Search results for: lateral control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11447

Search results for: lateral control

10277 Control of an SIR Model for Basic Reproduction Number Regulation

Authors: Enrique Barbieri

Abstract:

The basic disease-spread model described by three states denoting the susceptible (S), infectious (I), and removed (recovered and deceased) (R) sub-groups of the total population N, or SIR model, has been considered. Heuristic mitigating action profiles of the pharmaceutical and non-pharmaceutical types may be developed in a control design setting for the purpose of reducing the transmission rate or improving the recovery rate parameters in the model. Even though the transmission and recovery rates are not control inputs in the traditional sense, a linear observer and feedback controller can be tuned to generate an asymptotic estimate of the transmission rate for a linearized, discrete-time version of the SIR model. Then, a set of mitigating actions is suggested to steer the basic reproduction number toward unity, in which case the disease does not spread, and the infected population state does not suffer from multiple waves. The special case of piecewise constant transmission rate is described and applied to a seventh-order SEIQRDP model, which segments the population into four additional states. The offline simulations in discrete time may be used to produce heuristic policies implemented by public health and government organizations.

Keywords: control of SIR, observer, SEIQRDP, disease spread

Procedia PDF Downloads 112
10276 Winged Test Rocket with Fully Autonomous Guidance and Control for Realizing Reusable Suborbital Vehicle

Authors: Koichi Yonemoto, Hiroshi Yamasaki, Masatomo Ichige, Yusuke Ura, Guna S. Gossamsetti, Takumi Ohki, Kento Shirakata, Ahsan R. Choudhuri, Shinji Ishimoto, Takashi Mugitani, Hiroya Asakawa, Hideaki Nanri

Abstract:

This paper presents the strategic development plan of winged rockets WIRES (WInged REusable Sounding rocket) aiming at unmanned suborbital winged rocket for demonstrating future fully reusable space transportation technologies, such as aerodynamics, Navigation, Guidance and Control (NGC), composite structure, propulsion system, and cryogenic tanks etc., by universities in collaboration with government and industries, as well as the past and current flight test results.

Keywords: autonomous guidance and control, reusable rocket, space transportation system, suborbital vehicle, winged rocket

Procedia PDF Downloads 367
10275 Finite Element Modeling and Analysis of Reinforced Concrete Coupled Shear Walls Strengthened with Externally Bonded Carbon Fiber Reinforced Polymer Composites

Authors: Sara Honarparast, Omar Chaallal

Abstract:

Reinforced concrete (RC) coupled shear walls (CSWs) are very effective structural systems in resisting lateral loads due to winds and earthquakes and are particularly used in medium- to high-rise RC buildings. However, most of existing old RC structures were designed for gravity loads or lateral loads well below the loads specified in the current modern seismic international codes. These structures may behave in non-ductile manner due to poorly designed joints, insufficient shear reinforcement and inadequate anchorage length of the reinforcing bars. This has been the main impetus to investigate an appropriate strengthening method to address or attenuate the deficiencies of these structures. The objective of this paper is to twofold: (i) evaluate the seismic performance of existing reinforced concrete coupled shear walls under reversed cyclic loading; and (ii) investigate the seismic performance of RC CSWs strengthened with externally bonded (EB) carbon fiber reinforced polymer (CFRP) sheets. To this end, two CSWs were considered as follows: (a) the first one is representative of old CSWs and therefore was designed according to the 1941 National Building Code of Canada (NBCC, 1941) with conventionally reinforced coupling beams; and (b) the second one, representative of new CSWs, was designed according to modern NBCC 2015 and CSA/A23.3 2014 requirements with diagonally reinforced coupling beam. Both CSWs were simulated using ANSYS software. Nonlinear behavior of concrete is modeled using multilinear isotropic hardening through a multilinear stress strain curve. The elastic-perfectly plastic stress-strain curve is used to simulate the steel material. Bond stress–slip is modeled between concrete and steel reinforcement in conventional coupling beam rather than considering perfect bond to better represent the slip of the steel bars observed in the coupling beams of these CSWs. The old-designed CSW was strengthened using CFRP sheets bonded to the concrete substrate and the interface was modeled using an adhesive layer. The behavior of CFRP material is considered linear elastic up to failure. After simulating the loading and boundary conditions, the specimens are analyzed under reversed cyclic loading. The comparison of results obtained for the two unstrengthened CSWs and the one retrofitted with EB CFRP sheets reveals that the strengthening method improves the seismic performance in terms of strength, ductility, and energy dissipation capacity.

