Search results for: predictive coding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1577

Search results for: predictive coding

407 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 447
406 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey

Authors: Mahdiyeh Zafaranchi

Abstract:

With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.

Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters

Procedia PDF Downloads 112
405 Identification of Rare Mutations in Genes Involved in Monogenic Forms of Obesity and Diabetes in Obese Guadeloupean Children through Next-Generation Sequencing

Authors: Lydia Foucan, Laurent Larifla, Emmanuelle Durand, Christine Rambhojan, Veronique Dhennin, Jean-Marc Lacorte, Philippe Froguel, Amelie Bonnefond

Abstract:

In the population of Guadeloupe Island (472,124 inhabitants and 80% of subjects of African descent), overweight and obesity were estimated at 23% and 9% respectively among children. High prevalence of diabetes has been reported (~10%) in the adult population. Nevertheless, no study has investigated the contribution of gene mutations to childhood obesity in this population. We aimed to investigate rare genetic mutations in genes involved in monogenic obesity or diabetes in obese Afro-Caribbean children from Guadeloupe Island using next-generation sequencing. The present investigation included unrelated obese children, from a previous study on overweight conducted in Guadeloupe Island in 2013. We sequenced coding regions of 59 genes involved in monogenic obesity or diabetes. A total of 25 obese schoolchildren (with Z-score of body mass index [BMI]: 2.0 to 2.8) were screened for rare mutations (non-synonymous, splice-site, or insertion/deletion) in 59 genes. Mean age of the study population was 12.4 ± 1.1 years. Seventeen children (68%) had insulin-resistance (HOMA-IR > 3.16). A family history of obesity (mother or father) was observed in eight children and three of the accompanying parent presented with type 2 diabetes. None of the children had gonadotrophic abnormality or mental retardation. We detected five rare heterozygous mutations, in four genes involved in monogenic obesity, in five different obese children: MC4R p.Ile301Thr and SIM1 p.Val326Thrfs*43 mutations which were pathogenic; SIM1 p.Ser343Pro and SH2B1 p.Pro90His mutations which were likely pathogenic; and NTRK2 p.Leu140Phe that was of uncertain significance. In parallel, we identified seven carriers of mutation in ABCC8 or KCNJ11 (involved in monogenic diabetes), which were of uncertain significance (KCNJ11 p.Val13Met, KCNJ11 p.Val151Met, ABCC8 p.Lys1521Asn and ABCC8 p.Ala625Val). Rare pathogenic or likely pathogenic mutations, linked to severe obesity were detected in more than 15% of this Afro-Caribbean population at high risk of obesity and type 2 diabetes.

Keywords: childhood obesity, MC4R, monogenic obesity, SIM1

Procedia PDF Downloads 193
404 Review on Implementation of Artificial Intelligence and Machine Learning for Controlling Traffic and Avoiding Accidents

Authors: Neha Singh, Shristi Singh

Abstract:

Accidents involving motor vehicles are more likely to cause serious injuries and fatalities. It also has a host of other perpetual issues, such as the regular loss of life and goods in accidents. To solve these issues, appropriate measures must be implemented, such as establishing an autonomous incident detection system that makes use of machine learning and artificial intelligence. In order to reduce traffic accidents, this article examines the overview of artificial intelligence and machine learning in autonomous event detection systems. The paper explores the major issues, prospective solutions, and use of artificial intelligence and machine learning in road transportation systems for minimising traffic accidents. There is a lot of discussion on additional, fresh, and developing approaches that less frequent accidents in the transportation industry. The study structured the following subtopics specifically: traffic management using machine learning and artificial intelligence and an incident detector with these two technologies. The internet of vehicles and vehicle ad hoc networks, as well as the use of wireless communication technologies like 5G wireless networks and the use of machine learning and artificial intelligence for the planning of road transportation systems, are elaborated. In addition, safety is the primary concern of road transportation. Route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management, according to the review's key conclusions, are essential for ensuring the safety of road transportation networks. In addition to highlighting research trends, unanswered problems, and key research conclusions, the study also discusses the difficulties in applying artificial intelligence to road transport systems. Planning and managing the road transportation system might use the work as a resource.

Keywords: artificial intelligence, machine learning, incident detector, road transport systems, traffic management, automatic incident detection, deep learning

Procedia PDF Downloads 113
403 Identification of New Familial Breast Cancer Susceptibility Genes: Are We There Yet?

Authors: Ian Campbell, Gillian Mitchell, Paul James, Na Li, Ella Thompson

Abstract:

The genetic cause of the majority of multiple-case breast cancer families remains unresolved. Next generation sequencing has emerged as an efficient strategy for identifying predisposing mutations in individuals with inherited cancer. We are conducting whole exome sequence analysis of germ line DNA from multiple affected relatives from breast cancer families, with the aim of identifying rare protein truncating and non-synonymous variants that are likely to include novel cancer predisposing mutations. Data from more than 200 exomes show that on average each individual carries 30-50 protein truncating mutations and 300-400 rare non-synonymous variants. Heterogeneity among our exome data strongly suggest that numerous moderate penetrance genes remain to be discovered, with each gene individually accounting for only a small fraction of families (~0.5%). This scenario marks validation of candidate breast cancer predisposing genes in large case-control studies as the rate-limiting step in resolving the missing heritability of breast cancer. The aim of this study is to screen genes that are recurrently mutated among our exome data in a larger cohort of cases and controls to assess the prevalence of inactivating mutations that may be associated with breast cancer risk. We are using the Agilent HaloPlex Target Enrichment System to screen the coding regions of 168 genes in 1,000 BRCA1/2 mutation-negative familial breast cancer cases and 1,000 cancer-naive controls. To date, our interim analysis has identified 21 genes which carry an excess of truncating mutations in multiple breast cancer families versus controls. Established breast cancer susceptibility gene PALB2 is the most frequently mutated gene (13/998 cases versus 0/1009 controls), but other interesting candidates include NPSR1, GSN, POLD2, and TOX3. These and other genes are being validated in a second cohort of 1,000 cases and controls. Our experience demonstrates that beyond PALB2, the prevalence of mutations in the remaining breast cancer predisposition genes is likely to be very low making definitive validation exceptionally challenging.

