure, diabetic neuropathy, depression, and hospital admissions. HRV has received very little research attention among individuals with intellectual disabilities in general or Special Olympic athletes. Purpose: 1) Having a longer post-exercise rest and recovery time to establish how long it takes for the athletes’ HRV components to return to pre-exercise levels, 2) To determine if greater familiarization with the testing processes influences HRV. Participants: Two separate samples of 10 adult Special Olympics athletes will be recruited for 2 separate studies. Athletes will be between 18 and 50 years of age and will be members of Special Olympics BC. Anticipated Findings: To answer why the Special Olympics athletes display poor cardiac responsiveness to changes in autonomic modulation during exercise. By testing the cortisol levels in the athletes, we can determine their stress levels which will then explain their measured HRV.

Keywords: 6MWT, autonomic modulation, cortisol levels, intellectual disability

Procedia PDF Downloads 308
1254 Kindergarten Children’s Reactions to the COVID-19 Pandemic: Creating a Sense of Coherence

Authors: Bilha Paryente, Roni Gez Langerman

Abstract:

Background and Objectives: The current study focused on how kindergarten children have experienced the COVID-19 pandemic. The main goals were understanding children’s emotions, coping strategies, and thoughts regarding the presence of the COVID-19 virus in their daily lives, using the salute genic approach to study their sense of coherence, and to promote relevant professional instruction. Design and Method: Semistructured in-depth interviews were held with 130 five- to six-year-old children, with an equal number of boys and girls. All of the children were recruited from kindergartens affiliated with the state's secular education system. Results: Data were structured into three themes: 1) the child’s pandemic perception as manageable through meaningful accompanying and missing figures; 2) the child’s comprehension of the virus as dangerous, age differentiating, and contagious. 3) the child’s emotional processing of the pandemic as arousing fear of death and, through images, as thorny and as a monster. Conclusions: Results demonstrate the young children’s sense of coherence, characterized as extrapersonal perception, interpersonal coping, and intrapersonal emotional processing, and the need for greater acknowledgement of child-parent educators' informed interventions that could give children a partial feeling of the adult’s awareness of their needs.

Keywords: kindergarten children, continuous stress, COVID-19, salutogenic approach

Procedia PDF Downloads 177
1253 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System

Authors: Kay Thinzar Phu, Lwin Lwin Oo

Abstract:

In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.

Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection

Procedia PDF Downloads 313
1252 Gender Difference in the Association between Different Components of the Metabolic Syndrome and Vitamin D Levels in Saudi Patients

Authors: Amal Baalash, Shazia Mukaddam, M. Adel El-Sayed

Abstract:

Background: Several studies have suggested non-skeletal effects of vitamin D and linked its deficiency with features of many chronic conditions. In this study, We aimed to investigate the relationship between vitamin D levels and different components of the metabolic syndrome in male and female Saudi patients. Methods: the study population consisted of 111 patients with metabolic syndrome (71 females and 40 males) aged 37-63 years enrolled from patients attending the internal medicine outpatient clinics of King Fahad Medical City. The parameters for diagnosis of the metabolic syndrome according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) were measured, which included waist circumference, TG, HDL-C, Blood pressure and fasting blood glucose (FBS). The association between each parameter and serum 25-hydroxyvitamin D (25(OH) D) was studied in both male and female patients separately. Results: in male patients, 25(OH) D levels were inversely associated with FBS and TG and positively associated with HDL-C and diastolic blood pressure, With highest association with the HDL-C levels. On the other hand 25(OH) D, Showed no significant association with any of the measured metabolic syndrome parameters in female patients. Conclusion: in Saudi patients with metabolic syndrome, the association between the parameters of metabolic syndrome and the levels of 25 (OH) D is more pronounced in males rather than females.