Keywords: carbon fiber reinforced polymer, coupled shear wall, coupling beam, finite element analysis, modern code, old code, strengthening

Procedia PDF Downloads 198
10274 Application of Global Predictive Real Time Control Strategy to Improve Flooding Prevention Performance of Urban Stormwater Basins

Authors: Shadab Shishegar, Sophie Duchesne, Genevieve Pelletier

Abstract:

Sustainability as one of the key elements of Smart cities, can be realized by employing Real Time Control Strategies for city’s infrastructures. Nowadays Stormwater management systems play an important role in mitigating the impacts of urbanization on natural hydrological cycle. These systems can be managed in such a way that they meet the smart cities standards. In fact, there is a huge potential for sustainable management of urban stormwater and also its adaptability to global challenges like climate change. Hence, a dynamically managed system that can adapt itself to instability of the environmental conditions is desirable. A Global Predictive Real Time Control approach is proposed in this paper to optimize the performance of stormwater management basins in terms of flooding prevention. To do so, a mathematical optimization model is developed then solved using Genetic Algorithm (GA). Results show an improved performance at system-level for the stormwater basins in comparison to static strategy.

Keywords: environmental sustainability, optimization, real time control, storm water management

Procedia PDF Downloads 179
10273 A Delphi Study to Build Consensus for Tuberculosis Control Guideline to Achieve Who End Tb 2035 Strategy

Authors: Pui Hong Chung, Cyrus Leung, Jun Li, Kin On Kwok, Ek Yeoh

Abstract:

Introduction: Studies for TB control in intermediate tuberculosis burden countries (IBCs) comprise a relatively small proportion in TB control literature, as compared to the effort put in high and low burden counterparts. It currently lacks of consensus in the optimal weapons and strategies we can use to combat TB in IBCs; guidelines of TB control are inadequate and thus posing a great obstacle in eliminating TB in these countries. To fill-in the research and services gap, we need to summarize the findings of the effort in this regard and to seek consensus in terms of policy making for TB control, we have devised a series of scoping and Delphi studies for these purposes. Method: The scoping and Delphi studies are conducted in parallel to feed information for each other. Before the Delphi iterations, we have invited three local experts in TB control in Hong Kong to participate in the pre-assessment round of the Delphi study to comments on the validity, relevance, and clarity of the Delphi questionnaire. Result: Two scoping studies, regarding LTBI control in health care workers in IBCs and TB control in elderly of IBCs respectively, have been conducted. The result of these two studies is used as the foundation for developing the Delphi questionnaire, which tapped on seven areas of question, namely: characteristics of IBCs, adequacy of research and services in LTBI control in IBCs, importance and feasibility of interventions for TB control and prevention in hospital, screening and treatment of LTBI in community, reasons of refusal to/ default from LTBI treatment, medical adherence of LTBI treatment, and importance and feasibility of interventions for TB control and prevention in elderly in IBCs. The local experts also commented on the two scoping studies conducted, thus act as the sixth phase of expert consultation in Arksey and O’Malley framework of scoping studies, to either nourish the scope and strategies used in these studies or to supplement ideas for further scoping or systematic review studies. In the subsequent stage, an international expert panel, comprised of 15 to 20 experts from IBCs in Western Pacific Region, will be recruited to join the two-round anonymous Delphi iterations. Four categories of TB control experts, namely clinicians, policy makers, microbiologists/ laboratory personnel, and public health clinicians will be our target groups. A consensus level of 80% is used to determine the achievement of consensus on particular issues. Key messages: 1. Scoping review and Delphi method are useful to identify gaps and then achieve consensus in research. 2. Lots of resources are put in the high burden countries now. However, the usually neglected intermediate-burden countries with TB is an indispensable part for achieving the ambitious WHO End TB 2035 target.