Keywords: predisposition, familial, exome sequencing, breast cancer

Procedia PDF Downloads 493
402 In Vivo Investigation of microRNA Expression and Function at the Mammalian Synapse by AGO-APP

Authors: Surbhi Surbhi, Andrea Erni, Gunter Meister, Harold Cremer, Christophe Beclin

Abstract:

MicroRNAs (miRNAs) are short 20-23 nucleotide long non-coding RNAs; there are 2605 miRNA in humans and 1936 miRNA in mouse in total (miRBase). The nervous system expresses the most abundant miRNA and most diverse. MiRNAs play a role in many steps during neurogenesis, like cell proliferation, differentiation, neural patterning, axon pathfinding, etc. Moreover, in vitro studies suggested a role in the regulation of local translation at the synapse, thus controlling neuronal plasticity. However, due to the specific structure of miRNA molecules, an in-vivo confirmation of the general role of miRNAs in the control of neuronal plasticity is still pending. For example, their small size and their high level of sequence homology make difficult the analysis of their cellular and sub-cellular localization in-vivo by in-situ hybridization. Moreover, it was found that only 40% of the expressed miRNA molecules in a cell are included in RNA-Induced Silencing Complexes (RISC) and, therefore, involved in inhibitory interactions while the rest is silent. Definitively, the development of new tools is needed to have a better understanding of the cellular function of miRNAs, in particular their role in neuronal plasticity. Here we describe a new technique called in-vivo AGO-APP designed to investigate miRNA expression and function in-vivo. This technique is based on the expression of a small peptide derived from the human RISC-complex protein TNRC6B, called T6B, which binds all known Argonaute (Ago) proteins with high affinity allowing the efficient immunoprecipitation of AGO-bound miRNAs. We have generated two transgenic mouse lines conditionally expressing T6B either ubiquitously in the cell or targeted at the synapse. A comparison of the repertoire of miRNAs immuno-precipitated from mature neurons of both mouse lines will provide us with a list of miRNAs showing a specific activity at the synapse. The physiological role of these miRNAs will be subsequently addressed through gain and loss of function experiments.

Keywords: RNA-induced silencing complexes, TNRC6B, miRNA, argonaute, synapse, neuronal plasticity, neurogenesis

Procedia PDF Downloads 131
401 Finite Element Modeling of Aortic Intramural Haematoma Shows Size Matters

Authors: Aihong Zhao, Priya Sastry, Mark L Field, Mohamad Bashir, Arvind Singh, David Richens

Abstract:

Objectives: Intramural haematoma (IMH) is one of the pathologies, along with acute aortic dissection, that present as Acute Aortic Syndrome (AAS). Evidence suggests that unlike aortic dissection, some intramural haematomas may regress with medical management. However, intramural haematomas have been traditionally managed like acute aortic dissections. Given that some of these pathologies may regress with conservative management, it would be useful to be able to identify which of these may not need high risk emergency intervention. A computational aortic model was used in this study to try and identify intramural haematomas with risk of progression to aortic dissection. Methods: We created a computational model of the aorta with luminal blood flow. Reports in the literature have identified 11 mm as the radial clot thickness that is associated with heightened risk of progression of intramural haematoma. Accordingly, haematomas of varying sizes were implanted in the modeled aortic wall to test this hypothesis. The model was exposed to physiological blood flows and the stresses and strains in each layer of the aortic wall were recorded. Results: Size and shape of clot were seen to affect the magnitude of aortic stresses. The greatest stresses and strains were recorded in the intima of the model. When the haematoma exceeded 10 mm in all dimensions, the stress on the intima reached breaking point. Conclusion: Intramural clot size appears to be a contributory factor affecting aortic wall stress. Our computer simulation corroborates clinical evidence in the literature proposing that IMH diameter greater than 11 mm may be predictive of progression. This preliminary report suggests finite element modelling of the aortic wall may be a useful process by which to examine putative variables important in predicting progression or regression of intramural haematoma.

Keywords: intramural haematoma, acute aortic syndrome, finite element analysis,

Procedia PDF Downloads 431
400 AI-Driven Solutions for Optimizing Master Data Management

Authors: Srinivas Vangari

Abstract:

In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.

Keywords: artificial intelligence, master data management, data governance, data quality

Procedia PDF Downloads 17
399 Role of Energy Storage in Renewable Electricity Systems in The Gird of Ethiopia

Authors: Dawit Abay Tesfamariam

Abstract:

Ethiopia’s Climate- Resilient Green Economy (ECRGE) strategy focuses mainly on generating and proper utilization of renewable energy (RE). Nonetheless, the current electricity generation of the country is dominated by hydropower. The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources from solar and wind energy were only 8 %. On the other hand, the EEP electricity generation plan in 2030 indicates that 36.1 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the EnergyPLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EnergyPLAN (EP) analysis for two predictive scenarios. The EP simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EP simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was in the three rainy months of the year (June, July, and August). The outcome of the model also showed that in the dry seasons of the year, there would be excess power production in the country. Consequently, based on the validated outcomes of EP indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that if the excess power is utilized with a storage system, it can stabilize the grid system and be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming storage system to synchronize with potentials that can be generated from renewable energy.

Keywords: renewable energy, power, storage, wind, energy plan

Procedia PDF Downloads 77
398 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks

Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar

Abstract:

DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.

Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)

Procedia PDF Downloads 318
397 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 64
396 Geosynthetic Tubes in Coastal Structures a Better Substitute for Shorter Planning Horizon: A Case Study

Authors: A. Pietro Rimoldi, B. Anilkumar Gopinath, C. Minimol Korulla

Abstract:

Coastal engineering structure is conventionally designed for a shorter planning horizon usually 20 years. These structures are subjected to different offshore climatic externalities like waves, tides, tsunamis etc. during the design life period. The probability of occurrence of these different offshore climatic externalities varies. The impact frequently caused by these externalities on the structures is of concern because it has a significant bearing on the capital /operating cost of the project. There can also be repeated short time occurrence of these externalities in the assumed planning horizon which can cause heavy damage to the conventional coastal structure which are mainly made of rock. A replacement of the damaged portion to prevent complete collapse is time consuming and expensive when dealing with hard rock structures. But if coastal structures are made of Geo-synthetic containment systems such replacement is quickly possible in the time period between two successive occurrences. In order to have a better knowledge and to enhance the predictive capacity of these occurrences, this study estimates risk of encounter within the design life period of various externalities based on the concept of exponential distribution. This gives an idea of the frequency of occurrences which in turn gives an indication of whether replacement is necessary and if so at what time interval such replacements have to be effected. To validate this theoretical finding, a pilot project has been taken up in the field so that the impact of the externalities can be studied both for a hard rock and a Geosynthetic tube structure. The paper brings out the salient feature of a case study which pertains to a project in which Geosynthetic tubes have been used for reformation of a seawall adjacent to a conventional rock structure in Alappuzha coast, Kerala, India. The effectiveness of the Geosystem in combatting the impact of the short-term externalities has been brought out.

Keywords: climatic externalities, exponential distribution, geosystems, planning horizon

Procedia PDF Downloads 227
395 A Profile of an Exercise Addict: The Relationship between Exercise Addiction and Personality

Authors: Klary Geisler, Dalit Lev-Arey, Yael Hacohen

Abstract:

It is a well-known fact that exercise has favorable effects on people's physical health, as well as mental well-being. However, as for as excessive exercise, it may likely elevate negative consequences (e.g., physical injuries, negligence of everyday responsibilities such as work, family life). Lately, there is a growing interest in exercise addiction, sometimes referred to as exercise dependence, which is defined as a craving for physical activity that results in extreme work-out sessions and generates negative physiological and psychological symptoms (e.g., withdrawal symptoms, tolerance, social conflict). Exercise addiction is considered a behavioral addiction, yet it was not included in the latest editions of the diagnostic and statistical manual of mental disorders (DSM-IV), due to lack of significant research. Specifically, there is scarce research on the relationship between exercise addiction and personality dimensions. The purpose of the current research was to examine the relationship between primary exercise addiction symptoms and the big five dimensions, perfectionism (high performance expectations and self-critical performance evaluations) and subjective affect. participants were 152 trainees on a variety of aerobic sports activities (running, cycling, swimming) that were recruited through sports groups and trainers. 88% of participants trained for at least 5 hours per week, 24% of the participants trained above 10 hours per week. To test the predictive ability of the IVs a hierarchical linear regression with forced block entry was performed. It was found that Neuroticism significantly predicted exercise addiction symptoms (20% of the variance, p<0.001), while consciousness was negatively correlated with exercise addiction symptoms (14% of variance p<0.05); both had a unique contribution. Other dimensions of the big five (agreeableness, openness and extraversion) did not have any contribution to the dependent. Moreover, maladaptive perfectionism (self-critical performance evaluations) significantly predicted exercise addiction symptoms as well (10% of the variance P < 0.05). The overall regression model explained 54% of variance.

Keywords: big five, consciousness, excessive exercise, exercise addiction, neuroticism, perfectionism, personality

Procedia PDF Downloads 229
394 A One-Dimensional Modeling Analysis of the Influence of Swirl and Tumble Coefficient in a Single-Cylinder Research Engine

Authors: Mateus Silva Mendonça, Wender Pereira de Oliveira, Gabriel Heleno de Paula Araújo, Hiago Tenório Teixeira Santana Rocha, Augusto César Teixeira Malaquias, José Guilherme Coelho Baeta

Abstract:

The stricter legislation and the greater demand of the population regard to gas emissions and their effects on the environment as well as on human health make the automotive industry reinforce research focused on reducing levels of contamination. This reduction can be achieved through the implementation of improvements in internal combustion engines in such a way that they promote the reduction of both specific fuel consumption and air pollutant emissions. These improvements can be obtained through numerical simulation, which is a technique that works together with experimental tests. The aim of this paper is to build, with support of the GT-Suite software, a one-dimensional model of a single-cylinder research engine to analyze the impact of the variation of swirl and tumble coefficients on the performance and on the air pollutant emissions of an engine. Initially, the discharge coefficient is calculated through the software Converge CFD 3D, given that it is an input parameter in GT-Power. Mesh sensitivity tests are made in 3D geometry built for this purpose, using the mass flow rate in the valve as a reference. In the one-dimensional simulation is adopted the non-predictive combustion model called Three Pressure Analysis (TPA) is, and then data such as mass trapped in cylinder, heat release rate, and accumulated released energy are calculated, aiming that the validation can be performed by comparing these data with those obtained experimentally. Finally, the swirl and tumble coefficients are introduced in their corresponding objects so that their influences can be observed when compared to the results obtained previously.