Keywords: gender, metabolic syndrome, Saudi patients, vitamin D

Procedia PDF Downloads 374
1251 The Learning Process in Future Preparations: Middle-Aged and Older Adults' Experiences

Authors: Ya-Hui Lee, Ching-Yi Lu

Abstract:

Taiwan will become an aging society in 2018. The method to face the challenges related to the aging population has become an important topic. Purpose: This study aims to understand the future preparation of middle-age and older adults, and how they prepared themselves to face the problems of aging, and how they took actions to plan and cope with their future life. Moreover, how did they generate the process of learning action, so that they would be able to live a more active and meaningful life when they entered into their older age? Method: We conducted semi-structure interviews with 10 middle-aged and older adults who had taken actions to prepare for their future. We examined the interviewees’ consciousness and learning actions in their future preparation. Preliminary Results: 1. The triggering factors of the interviewees’ consciousness to prepare for the future included: family events, the desire to maintain active social lives after retirement, the continuation of the interviewees’ professional careers after retirement, and the aspiration for participation in volunteer services. 2. 'Health problems' and 'economic security' were issued of the utmost concern for the interviewees’ future. However, they would transform these worries to learning actions, comprising of active participation in learning, finding relevant information through learning; thus, accumulating more resources to cope with their future needs.

Keywords: middle-age and older adults, preparing for future, older adult learning

Procedia PDF Downloads 230
1250 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision

Authors: Lianzhong Zhang, Chao Huang

Abstract:

Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.

Keywords: SAR, sea-land segmentation, deep learning, transformer

Procedia PDF Downloads 181
1249 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 353
1248 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 150
1247 Experiences of 529 Donor-Conceived Adults: Disclosure, Using a Donor, Donating

Authors: Wendy Kramer

Abstract:

How and when a donor-conceived person (DCP) learns about their conception significantly affects their experiences and choices, including whether they'd consider using a donor or donating their own gametes. Objective: We sought to identify factors that positively and negatively impact the experience of being a DCP. We sought to determine if DCP would consider utilizing donor gametes themselves, if unable to conceive spontaneously and if DCP were likely to be donors themselves. Materials and Methods: A cross-sectional survey of adult DCP was disseminated to members of the Donor Sibling Registry. The survey consisted of 31 items, including whether experience as DCP was positive or negative, the willingness to use donor gametes if spontaneous conception was not an option, and questions regarding donating gametes. Results: 529 people (81.7% female) completed the survey, the median age was 28 years (range 18-77 years), and 94.7% were conceived via donor sperm. Most felt "neutral" (31.6%), "positive" (26.3%) or "very positive" (20.8%) about being a DCP regardless of donor type. While most found out about being a DCP after age 18 (63.4%), those with a positive experience were more likely to "have always known" (40.7%). Conclusions: People conceived by donor-assisted reproduction are more likely to have neutral to overall positive feelings surrounding their conception if they are told at a very young age about their donor-conceived origins by a family member. The majority of DCPs are willing to adopt but would not consider using donated gametes themselves if unable to conceive spontaneously. DCPs are not likely to become donors themselves despite the majority of DCP having a high positive feeling regarding being donor-conceived.

Keywords: donor conception, sperm donation, oocyte donation, donor-conceived people, infertility

Procedia PDF Downloads 168
1246 Moderators of the Relationship between Entrepreneurial Self-Efficacy and Expected Firm Growth

Authors: Laszlo Szerb, Zsofia Voros

Abstract:

In this article, we seek to answer why many attempts to empirically link entrepreneurial self-efficacy to growth expectations have failed. While doing so, we reconcile the literature on entrepreneurial self-efficacy and overconfidence. By analyzing GEM APS (Global Entrepreneurship Monitor Adult Population Survey) data, we show that early-stage entrepreneurs’ self-efficacy statements are systematically inflated. Our results also indicate that entrepreneurial overconfidence is fading and its form changes as business owners learn and gather experience. In addition, by using Ajzen’s Theory of Planned Behavior (2006) as a modeling framework, we illustrate that early stage business owners’ overconfidence results in overly high firm growth expectations. However, the changes in the form of overconfidence and the adjustments of expectations on market conditions as a venture ages alter the relationship between overconfidence and growth expectations across the business life-cycle stages. Overall, our study empirically links young entrepreneurs’ overconfidence to their growth expectations at the firm level. This link is important to establish as expected growth was linked to realized growth both on micro and macro levels. Moreover, we detected several moderators of this relationship providing a potential answer to why many studies failed to link entrepreneurial self-efficacy to growth expectations.