Keywords: dephi questionnaire, tuberculosis, WHO, latent TB infection

Procedia PDF Downloads 303
10272 The Impact of Drama Education on Creativity Development at Preschool Children

Authors: Vladimíra Hornáčková

Abstract:

This paper points out at the importance of creativity development in children of preschool age and analyses certain conditions and pedagogical principles which should be respected during the development of creativity in kindergartens. Research survey focuses on the development of creativity reflection at children in kindergartens at preschool age and based on a test of creativity it compares creativity of children in experimental and control groups. The goal is to find out if there are any differences among children in experimental and control classrooms in kindergartens; wherein experimental groups, there is preschool education with the use of drama education while in control groups there is not. On the basis of certain aspects, the gained data is compared through descriptive methods and correlations. Research results refer to reserves in creativity development in modern pre-primary education in the context of implemented and expected changes in didactic approach in the education of kindergartens.

Keywords: preschool child, drama in education, research, test of creativity

Procedia PDF Downloads 313
10271 Framework for Decision Support Tool for Quality Control and Management in Botswana Manufacturing Companies

Authors: Mogale Sabone, Thabiso Ntlole

Abstract:

The pressure from globalization has made manufacturing organizations to move towards three major competitive arenas: quality, cost, and responsiveness. Quality is a universal value and has become a global issue. In order to survive and be able to provide customers with good products, manufacturing organizations’ supporting systems, tools, and structures it uses must grow or evolve. The majority of quality management concepts and strategies that are practiced recently are aimed at detecting and correcting problems which already exist and serve to limit losses. In agile manufacturing environment there is no room for defect and error so it needs a quality management which is proactively directed at problem prevention. This proactive quality management avoids losses by focusing on failure prevention, virtual elimination of the possibility of premature failure, mistake-proofing, and assuring consistently high quality in the definition and design of creation processes. To achieve this, a decision support tool for quality control and management is suggested. Current decision support tools/methods used by most manufacturing companies in Botswana for quality management and control are not integrated, for example they are not consistent since some tests results data is recorded manually only whilst others are recorded electronically. It is only a set of procedures not a tool. These procedures cannot offer interactive decision support. This point brings to light the aim of this research which is to develop a framework which will help manufacturing companies in Botswana build a decision support tool for quality control and management.

Keywords: decision support tool, manufacturing, quality control, quality management

Procedia PDF Downloads 566
10270 Bifurcation and Stability Analysis of the Dynamics of Cholera Model with Controls

Authors: C. E. Madubueze, S. C. Madubueze, S. Ajama

Abstract:

Cholera is a disease that is predominately common in developing countries due to poor sanitation and overcrowding population. In this paper, a deterministic model for the dynamics of cholera is developed and control measures such as health educational message, therapeutic treatment, and vaccination are incorporated in the model. The effective reproduction number is computed in terms of the model parameters. The existence and stability of the equilibrium states, disease free and endemic equilibrium states are established and showed to be locally and globally asymptotically stable when R0 < 1 and R0 > 1 respectively. The existence of backward bifurcation of the model is investigated. Furthermore, numerical simulation of the model developed is carried out to show the impact of the control measures and the result indicates that combined control measures will help to reduce the spread of cholera in the population

Keywords: backward bifurcation, cholera, equilibrium, dynamics, stability

Procedia PDF Downloads 432
10269 Quality Control Parameters and Pharmacological Aspects of Less Known Medicinal Plant of India: Plumeria pudica Linn.

Authors: Shweta Shriwas, Sumeet Dwivedi, Raghvendra Dubey

Abstract:

Plumeria pudica Linn. Family Apocynaceae commonly known as Nag Chmapa is grown wildly in many parts of India. The plant is medium size shrub, grown up to height of 5-10 feet, evergreen with white flowers. In traditional system of medicine, the plant is widely used in the treatment of worms, infection, inflammation, etc. So, far no any systematic and documented study was done to revealed quality control parameters and pharmacological aspect of the selected plant species, therefore, the attempt was made in present investigation to reveal the same. The parameters such as Ash value, FOM, LOD, SI, etc. were studied using various coarsely dried plant materials of the species. Analgesic, anti-inflammatory, anthelmentic and anti-microbial activity of various extract was investigated and reported in present work.