Keywords: 1D simulation, single-cylinder research engine, swirl coefficient, three pressure analysis, tumble coefficient

Procedia PDF Downloads 105
393 The Predictive Implication of Executive Function and Language in Theory of Mind Development in Preschool Age Children

Authors: Michael Luc Andre, Célia Maintenant

Abstract:

Theory of mind is a milestone in child development which allows children to understand that others could have different mental states than theirs. Understanding the developmental stages of theory of mind in children leaded researchers on two Connected research problems. In one hand, the link between executive function and theory of mind, and on the other hand, the relationship of theory of mind and syntax processing. These two lines of research involved a great literature, full of important results, despite certain level of disagreement between researchers. For a long time, these two research perspectives continue to grow up separately despite research conclusion suggesting that the three variables should implicate same developmental period. Indeed, our goal was to study the relation between theory of mind, executive function, and language via a unique research question. It supposed that between executive function and language, one of the two variables could play a critical role in the relationship between theory of mind and the other variable. Thus, 112 children aged between three and six years old were recruited for completing a receptive and an expressive vocabulary task, a syntax understanding task, a theory of mind task, and three executive function tasks (inhibition, cognitive flexibility and working memory). The results showed significant correlations between performance on theory of mind task and performance on executive function domain tasks, except for cognitive flexibility task. We also found significant correlations between success on theory of mind task and performance in all language tasks. Multiple regression analysis justified only syntax and general abilities of language as possible predictors of theory of mind performance in our preschool age children sample. The results were discussed in the perspective of a great role of language abilities in theory of mind development. We also discussed possible reasons that could explain the non-significance of executive domains in predicting theory of mind performance, and the meaning of our results for the literature.

Keywords: child development, executive function, general language, syntax, theory of mind

Procedia PDF Downloads 64
392 Developing Index of Democratic Institutions' Vulnerability

Authors: Kamil Jonski

Abstract:

Last year vividly demonstrated, that populism and political instability can endanger democratic institutions in countries regarded as democratic transition champions (Poland) or cornerstones of liberal order (UK, US). So called ‘illiberal democracy’ is winning hearts and minds of voters, keen to believe that rule of strongman is a viable alternative to perceived decay of western values and institutions. These developments pose a serious threat to the democratic institutions (including rule of law), proven critical for both personal freedom and economic development. Although scholars proposed some structural explanations of the illiberal wave (notably focusing on inequality, stagnant incomes and drawbacks of globalization), they seem to have little predictive value. Indeed, events like Trump’s victory, Brexit or Polish shift towards populist nationalism always came as a surprise. Intriguingly, in the case of US election, simple rules like ‘Bread and Peace model’ gauged prospects of Trump’s victory better than pundits and pollsters. This paper attempts to compile set of indicators, in order to gauge various democracies’ vulnerability to populism, instability and pursuance of ‘illiberal’ projects. Among them, it identifies the gap between consensus assessment of institutional performance (as measured by WGI indicators) and citizens’ subjective assessment (survey based confidence in institutions). Plotting these variables against each other, reveals three clusters of countries – ‘predictable’ (good institutions and high confidence, poor institutions and low confidence), ‘blind’ (poor institutions, high confidence e.g. Uzbekistan or Azerbaijan) and ‘disillusioned’ (good institutions, low confidence e.g. Spain, Chile, Poland and US). It seems that this clustering – carried out separately for various institutions (like legislature, executive and courts) and blended with economic indicators like inequality and living standards (using PCA) – offers reasonably good watchlist of countries, that should ‘expect the unexpected’.

Keywords: illiberal democracy, populism, political instability, political risk measurement

Procedia PDF Downloads 203
391 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure

Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser

Abstract:

Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.

Keywords: principal component analysis, dengue fever, negative binomial regression model, poisson regression model

Procedia PDF Downloads 445
390 A Qualitative Study Exploring Factors Influencing the Uptake of and Engagement with Health and Wellbeing Smartphone Apps

Authors: D. Szinay, O. Perski, A. Jones, T. Chadborn, J. Brown, F. Naughton

Abstract:

Background: The uptake of health and wellbeing smartphone apps is largely influenced by popularity indicators (e.g., rankings), rather than evidence-based content. Rapid disengagement is common. This study aims to explore how and why potential users 1) select and 2) engage with such apps, and 3) how increased engagement could be promoted. Methods: Semi-structured interviews and a think-aloud approach were used to allow participants to verbalise their thoughts whilst searching for a health or wellbeing app online, followed by a guided search in the UK National Health Service (NHS) 'Apps Library' and Public Health England’s (PHE) 'One You' website. Recruitment took place between June and August 2019. Adults interested in using an app for behaviour change were recruited through social media. Data were analysed using the framework approach. The analysis is both inductive and deductive, with the coding framework being informed by the Theoretical Domains Framework. The results are further mapped onto the COM-B (Capability, Opportunity, Motivation - Behaviour) model. The study protocol is registered on the Open Science Framework (https://osf.io/jrkd3/). Results: The following targets were identified as playing a key role in increasing the uptake of and engagement with health and wellbeing apps: 1) psychological capability (e.g., reduced cognitive load); 2) physical opportunity (e.g., low financial cost); 3) social opportunity (e.g., embedded social media); 4) automatic motivation (e.g., positive feedback). Participants believed that the promotion of evidence-based apps on NHS-related websites could be enhanced through active promotion on social media, adverts on the internet, and in general practitioner practices. Future Implications: These results can inform the development of interventions aiming to promote the uptake of and engagement with evidence-based health and wellbeing apps, a priority within the UK NHS Long Term Plan ('digital first'). The targets identified across the COM-B domains could help organisations that provide platforms for such apps to increase impact through better selection of apps.