Keywords: self-efficacy, overconfidence, entrepreneurship, expected growth

Procedia PDF Downloads 272
1245 Infestations of Olive Fruit Fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), in Different Olive Cultivars in Çanakkale, Turkey

Authors: Hanife Genç

Abstract:

The olive fruit fly, Bactrocera oleae (Rossi), is an economically important and endemic pest in olive (Oleae europae) orchards in Turkey. The aim of this study was to determine olive fruit fly infestation in different olive cultivars in the laboratory. Olive fly infested fruits were collected in Çanakkale province to establish wild fly population. After having reproductive olive fly colonies, 14 olive cultivars were tested in the controlled laboratory conditions, at 23±2 °C, 65% RH and 16:8 h (light: dark) photoperiod. The olive samples from 14 different olive cultivars were collected in October 2015, in Campus of Dardanos, Çanakkale Onsekiz Mart University. Observations were carried out detecting some biological parameters such as the number of oviposition stings, active infestation, total infestation, the number of pupae and the adult emergence. The results indicated that oviposition stings were not associated with pupal yield. A few pupae were found within olive fruits which were not able to exit. Screening of the varieties suggested that less susceptible cultivar to olive fruit fly attacks was Arbequin while Gemlik-2M 2/3 showed significant susceptibility. Ovipositional preference of olive fly females and the success of larval development in different olive varieties are crucial for establishing new olive orchards to prevent high olive fruit fly infestation.

Keywords: infestation, olive fruit fly, olive cultivars, oviposition sting

Procedia PDF Downloads 219
1244 Prevalence of Rabbit Coccidia in Medea Province, Algeria

Authors: Mohamed Sadek Bachene, Soraya Temim, Hassina Ainbaziz, Asma Bachene

Abstract:

Coccidiosis has an economic impact for poultry and livestock. The current study examined the prevalence ofEimeria infections in domestic rabbits in Medea province, North of Algeria. A total of 414 faecal samples were collected from 50 farms in six regions of the province. Each faecal sample was subjected to oocyst counting andisolation. The Eimeria species from samples containing isolated and sporulatedoocysts were morphologically identified microscopically. The overall prevalence of coccidial infections was 47.6% (197/414). Weaners had the highest prevalence (77%, 77/100, p<0.0001), followed by growing rabbits (46.8%, 30/64), and the adult rabbits showed the lowest prevalence (36 %, 18/50). In breeding rabbits, females were more infected with a prevalence of40% (p<0.0001). Eleven rabbit Eimeria’s species were present and identified from oocyst positive samples. Eimeriamagna and Eimeria media were the most prevalent species (47.6% and 47.3%). Sulfonamides showed a better protection against rabbit coccidiosis than colistin and trimethoprim association (p< 0.0001, the prevalence of 23.3% vs.65.3%, respectively). These results indicated that the prevalence of coccidiosis is high among the rabbit population inMedea province, North of Algeria. As a conclusion, it seems that the epidemiological situation of rabbit coccidiosisin Medea province must be taken into consideration in order to minimize the economic losses caused by this parasitosis.

Keywords: eimeria, oryctolagus cuniculus, rabbit, sulfonamides

Procedia PDF Downloads 107
1243 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 106
1242 Clique and Clan Analysis of Patient-Sharing Physician Collaborations

Authors: Shahadat Uddin, Md Ekramul Hossain, Arif Khan

Abstract:

The collaboration among physicians during episodes of care for a hospitalised patient has a significant contribution towards effective health outcome. This research aims at improving this health outcome by analysing the attributes of patient-sharing physician collaboration network (PCN) on hospital data. To accomplish this goal, we present a research framework that explores the impact of several types of attributes (such as clique and clan) of PCN on hospitalisation cost and hospital length of stay. We use electronic health insurance claim dataset to construct and explore PCNs. Each PCN is categorised as ‘low’ and ‘high’ in terms of hospitalisation cost and length of stay. The results from the proposed model show that the clique and clan of PCNs affect the hospitalisation cost and length of stay. The clique and clan of PCNs show the difference between ‘low’ and ‘high’ PCNs in terms of hospitalisation cost and length of stay. The findings and insights from this research can potentially help the healthcare stakeholders to better formulate the policy in order to improve quality of care while reducing cost.