Keywords: Plumeria pudica, quality control, pharmacology, parameters

Procedia PDF Downloads 218
10268 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques

Authors: Kouzi Katia

Abstract:

This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.

Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table

Procedia PDF Downloads 345
10267 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller

Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian

Abstract:

The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.

Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature

Procedia PDF Downloads 130
10266 Natural User Interface Adapter: Enabling Natural User Interface for Non-Natural User Interface Applications

Authors: Vijay Kumar Kolagani, Yingcai Xiao

Abstract:

Adaptation of Natural User Interface (NUI) has been slow and limited. NUI devices like Microsoft’s Kinect and Ultraleap’s Leap Motion can only interact with a handful applications that were specifically designed and implemented for them. A NUI device just can’t be used to directly control millions of applications that are not designed to take NUI input. This is in the similar situation like the adaptation of color TVs. At the early days of color TV, the broadcasting format was in RGB, which was not viewable by blackand-white TVs. TV broadcasters were reluctant to produce color programs due to limited viewership. TV viewers were reluctant to buy color TVs because there were limited programs to watch. Color TV’s breakthrough moment came after the adaptation of NTSC standard which allowed color broadcasts to be compatible with the millions of existing black-and-white TVs. This research presents a framework to use NUI devices to control existing non-NUI applications without reprogramming them. The methodology is to create an adapter to convert input from NUI devices into input compatible with that generated by CLI (Command Line Input) and GUI (Graphical User Interface) devices. The CLI/GUI compatible input is then sent to the active application through the operating system just like any input from a CLI/GUI device to control the non-NUI program that the user is controlling. A sample adapter has been created to convert input from Kinect to keyboard strokes, so one can use the input from Kinect to control any applications that take keyboard input, such as Microsoft’s PowerPoint. When the users use the adapter to control their PowerPoint presentations, they can free themselves from standing behind a computer to use its keyboard and can roam around in front of the audience to use hand gestures to control the PowerPoint. It is hopeful such adapters can accelerate the adaptation of NUI devices.

Keywords: command line input, graphical user interface, human computer interaction, natural user interface, NUI adapter

Procedia PDF Downloads 18
10265 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering

Authors: Youssef I. Hafez

Abstract:

Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.

Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming

Procedia PDF Downloads 224
10264 Efficient Moment Frame Structure

Authors: Mircea I. Pastrav, Cornelia Baera, Florea Dinu

Abstract:

A different concept for designing and detailing of reinforced concrete precast frame structures is analyzed in this paper. The new detailing of the joints derives from the special hybrid moment frame joints. The special reinforcements of this alternative detailing, named modified special hybrid joint, are bondless with respect to both column and beams. Full scale tests were performed on a plan model, which represents a part of 5 story structure, cropped in the middle of the beams and columns spans. Theoretical approach was developed, based on testing results on twice repaired model, subjected to lateral seismic type loading. Discussion regarding the modified special hybrid joint behavior and further on widening research needed concludes the presentation.

Keywords: modified hybrid joint, repair, seismic loading type, acceptance criteria

Procedia PDF Downloads 523
10263 Simulation Model of Biosensor Based on Gold Nanoparticles

Authors: Kholod Hajo

Abstract:

In this study COMSOL Multiphysics was used to design lateral flow biosensors (LFBs) which provide advantages in low cost, simplicity, rapidity, stability and portability thus making LFBs popular in biomedical, agriculture, food and environmental sciences. This study was focused on simulation model of biosensor based on gold nanoparticles (GNPs) designed using software package (COMSOL Multiphysics), the magnitude of the laminar velocity field in the flow cell, concentration distribution in the analyte stream and surface coverage of adsorbed species and average fractional surface coverage of adsorbed analyte were discussed from the model and couples of suggestion was given in order to functionalize GNPs and to increase the accuracy of the biosensor design, all above were obtained acceptable results.