Keywords: behaviour change, COM-B model, digital health, mhealth

Procedia PDF Downloads 165
389 The Role of Car Dealerships in Promoting Electric Vehicles: Covert Participatory Observations of Car Dealerships in Sweden

Authors: Anne Y. Faxer, Ellen Olausson, Jens Hagman, Ana Magazinius, Jenny J. Stier, Tommy Fransson, Oscar Enerback

Abstract:

While electric vehicles (both battery electric vehicles and plug-in hybrids) have been on the market for around 6 years, they are still far from mainstream and the knowledge of them is still low among the public. This is likely one of the reasons that Sweden, having one of the highest penetrations of electric vehicles in Europe, still has a long way to go in reaching a fossil free vehicle fleet. Car dealerships are an important medium that connects consumers to vehicles, but somehow, their role in introducing electric vehicles has not yet been thoroughly studied. Research from other domains shows that salespeople can affect customer decisions in their choice of products. The aim of this study is to explore the role of car dealerships when it comes to promoting electric vehicles. The long-term goal is to understand how they could be a key in the effort of achieving a mass introduction of electric vehicles in Sweden. By emulating the customer’s experience, this study investigates the interaction between car salespeople and customers, particularly examining whether they present electric vehicles as viable options. Covert participatory observations were conducted for data collection from four different brands at in total twelve car dealers. The observers worked in pairs and played the role of a customer with needs that could be matched by an electric vehicle. The data was summarized in observation protocols and analyzed using thematic coding. The result shows that only one of twelve salespeople offered an electric vehicle as the first option. When environmental factors were brought up by the observers, the salespeople followed up with lower fuel consumption internal combustion engine vehicles rather than suggesting an electric vehicle. All salespeople possessed at least basic knowledge about electric vehicles but their interest of selling them were low in most cases. One of the reasons could be that the price of electric vehicles is usually higher. This could be inferred from the finding that salespeople tend to have a strong focus on price and economy in their dialogues with customers, regardless which type of car they were selling. In conclusion, the study suggests that car salespeople have the potential to help the market to achieve mass introduction of electric vehicles; however, their potential needs to be exploited further. To encourage salespeople to prioritize electric vehicles in the sales process, right incentives need to be in place.

Keywords: car dealerships, covert participatory observation, customer perspective , electric vehicle, market penetration

Procedia PDF Downloads 197
388 Determinants of Success of University Industry Collaboration in the Science Academic Units at Makerere University

Authors: Mukisa Simon Peter Turker, Etomaru Irene

Abstract:

This study examined factors determining the success of University-Industry Collaboration (UIC) in the science academic units (SAUs) at Makerere University. This was prompted by concerns about weak linkages between industry and the academic units at Makerere University. The study examined institutional, relational, output, and framework factors determining the success of UIC in the science academic units at Makerere University. The study adopted a predictive cross-sectional survey design. Data was collected using a questionnaire survey from 172 academic staff from the six SAUs at Makerere University. Stratified, proportionate, and simple random sampling techniques were used to select the samples. The study used descriptive statistics and linear multiple regression analysis to analyze data. The study findings reveal a coefficient of determination (R-square) of 0.403 at a significance level of 0.000, suggesting that UIC success was 40.3% at a standardized error of estimate of 0.60188. The strength of association between Institutional factors, Relational factors, Output factors, and Framework factors, taking into consideration all interactions among the study variables, was at 64% (R= 0.635). Institutional, Relational, Output and Framework factors accounted for 34% of the variance in the level of UIC success (adjusted R2 = 0.338). The remaining variance of 66% is explained by factors other than Institutional, Relational, Output, and Framework factors. The standardized coefficient statistics revealed that Relational factors (β = 0.454, t = 5.247, p = 0.000) and Framework factors (β = 0.311, t = 3.770, p = 0.000) are the only statistically significant determinants of the success of UIC in the SAU in Makerere University. Output factors (β = 0.082, t =1.096, p = 0.275) and Institutional factors β = 0.023, t = 0.292, p = 0.771) turned out to be statistically insignificant determinants of the success of UIC in the science academic units at Makerere University. The study concludes that Relational Factors and Framework Factors positively and significantly determine the success of UIC, but output factors and institutional factors are not statistically significant determinants of UIC in the SAUs at Makerere University. The study recommends strategies to consolidate Relational and Framework Factors to enhance UIC at Makerere University and further research on the effects of Institutional and Output factors on the success of UIC in universities.

Keywords: university-industry collaboration, output factors, relational factors, framework factors, institutional factors

Procedia PDF Downloads 61
387 Pharyngealization Spread in Ibbi Dialect of Yemeni Arabic: An Acoustic Study

Authors: Fadhl Qutaish

Abstract:

This paper examines the pharyngealization spread in one of the Yemeni Arabic dialects, namely, Ibbi Arabic (IA). It investigates how pharyngealized sounds spread their acoustic features onto the neighboring vowels and change their default features. This feature has been investigated quietly well in MSA but still has to be deeply studied in the different dialect of Arabic which will bring about a clearer picture of the similarities and the differences among these dialects and help in mapping them based on the way this feature is utilized. Though the studies are numerous, no one of them has illustrated how far in the multi-syllabic word the spread can be and whether it takes a steady or gradient manner. This study tries to fill this gap and give a satisfactory explanation of the pharyngealization spread in Ibbi Dialect. This study is the first step towards a larger investigation of the different dialects of Yemeni Arabic in the future. The data recorded are represented in minimal pairs in which the trigger (pharyngealized or the non-pharyngealized sound) is in the initial or final position of monosyllabic and multisyllabic words. A group of 24 words were divided into four groups and repeated three times by three subjects which will yield 216 tokens that are tested and analyzed. The subjects are three male speakers aged between 28 and 31 with no history of neurological, speaking or hearing problems. All of them are bilingual speakers of Arabic and English and native speakers of Ibbi-Dialect. Recordings were done in a sound-proof room and praat software was used for the analysis and coding of the trajectories of F1 and F2 for the low vowel /a/ to see the effect of pharyngealization on the formant trajectory within the same syllable and in other syllables of the same word by comparing the F1 and F2 formants to the non-pharyngealized environment. The results show that pharyngealization spread is gradient (progressively and regressively). The spread is reflected in the gradual raising of F1 as we move closer towards the trigger and the gradual lowering of F2 as well. The results of the F1 mean values in tri-syllabic words when the trigger is word initially show that there is a raise of 37.9 HZ in the first syllable, 26.8HZ in the second syllable and 14.2HZ in the third syllable. F2 mean values undergo a lowering of 239 HZ in the first syllable, 211.7 HZ in the second syllable and 176.5 in the third syllable. This gradual decrease in the difference of F2 values in the non-pharyngealized and pharyngealized context illustrates that the spread is gradient. A similar result was found when the trigger is word-final which proves that the spread is gradient (progressively and regressively.