Keywords: clique, clan, electronic health records, physician collaboration

Procedia PDF Downloads 140
1241 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network

Authors: Kamyar Fakhr, Roozbeh Salmani

Abstract:

Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.

Keywords: biometric system, convolutional neural network, cyber-attack, secure

Procedia PDF Downloads 219
1240 Maturity Transformation Risk Factors in Islamic Banking: An Implication of Basel III Liquidity Regulations

Authors: Haroon Mahmood, Christopher Gan, Cuong Nguyen

Abstract:

Maturity transformation risk is highlighted as one of the major causes of recent global financial crisis. Basel III has proposed new liquidity regulations for transformation function of banks and hence to monitor this risk. Specifically, net stable funding ratio (NSFR) is introduced to enhance medium- and long-term resilience against liquidity shocks. Islamic banking is widely accepted in many parts of the world and contributes to a significant portion of the financial sector in many countries. Using a dataset of 68 fully fledged Islamic banks from 11 different countries, over a period from 2005 – 2014, this study has attempted to analyze various factors that may significantly affect the maturity transformation risk in these banks. We utilize 2-step system GMM estimation technique on unbalanced panel and find bank capital, credit risk, financing, size and market power are most significant among the bank specific factors. Also, gross domestic product and inflation are the significant macro-economic factors influencing this risk. However, bank profitability, asset efficiency, and income diversity are found insignificant in determining the maturity transformation risk in Islamic banking model.

Keywords: Basel III, Islamic banking, maturity transformation risk, net stable funding ratio

Procedia PDF Downloads 416
1239 Offline Signature Verification Using Minutiae and Curvature Orientation

Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee

Abstract:

A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.

Keywords: signature, ridge breaks, minutiae, orientation

Procedia PDF Downloads 146
1238 A Method for Rapid Evaluation of Ore Breakage Parameters from Core Images

Authors: A. Nguyen, K. Nguyen, J. Jackson, E. Manlapig

Abstract:

With the recent advancement in core imaging systems, a large volume of high resolution drill core images can now be collected rapidly. This paper presents a method for rapid prediction of ore-specific breakage parameters from high resolution mineral classified core images. The aim is to allow for a rapid assessment of the variability in ore hardness within a mineral deposit with reduced amount of physical breakage tests. This method sees its application primarily in project evaluation phase, where proper evaluation of the variability in ore hardness of the orebody normally requires prolong and costly metallurgical test work program. Applying this image-based texture analysis method on mineral classified core images, the ores are classified according to their textural characteristics. A small number of physical tests are performed to produce a dataset used for developing the relationship between texture classes and measured ore hardness. The paper also presents a case study in which this method has been applied on core samples from a copper porphyry deposit to predict the ore-specific breakage A*b parameter, obtained from JKRBT tests.

Keywords: geometallurgy, hyperspectral drill core imaging, process simulation, texture analysis

Procedia PDF Downloads 361
1237 The Orthodontic Management of Multiple Tooth Agenesis with Macroglossia in Adult Patient: Case Report

Authors: Yanuarti Retnaningrum, Cendrawasih A. Farmasyanti, Kuswahyuning

Abstract:

Orthodontists find challenges in treating patients who have cases of macroglossia and multiple tooth agenesis because difficulties in determining the causes, formulating a diagnosis and the potential for relapse after treatment. Definition of macroglossia is a tongue enlargement due to muscle hypertrophy, tumor or an endocrine disturbance. Macroglossia may cause many problems such as anterior proclination of upper and lower incisors, development of general diastema and anterior and/ or posterior open bite. Treatment for such patients with multiple tooth agenesis and macroglossia can be complex and must consider orthodontic and/or surgical interventions. This article discusses an orthodontic non surgical approach to a patient with a general diastema in both maxilla and mandible associated with multiple tooth agenesis and macroglossia. Fixed orthodontic therapy with straightwire appliance was used for space closure in anterior region of maxilla and mandible, also to create a space suitable for future prosthetic restoration. After 12 months treatment, stable and functional occlusal relationships was achieved, although still have edentulous area in both maxilla and mandible. At the end of the orthodontic treatment was obtained with correct overbite and overjet values. After removal of the brackets, a maxillary and mandibular removable retainer combine with artificial tooth were placed for retention.

Keywords: general diastema, macroglossia, space closure, tooth agenesis

Procedia PDF Downloads 178
1236 Protective Effect of Herniarin on Ionizing Radiation-Induced Impairments in Brain

Authors: Sophio Kalmakhelidze, Eka Shekiladze, Tamar Sanikidze, Mikheil Gogebashvili, Nazi Ivanishvili

Abstract:

Radiation-induced various degrees of brain injury and cognitive impairment have been described after cranial radiotherapy of brain tumors. High doses of ionizing radiation have a severe impact on the central nervous system, resulting in morphological and behavioral impairments. Structures of the limbic system are especially sensitive to radiation exposure. Hence, compounds or drugs that can reduce radiation-induced impairments can be used as promising antioxidants or radioprotectors. In our study Mice whole-body irradiation with 137Cs was performed at a dose rate of 1,1 Gy/min for a total dose of 5 Gy with a “Gamma-capsule-2”. Irradiated mice were treated with Herniarin (20 mg/kg) for five days before irradiation and the same dose was administrated after one hour of irradiation. The immediate and delayed effects of ionizing radiation, as well as, protective effect of Herniarin was evaluated during early and late post-irradiation periods. The results reveal that ionizing radiation (5 Gy) alters the structure of the hippocampus in adult mice during the late post-irradiation period resulting in the decline of memory formation and learning process. Furthermore, Simple Coumarin-Herniarin reveals a radiosensitizing effect reducing morphological and behavioral alterations.

Keywords: ionizing radiation, cognitive impairments, hippocampus, limbic system, Herniarin

Procedia PDF Downloads 73
1235 Gross Anatomical Study on the Tributaries of the Hepatic Portal Vein in Cattle Egret (Bubulcus Ibis)

Authors: Elsayed Fath Khalifa, Samer Mohamed Daghash

Abstract:

The aim of the current work study to increase the anatomical knowledge about the cattle egret which considered economically important for farmers. The study was carried out on ten adult, apparently healthy cattle egrets of both sexes. Each bird was exsanguinated; the caudal vena cava was cannulated and flushed with warm normal saline solution (0.9%) then injected with blue colored neoprine (60%) latex in order to study the tributaries of the hepatic portal vein. The origin, course and tributaries of the right and left hepatic portal veins were studied. The hepatic portal venous system collected venous blood from the abdominal viscera including; glandular and muscular stomachs, liver, pancreas, spleen, small intestine and large intestine. The hepatic portal vein was formed by the left and the right hepatic portal veins. The smaller left one drained blood from the glandular and muscular stomachs through the ventral and the left proventriculus as well as the left gastric veins. The most tributaries of the right hepatic portal vein drained blood from the rest of the gastrointestinal tract and the spleen by the proventriculosplenic, the gastropancreaticoduodenal and the common mesenteric veins.

Keywords: cattle egret, common mesenteric vein, hepatic portal vein, anatomy

Procedia PDF Downloads 412
1234 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements

Authors: Ebru Turgal, Beyza Doganay Erdogan

Abstract:

Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.

Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data

Procedia PDF Downloads 203
1233 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning

Authors: Grienggrai Rajchakit

Abstract:

As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.

Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning

Procedia PDF Downloads 160
1232 Pyelography by Intraosseous Injection of Iodixanol in Persian Squirrel

Authors: Mehdi Tavana, Seyedeh Zeinab Peighambarzadeh

Abstract:

Pyelography is used for morphologic and especially functional studies of the urinary tracts. There are many indications for excretory Pyelography in humans and animals. Intravenous Pyelography is the most practical method; other Pyelography techniques were manipulated because of difficulties for finding veins in small size of the patients. At the best of times, the combination of small veins and abundant subcutaneous tissue makes vascular access difficult or impossible, therefore, another methods of administration of contrast media is desired. This study was performed to evaluate the feasibility of intraosseous injection of iodixanol in providing a safe and diagnostic urogram in Persian squirrel. Fourteen hundred mg iodine per kilogram body weight of iodixanol was injected subcutaneously over tibial tuberosity on ten clinically healthy adult Persian squirrels with no signs of urinary system disorder. Lateral and ventrodorsal radiographs were taken every 2 minutes until the pyelogram was finished. Intraosseous injection of iodixanol was successful to show nephrogram, pyelogram, uretrogram and cystogram clearly. There were no abnormal clinical signs after one week of experiments. Biochemical and hematological profiles were in normal ranges. It is concluded that intraosseous Pyelography is an effective and reliable method for Pyelography studies in squirrel. Microscopic examinations of the kidneys and the site of injection after one week were normal.

Keywords: pyelography, intraosseous injection, iodixanol, persian squirrel

Procedia PDF Downloads 524
1231 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach

Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan

Abstract:

Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.

Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence

Procedia PDF Downloads 111
1230 Effect of Implementing a Teaching Module about Diet and Exercises on Clinical Outcomes of Patients with Gout

Authors: Wafaa M. El- Kotb, Soheir Mohamed Weheida, Manal E. Fareed

Abstract:

The aim of this study was to determine the effect of implementing a teaching module about diet and exercises on clinical outcomes of patients with gout. Subjects: A purposive sample of 60 adult gouty patients was selected and randomly and alternatively divided into two equal groups 30 patients in each. Setting: The study was conducted in orthopedic out patient's clinic of Menoufia University. Tools of the study: Three tools were utilized for data collection: Knowledge assessment structured interview questionnaire, Clinical manifestation assessment tools and Nutritional assessment sheet. Results: All patients of both groups (100 %) had poor total knowledge score pre teaching, while 90 % of the study group had good total knowledge score post teaching by three months compared to 3.3 % of the control group. Moreover the recovery outcomes were significantly improved among study group compared to control group post teaching. Conclusion: Teaching study group about diet and exercises significantly improved their clinical outcomes. Recommendation: Patient's education about diet and exercises should be ongoing process for patients with gout.

Keywords: clinical outcomes, diet, exercises, teaching module

Procedia PDF Downloads 346
1229 Efficacy of Modified Bottom Boards to Control Varroa Mite (Varroa Destructor) in Honeybee Colonies

Authors: Marwan Keshlaf, Hassan Fellah

Abstract:

This study was designed to test whether hive bottom boards modified with polyvinyl chloride pipe or screen-mesh reduces number of Varroa mites in naturally infested honeybee colonies comparing to chemical control. Fifty six colonies distributed equally between two location each received one of four experimental treatment 1) conventional solid board “control”, 2) Apistan in conventional solid board, 3) Mesh bottom board and 4) tube bottom board. Varroa infestation level on both adult bees and on capped brood was estimated. Stored pollen, capped brood area and honey production were also measured. Results of varroa infestation were inconsistent between apiaries. In apiary 1, colonies with Apistan had fewer Varroa destructor than other treatments, but this benefit was not apparent in Apiary 2. There were no effects of modified bottom boards on bee flight activity, brood production, honey yield and stored pollen. We conclude that the efficacy of modified bottom boards in reducing varroa mites population in bee colonies remains uncertain due to observed differences of hygienic behavior.

Keywords: Apis mellifera, modified bottom boards, Varroa destructor, Honeybee colonies

Procedia PDF Downloads 373