Keywords: model, gold nanoparticles, biosensor, COMSOL Multiphysics

Procedia PDF Downloads 257
10262 Bending Moment of Flexible Batter Pile in Sands under Horizontal Loads

Authors: Fabian J. Manoppo, Dody M. J. Sumayouw

Abstract:

The bending moment of a single free head model flexible batter piles in sand under horizontal loads is investigated. The theoretical estimate of the magnitude maximum bending moment for the piles was considering a vertical rigid pile under an inclined load and using semi-empirical relations. The length of the equivalent rigid pile was based on the relative stiffness factor of the pile. Model tests were carried out using instrumented piles of wide-ranging flexibilities. The piles were buried in loose sand at batter angles of β=±150, β=±300 and were applied to incrementally increasing lateral loads. The pile capacities and the variation of bending moment along the pile shaft were measured. The new coefficient of 0.5 was proposed to estimate the bending moment of a flexible batter pile in the sand under horizontal.

Keywords: batter pile, bending moment, sand, horizontal loads

Procedia PDF Downloads 26
10261 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong

Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu

Abstract:

This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption, they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation and 15% in field measurement of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%.

Keywords: sustainable building environmental model (SBEM), adaptive comfort temperature (ACT), new demand control ventilation (nDCV), energy saving

Procedia PDF Downloads 636
10260 A Development of a Weight-Balancing Control System Based On Android Operating System

Authors: Rattanathip Rattanachai, Piyachai Petchyen, Kunyanuth Kularbphettong

Abstract:

This paper describes the development of a Weight- Balancing Control System based on the Android Operating System and it provides recommendations on ways of balancing of user’s weight based on daily metabolism process and need so that user can make informed decisions on his or her weight controls. The system also depicts more information on nutrition details. Furthermore, it was designed to suggest to users what kinds of foods they should eat and how to exercise in the right ways. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 3.94 and 4.07 respectively.

Keywords: weight-balancing control, Android operating system, daily metabolism, black box testing

Procedia PDF Downloads 472
10259 Comparative Study on Inhibiting Factors of Cost and Time Control in Nigerian Construction Practice

Authors: S. Abdulkadir, I. Y. Moh’d, S. U. Kunya, U. Nuruddeen

Abstract:

The basis of any contract formation between the client and contractor is the budgeted cost and the estimated duration of projects. These variables are paramount important to project's sponsor in a construction projects and in assessing the success or viability of construction projects. Despite the availability of various techniques of cost and time control, many projects failed to achieve their initial estimated cost and time. The paper evaluate the inhibiting factors of cost and time control in Nigerian construction practice and comparing the result with the United Kingdom practice as identified by one researcher. The populations of the study are construction professionals within Bauchi and Gombe state, Nigeria, a judgmental sampling employed in determining the size of respondents. Descriptive statistics used in analyzing the data in SPSS. Design change, project fraud and corruption, financing and payment of completed work found to be common among the top five inhibiting factors of cost and time control in the study area. Furthermore, the result had shown some comprising with slight contrast as in the case of United Kingdom practice. Study recommend the adaptation of mitigation measures developed in the UK prior to assessing its effectiveness and so also developing a mitigating measure for other top factors that are not within the one developed in United Kingdom practice. Also, it recommends a wider assessing comparison on the modify inhibiting factors of cost and time control as revealed by the study to cover almost all part of Nigeria.

Keywords: comparison, cost, inhibiting factor, United Kingdom, time

Procedia PDF Downloads 442
10258 Investigation of Building Pounding during Earthquake and Calculation of Impact Force between Two Adjacent Structures

Authors: H. Naderpour, R. C. Barros, S. M. Khatami

Abstract:

Seismic excitation is naturally caused large horizontal relative displacements, which is able to provide collisions between two adjacent buildings due to insufficient separation distance and severe damages are occurred due to impact especially in tall buildings. In this paper, an impact is numerically simulated and two needed parameters are calculated, including impact force and energy absorption. In order to calculate mentioned parameters, mathematical study needs to model an unreal link element, which is logically assumed to be spring and dashpot to determine lateral displacement and damping ratio of impact. For the determination of dynamic response of impact, a new equation of motion is theoretically suggested to evaluate impact force and energy dissipation. In order to confirm the rendered equation, a series of parametric study are performed and the accuracy of formula is confirmed.