Keywords: pharyngealization, Yemeni Arabic, Ibbi dialect, pharyngealization spread

Procedia PDF Downloads 222
386 Framework for Explicit Social Justice Nursing Education and Practice: A Constructivist Grounded Theory Research

Authors: Victor Abu

Abstract:

Background: Social justice ideals are considered as the foundation of nursing practice. These ideals are not always clearly integrated into nursing professional standards or curricula. This hinders concerted global nursing agendas for becoming aware of social injustice or engaging in action for social justice to improve the health of individuals and groups. Aim and objectives: The aim was to create an educational framework for empowering nursing students for social justice awareness and action. This purpose was attained by understanding the meaning of social justice, the effect of social injustice, the visibility of social justice learning, and ways of integrating social justice in nursing education and practice. Methods: Critical interpretive methodologies and constructivist grounded theory research designs guided the processes of recruiting nursing students (n = 11) and nurse educators (n = 11) at a London nursing university to participate in interviews and focus groups, which were analysed by coding systems. Findings: Firstly, social justice was described as ethical practices that enable individuals and groups to have good access to health resources. Secondly, social injustice was understood as unfair practices that caused minimal access to resources, social deprivation, and poor health. Thirdly, social justice learning was considered to be invisible in nursing education due to a lack of explicit modules, educator knowledge, and organisational support. Lastly, explicit modules, educating educators, and attracting leaders’ support were suggested as approaches for the visible integration of social justice in nursing education and practice. Discussion: This research proposes approaches for nursing awareness and action for the development of critical active nurse-learner, critical conscious nurse-educator, and servant nurse leader. The framework on Awareness for Social Justice Action (ASJA) created in this research is an approach for empowering nursing students for social justice practices. Conclusion: This research contributes to and advocates for greater nursing scholarship to raise the spotlight on social justice in the profession.

Keywords: social justice, nursing practice, nursing education, nursing curriculum, social justice awareness, social justice action, constructivist grounded theory

Procedia PDF Downloads 58
385 A Continuous Real-Time Analytic for Predicting Instability in Acute Care Rapid Response Team Activations

Authors: Ashwin Belle, Bryce Benson, Mark Salamango, Fadi Islim, Rodney Daniels, Kevin Ward

Abstract:

A reliable, real-time, and non-invasive system that can identify patients at risk for hemodynamic instability is needed to aid clinicians in their efforts to anticipate patient deterioration and initiate early interventions. The purpose of this pilot study was to explore the clinical capabilities of a real-time analytic from a single lead of an electrocardiograph to correctly distinguish between rapid response team (RRT) activations due to hemodynamic (H-RRT) and non-hemodynamic (NH-RRT) causes, as well as predict H-RRT cases with actionable lead times. The study consisted of a single center, retrospective cohort of 21 patients with RRT activations from step-down and telemetry units. Through electronic health record review and blinded to the analytic’s output, each patient was categorized by clinicians into H-RRT and NH-RRT cases. The analytic output and the categorization were compared. The prediction lead time prior to the RRT call was calculated. The analytic correctly distinguished between H-RRT and NH-RRT cases with 100% accuracy, demonstrating 100% positive and negative predictive values, and 100% sensitivity and specificity. In H-RRT cases, the analytic detected hemodynamic deterioration with a median lead time of 9.5 hours prior to the RRT call (range 14 minutes to 52 hours). The study demonstrates that an electrocardiogram (ECG) based analytic has the potential for providing clinical decision and monitoring support for caregivers to identify at risk patients within a clinically relevant timeframe allowing for increased vigilance and early interventional support to reduce the chances of continued patient deterioration.

Keywords: critical care, early warning systems, emergency medicine, heart rate variability, hemodynamic instability, rapid response team

Procedia PDF Downloads 143
384 Predictive Spectral Lithological Mapping, Geomorphology and Geospatial Correlation of Structural Lineaments in Bornu Basin, Northeast Nigeria

Authors: Aminu Abdullahi Isyaku

Abstract:

Semi-arid Bornu basin in northeast Nigeria is characterised with flat topography, thick cover sediments and lack of continuous bedrock outcrops discernible for field geology. This paper presents the methodology for the characterisation of neotectonic surface structures and surface lithology in the north-eastern Bornu basin in northeast Nigeria as an alternative approach to field geological mapping using free multispectral Landsat 7 ETM+, SRTM DEM and ASAR Earth Observation datasets. Spectral lithological mapping herein developed utilised spectral discrimination of the surface features identified on Landsat 7 ETM+ images to infer on the lithology using four steps including; computations of band combination images; band ratio images; supervised image classification and inferences of the lithological compositions. Two complementary approaches to lineament mapping are carried out in this study involving manual digitization and automatic lineament extraction to validate the structural lineaments extracted from the Landsat 7 ETM+ image mosaic covering the study. A comparison between the mapped surface lineaments and lineament zones show good geospatial correlation and identified the predominant NE-SW and NW-SE structural trends in the basin. Topographic profiles across different parts of the Bama Beach Ridge palaeoshorelines in the basin appear to show different elevations across the feature. It is determined that most of the drainage systems in the northeastern Bornu basin are structurally controlled with drainage lines terminating against the paleo-lake border and emptying into the Lake Chad mainly arising from the extensive topographic high-stand Bama Beach Ridge palaeoshoreline.