Keywords: pounding, impact, dissipated energy, coefficient of restitution

Procedia PDF Downloads 357
10257 A Robust Optimization for Multi-Period Lost-Sales Inventory Control Problem

Authors: Shunichi Ohmori, Sirawadee Arunyanart, Kazuho Yoshimoto

Abstract:

We consider a periodic review inventory control problem of minimizing production cost, inventory cost, and lost-sales under demand uncertainty, in which product demands are not specified exactly and it is only known to belong to a given uncertainty set, yet the constraints must hold for possible values of the data from the uncertainty set. We propose a robust optimization formulation for obtaining lowest cost possible and guaranteeing the feasibility with respect to range of order quantity and inventory level under demand uncertainty. Our formulation is based on the adaptive robust counterpart, which suppose order quantity is affine function of past demands. We derive certainty equivalent problem via second-order cone programming, which gives 'not too pessimistic' worst-case.

Keywords: robust optimization, inventory control, supply chain managment, second-order programming

Procedia PDF Downloads 410
10256 Modeling Dynamics and Control of Transversal Vibration of an Underactuated Flexible Plate Using Controlled Lagrangian Method

Authors: Mahmood Khalghollah, Mohammad Tavallaeinejad, Mohammad Eghtesad

Abstract:

The method of Controlled Lagrangian is an energy shaping control technique for under actuated Lagrangian systems. Energy shaping control design methods are appealing as they retain the underlying nonlinear dynamics and can provide stability results that hold over larger domain than can be obtained using linear design and analysis. In the present study, controlled lagrangian is employed for designing a controller in an under actuated rotating flexible plate system. In the system of rotating flexible plate, due to its nonlinear characteristics and coupled dynamics of rigid and flexible components, controller design is a known challenge. In this paper, controller objectives are considered to be vibration reduction of flexible component and position control of the tip of the plate. To achieve the goals, a method based on both kinetic and potential energy shaping is introduced. The stability of the closed-loop system is investigated and proved around its equilibrium points. Moreover, the proposed controller is shown to be robust against disturbance and plant uncertainties.

Keywords: controlled lagrangian, underactuated system, flexible rotating plate, disturbance

Procedia PDF Downloads 448
10255 Design, Analysis and Obstacle Avoidance Control of an Electric Wheelchair with Sit-Sleep-Seat Elevation Functions

Authors: Waleed Ahmed, Huang Xiaohua, Wilayat Ali

Abstract:

The wheelchair users are generally exposed to physical and psychological health problems, e.g., pressure sores and pain in the hip joint, associated with seating posture or being inactive in a wheelchair for a long time. Reclining Wheelchair with back, thigh, and leg adjustment helps in daily life activities and health preservation. The seat elevating function of an electric wheelchair allows the user (lower limb amputation) to reach different heights. An electric wheelchair is expected to ease the lives of the elderly and disable people by giving them mobility support and decreasing the percentage of accidents caused by users’ narrow sight or joystick operation errors. Thus, this paper proposed the design, analysis and obstacle avoidance control of an electric wheelchair with sit-sleep-seat elevation functions. A 3D model of a wheelchair is designed in SolidWorks that was later used for multi-body dynamic (MBD) analysis and to verify driving control system. The control system uses the fuzzy algorithm to avoid the obstacle by getting information in the form of distance from the ultrasonic sensor and user-specified direction from the joystick’s operation. The proposed fuzzy driving control system focuses on the direction and velocity of the wheelchair. The wheelchair model has been examined and proven in MSC Adams (Automated Dynamic Analysis of Mechanical Systems). The designed fuzzy control algorithm is implemented on Gazebo robotic 3D simulator using Robotic Operating System (ROS) middleware. The proposed wheelchair design enhanced mobility and quality of life by improving the user’s functional capabilities. Simulation results verify the non-accidental behavior of the electric wheelchair.