Keywords: Bornu Basin, lineaments, spectral lithology, tectonics

Procedia PDF Downloads 139
383 Micro RNAs (194 and 135a) as Biomarkers and Therapeutic Targets in Type 2 Diabetic Rats

Authors: H. Haseena Banu, D. Karthick, R. Stalin, E. Nandha Kumar, T. P. Sachidanandam, P. Shanthi

Abstract:

Background of the study: Type 2 diabetes is emerging as the predominant metabolic disorder in the world among adults characterized mainly by the resistance of the insulin sensitive tissues towards insulin followed by the decrease in the insulin secretion. The treatment for this disease usually involves treatment with oral synthetic drugs which are known to cause several side effects. Therefore, identification of new biomarkers as therapeutic target is the need of the hour. miRNAs are small, non–protein-coding RNAs that negatively regulate gene expression by promoting degradation and/or inhibit the translation of target mRNAs and have emerged as biomarkers in predicting diabetes mellitus. Objective of the study: To elucidate the therapeutic role of gallic acid in modulating the alterations in glucose metabolism induced by miRNAs 194 and 135a in Type 2 diabetic rats. Materials and Methods: T2D was induced in rats by feeding them with a high fat diet for 2 weeks followed by intraperitoneal injection of 35 mg/kg/body weight (b.wt.) of streptozotocin. Microarrays were used to assess the expression of miRNAs in control, diabetic and gallic acid treated rats. Gene expression studies were carried out by RT PCR analysis. Results: Forty one miRNAs were differentially expressed in Type 2 diabetic rats. Among these, the expression of miRNA 194 was significantly decreased whereas miRNA 135a was significantly increased in Type 2 diabetic rats. The glucose metabolism was also altered significantly in skeletal muscle of Type 2 diabetic rats. Conclusion: T2D is associated with alterations in the expression of miRNAs in skeletal muscle. Both these miRNAs 194 and 135a play an important role in glucose metabolism in skeletal muscle of diabetic rats. Gallic acid effectively ameliorated the alterations in glucose metabolism. Hence, both these miRNAs can serve as biomarkers and therapeutic targets in diabetes mellitus. The study also establishes the role of gallic acid as therapeutic agent. Acknowledgment: The financial assistance provided in the form of ICMR women scientist by ICMR DHR INDIA is gratefully acknowledged here.

Keywords: gallic acid, high fat diet, type 2 diabetes mellitus, miRNAs

Procedia PDF Downloads 349
382 Intersectionality and Sensemaking: Advancing the Conversation on Leadership as the Management of Meaning

Authors: Clifford Lewis

Abstract:

This paper aims to advance the conversation of an alternative view of leadership, namely ‘leadership as the management of meaning’. Here, leadership is considered as a social process of the management of meaning within an employment context, as opposed to a psychological trait, set of behaviours or relational consequence as seen in mainstream leadership research. Specifically, this study explores the relationship between intersectional identities and the management of meaning. Design: Semi-structured, one-on-one interviews were conducted with women and men of colour working in the South African private sector organisations in various leadership positions. Employing an intersectional approach using gender and race, participants were selected by using purposive and snowball sampling concurrently. Thematic and Axial coding was used to identify dominant themes. Findings: Findings suggest that, both gender and race shape how leaders manage meaning. Findings also confirm that intersectionality is an appropriate approach when studying the leadership experiences of those groups who are underrepresented in organisational leadership structures. The findings points to the need for further research into the differential effects of intersecting identities on organisational leadership experiences and that ‘leadership as the management of meaning’ is an appropriate approach for addressing this knowledge gap. Theoretical Contribution: There is a large body of literature on the complex challenges faced by women and people of colour in leadership but there is relatively little empirical work on how identity influences the management of meaning. This study contributes to the leadership literature by providing insight into how intersectional identities influence the management of meaning at work and how this impacts the leadership experiences of largely marginalised groups. Practical Implications: Understanding the leadership experiences of underrepresented groups is important because of both legal mandates and for building diverse talent for organisations and societies. Such an understanding assists practitioners in being sensitive to simplistic notions of challenges individuals might face in accessing and practicing leadership in organisations. Advancing the conversation on leadership as the management of meaning allows for a better understanding of complex challenges faced by women and people of colour and an opportunity for organisations to systematically remove unfair structural obstacles and develop their diverse leadership capacity.

Keywords: intersectionality, diversity, leadership, sensemaking

Procedia PDF Downloads 272
381 The Psychological Impact of War Trauma on Refugees

Authors: Anastasia Papachristou, Anastasia Ntikoudi, Vasileios Saridakis

Abstract:

The safety and health care needs of refugees have become an increasingly important issue all over the world especially during last few decades. Wars are the primary reason for refugees to leave their countries. Moreover, refugees are frequently exposed to a variety of stressors such as socioeconomic disadvantages, poverty, changes in family structure and functioning, losing social support, difficulty to access education, living in very crowded places, experiencing racism and isolation. This systematic review included research studies published between 2007-2017 from the search databases Medline, Scopus, Cinahl and PubMed, with keywords 'war survivors', 'war trauma', 'psychiatric disorders', 'refugees'. In order to meet the purpose of the systematic review, further research for complementary studies was conducted into the literature references of the research articles included in this study that would meet the criteria. Overall, 14 studies were reviewed and evaluated. The majority of them demonstrated that the most common psychiatric disorders observed among war refugees are post-traumatic stress disorder (PTSD), depression, anxiety and multiple somatic complaints. Moreover, significant relationship was shown between the number of traumatic events experienced by the refugees and sociodemographic features such as gender, age and previous family history of any psychological disorder. War violence is highly traumatic, causing multiple, long-term negative outcomes such as the aforementioned psychiatric disorders. The number of the studies reviewed in this systematic review is not representative of the problem and its significance. The need for care of the survivors and their families is vital. Further research is necessary in order to clarify the role of predictive factors in the development and maintenance of post-traumatic stress and the rest psychiatric disorders following war trauma. In conclusion, it is necessary to have large multicenter studies in the future in order to be able to draw reliable conclusions about the effects of war.