Keywords: fuzzy logic control, joystick, multi body dynamics, obstacle avoidance, scissor mechanism, sensor

Procedia PDF Downloads 129
10254 Pilot Scale Sub-Surface Constructed Wetland: Evaluation of Performance of Bed Vegetated with Water Hyacinth in the Treatment of Domestic Sewage

Authors: Abdul-Hakeem Olatunji Abiola, A. E. Adeniran, A. O. Ajimo, A. B. Lamilisa

Abstract:

Introduction: Conventional wastewater treatment technology has been found to fail in developing countries because they are expensive to construct, operate and maintain. Constructed wetlands are nowadays considered as a low-cost alternative for effective wastewater treatment, especially where suitable land can be available. This study aims to evaluate the performance of the constructed wetland vegetated with water hyacinth (Eichhornia crassipes) plant for the treatment of wastewater. Methodology: The sub-surface flow wetland used for this study was an experimental scale constructed wetland consisting of four beds A, B, C, and D. Beds A, B, and D were vegetated while bed C which was used as a control was non-vegetated. This present study presents the results from bed B vegetated with water hyacinth (Eichhornia crassipes) and control bed C which was non-vegetated. The influent of the experimental scale wetland has been pre-treated with sedimentation, screening and anaerobic chamber before feeding into the experimental scale wetland. Results: pH and conductivity level were more reduced, colour of effluent was more improved, nitrate, iron, phosphate, and chromium were more removed, and dissolved oxygen was more improved in the water hyacinth bed than the control bed. While manganese, nickel, cyanuric acid, and copper were more removed from the control bed than the water hyacinth bed. Conclusion: The performance of the experimental scale constructed wetland bed planted with water hyacinth (Eichhornia crassipes) is better than that of the control bed. It is therefore recommended that plain bed without any plant should not be encouraged.

Keywords: constructed experimental scale wetland, domestic sewage, treatment, water hyacinth

Procedia PDF Downloads 136
10253 A Comparison of Implant Stability between Implant Placed without Bone Graft versus with Bone Graft Using Guided Bone Regeneration (GBR) Technique: A Resonance Frequency Analysis

Authors: R. Janyaphadungpong, A. Pimkhaokham

Abstract:

This prospective clinical study determined the insertion torque (IT) value and monitored the changes in implant stability quotient (ISQ) values during the 12 weeks healing period from implant placement without bone graft (control group) and with bone graft using the guided bone regeneration (GBR) technique (study group). The relationship between the IT and ISQ values of the implants was also assessed. The control and study groups each consisted of 6 patients with 8 implants per group. The ASTRA TECH Implant System™ EV 4.2 mm in diameter was placed in the posterior mandibular region. In the control group, implants were placed in bone without bone graft, whereas in the study group implants were placed simultaneously with the GBR technique at favorable bone defect. IT (Ncm) of each implant was recorded when fully inserted. ISQ values were obtained from the Osstell® ISQ at the time of implant placement, and at 2, 4, 8, and 12 weeks. No difference in IT was found between groups (P = 0.320). The ISQ values in the control group were significantly higher than in the study group at the time of implant placement and at 4 weeks. There was no significant association between IT and ISQ values either at baseline or after the 12 weeks. At 12 weeks of healing, the control and study groups displayed different trends. Mean ISQ values for the control group decreased over the first 2 weeks and then started to increase. ISQ value increases were statistically significant at 8 weeks and later, whereas mean ISQ values in the study group decreased over the first 4 weeks and then started to increase, with statistical significance after 12 weeks. At 12 weeks, all implants achieved osseointegration with mean ISQ values over the threshold value (ISQ>70). These results indicated that implants, in which guided bone regeneration technique was performed during implant placement for treating favorable bone defects, were as predictable as implants placed without bone graft. However, loading in implants placed with the GBR technique for correcting favorable bone defects should be performed after 12 weeks of healing to ensure implant stability and osseointegration.

Keywords: dental implant, favorable bone defect, guided bone regeneration technique, implant stability

Procedia PDF Downloads 297
10252 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 25
10251 Efficacy of Plant and Mushroom Based Bio-Products against the Red Poultry Mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae)

Authors: Muhammad Asif Qayyoum, Bilal Saeed Khan

Abstract:

Poultry red mites (Dermanyssus gallinae De Geer) are economically deleterious parasite of hens in poultry industry in all over the world. Due to lack of proper control managements and result of poor application of commercial products, D. gallinae get resistance and severe infestation in poultry birds. Laboratory experiment was planned for the control of D. gallinae by using different mushroom and plant extracts. We used control treatment (100 ml distilled water) and nine treatments (10 gr Lentinula adobas, Ganoderma lucidum and Pleurotus aryngii with 100 ml methanol, 1% and 2% Neemazal, 1.5% Gamma-T-ol, Echinacea Leaf , 1.5% Fungatol with neem spray and Methanol) with five replication having five mites each. Data collected after 12 and 24 hours every day till mites found dead in every treatment. The significant differences among the mean values were compared with the DUNCAN multiple range test. The efficacy (%) of each treatment was determined with the Abbott formula. All statistical analyses were conducted with the SPSS Version 12 program. Lentinula edodes (80%), Ganoderma lucidum (76%) and Fungatol+Neem spray (1.5%) (80%) were significant against D. gallinae within 3 days.

Keywords: mushroom extracts, plant extracts, D. gallinae, control

Procedia PDF Downloads 308
10250 Continuous-Time Analysis And Performance Assessment For Digital Control Of High-Frequency Switching Synchronous Dc-Dc Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Sakina Zerouali

Abstract:

This paper features a performance analysis and robustness assessment of a digitally controlled DC-DC three-cell buck converter associated in parallel, operating in continuous conduction mode (CCM), facing feeding parameters variation and loads disturbance. The control strategy relies on the continuous-time with an averaged modeling technique for high-frequency switching converter. The methodology is to modulate the complete design procedure, in regard to the existence of an instantaneous current operating point for designing the digital closed-loop, to the same continuous-time domain. Moreover, the adopted approach is to include a digital voltage control (DVC) technique, taking an account for digital control delays and sampling effects, which aims at improving efficiency and dynamic response and preventing generally undesired phenomena. The results obtained under load change, input change, and reference change clearly demonstrates an excellent dynamic response of the proposed technique, also as provide stability in any operating conditions, the effectiveness is fast with a smooth tracking of the specified output voltage. Simulations studies in MATLAB/Simulink environment are performed to verify the concept.

Keywords: continuous conduction mode, digital control, parallel multi-cells converter, performance analysis, power electronics

Procedia PDF Downloads 152
10249 Current Status and Prospects of Further Control of Brucellosis in Humans and Domestic Ruminants in Bangladesh

Authors: A. K. M. Anisur Rahman

Abstract:

Brucellosis is an ancient and one of the world's most widespread zoonotic diseases affecting both, public health and animal production. Its current status in humans and domestic ruminants along with probable means to control further in Bangladesh are described. The true exposure prevalence of brucellosis in cattle, goats, and sheep seems to be low: 0.3% in cattle, 1% in goats and 1.2% in sheep. The true prevalence of brucellosis in humans was also reported to be around 2%. In such a low prevalence scenario both in humans and animals, the positive predictive values of the diagnostic tests were very low. The role Brucella species in the abortion of domestic ruminants is less likely. Still now, no Brucella spp. was isolated from animal and human samples. However, Brucella abortus DNA was detected from seropositive humans, cattle, and buffalo; milk of cow, goats, and gayals and semen of an infected bull. Consuming raw milk and unpasteurized milk products by Bangladeshi people are not common. Close contact with animals, artificial insemination using semen from infected bulls, grazing mixed species of animals together in the field and transboundary animal movement are important factors, which should be considered for the further control of this zoonosis in Bangladesh.

Keywords: brucellosis, control, human, zoonosis

Procedia PDF Downloads 366
10248 Machine Learning Approach to Project Control Threshold Reliability Evaluation

Authors: Y. Kim, H. Lee, M. Park, B. Lee

Abstract:

Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.

Keywords: machine learning, project control, project progress monitoring, schedule

Procedia PDF Downloads 244