Keywords: psychiatric disorders, refugees, war survivors, war trauma

Procedia PDF Downloads 200
380 Kinetics of Sugar Losses in Hot Water Blanching of Water Yam (Dioscorea alata)

Authors: Ayobami Solomon Popoola

Abstract:

Yam is majorly a carbohydrate food grown in most parts of the world. It could be boiled, fried or roasted for consumption in a variety of ways. Blanching is an established heat pre-treatment given to fruits and vegetables prior to further processing such as dehydration, canning, freezing etc. Losses of soluble solids during blanching has been a great problem because a reasonable quantity of the water-soluble nutrients are inevitably leached into the blanching water. Without blanching, the high residual levels of reducing sugars after extended storage produce a dark, bitter-tasting product because of the Maillard reactions of reducing sugars at frying temperature. Measurement and prediction of such losses are necessary for economic efficiency in production and to establish the level of effluent treatment of the blanching water. This paper aims at resolving this problem by investigating the effects of cube size and temperature on the rate of diffusional losses of reducing sugars and total sugars during hot water blanching of water-yam. The study was carried out using four temperature levels (65, 70, 80 and 90 °C) and two cubes sizes (0.02 m³ and 0.03 m³) at 4 times intervals (5, 10, 15 and 20 mins) respectively. Obtained data were fitted into Fick’s non-steady equation from which diffusion coefficients (Da) were obtained. The Da values were subsequently fitted into Arrhenius plot to obtain activation energies (Ea-values) for diffusional losses. The diffusion co-efficient were independent of cube size and time but highly temperature dependent. The diffusion coefficients were ≥ 1.0 ×10⁻⁹ m²s⁻¹ for reducing sugars and ≥ 5.0 × 10⁻⁹ m²s⁻¹ for total sugars. The Ea values ranged between 68.2 to 73.9 KJmol⁻¹ and 7.2 to 14.30 KJmol⁻¹ for reducing sugars and total sugars losses respectively. Predictive equations for estimating amount of reducing sugars and total sugars with blanching time of water-yam at various temperatures were also presented. The equation could be valuable in process design and optimization. However, amount of other soluble solids that might have leached into the water along with reducing and total sugars during blanching was not investigated in the study.

Keywords: blanching, kinetics, sugar losses, water yam

Procedia PDF Downloads 165
379 Understanding Help Seeking among Black Women with Clinically Significant Posttraumatic Stress Symptoms

Authors: Glenda Wrenn, Juliet Muzere, Meldra Hall, Allyson Belton, Kisha Holden, Chanita Hughes-Halbert, Martha Kent, Bekh Bradley

Abstract:

Understanding the help seeking decision making process and experiences of health disparity populations with posttraumatic stress disorder (PTSD) is central to development of trauma-informed, culturally centered, and patient focused services. Yet, little is known about the decision making process among adult Black women who are non-treatment seekers as they are, by definition, not engaged in services. Methods: Audiotaped interviews were conducted with 30 African American adult women with clinically significant PTSD symptoms who were engaged in primary care, but not in treatment for PTSD despite symptom burden. A qualitative interview guide was used to elucidate key themes. Independent coding of themes mapped to theory and identification of emergent themes were conducted using qualitative methods. An existing quantitative dataset was analyzed to contextualize responses and provide a descriptive summary of the sample. Results: Emergent themes revealed that active mental avoidance, the intermittent nature of distress, ambivalence, and self-identified resilience as undermining to help seeking decisions. Participants were stuck within the help-seeking phase of ‘recognition’ of illness and retained a sense of “it is my decision” despite endorsing significant social and environmental negative influencers. Participants distinguished ‘help acceptance’ from ‘help seeking’ with greater willingness to accept help and importance placed on being of help to others. Conclusions: Elucidation of the decision-making process from the perspective of non-treatment seekers has implications for outreach and treatment within models of integrated and specialty systems care. The salience of responses to trauma symptoms and stagnation in the help seeking recognition phase are findings relevant to integrated care service design and community engagement.

Keywords: culture, help-seeking, integrated care, PTSD

Procedia PDF Downloads 235
378 Selecting Special Education as a Career: A Qualitative Study of Motivating Factors for Special Education Teachers

Authors: Jennifer Duffy, Liz Fleming

Abstract:

Teacher shortage in special education is an American educational problem. Due to the implementation of The No Child Left Behind Act (2001) and The Individuals with Disabilities Education Improvement Act (2004), there has been an increase in the number of students requiring special education services. Consequently, there has been an influx to hire more special education teachers. However, the historic challenge of hiring certified special education teachers has been intensified with this the profession’s increasing demand of positions to fill. Efforts to improve recruitment and entry into the field must be informed by an understanding of the factors that initially inspire special education teachers to choose this career pathway. Hence, an understanding of reasons why teachers select special education as a profession is needed. The purpose of this study was to explore personal, academic, and professional motivations that lead to the selection of special education as a career choice. Using the grounded theory approach, this research investigation examined the factors that were most instrumental in influencing applicants to select special education as a career choice. Over one hundred de-identified graduate school applications to Bay Path University’s Graduate Special Education Programs from 2014- 2017 were qualitatively analyzed. Grounded coding was used to discover themes that emerged in applicants’ admissions essays explaining why he/she was pursuing a career in special education. The central themes that were most influential in applicants’ selection of special education as a career trajectory were (a) personal/familial connections to disability, (b) meaningful paraprofessional experiences working with disabled children, (c) aptitudes for teaching, and (d) finding personal rewards and professional fulfillment by advocating for vulnerable children. Implications from these findings include educating family members of children with disabilities about possible career tracks in special education, designing programs for paraprofessionals to become certified teachers, exposing prospective teacher candidates to the field of special education, and recruiting professionals from the human services field who seek to improve the quality of life and educational opportunities for children with special needs.

Keywords: career choice, professional pathways to teaching children with disabilities, special education, teacher recruitment

Procedia PDF Downloads 295