Search results for: generalized differential quadrature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2394

Search results for: generalized differential quadrature

1224 SAR and B₁ Considerations for Multi-Nuclear RF Body Coils

Authors: Ria Forner

Abstract:

Introduction: Due to increases in the SNR at 7T and above, it becomes more favourable to make use of X-nuclear imaging. Integrated body coils tuned to 120MHz for 31P, 79MHz for 23Na, and 75 MHz for 13C at 7T were simulated with a human male, female, or child body model to assess strategies of use for metabolic MR imaging in the body. Methods: B1 and SAR efficiencies in the heart, liver, spleen, and kidneys were assessed using numerical simulations over the three frequencies with phase shimming. Results: B1+ efficiency is highly variable over the different organs, particularly for the highest frequency; however, local SAR efficiency remains relatively constant over the frequencies in all subjects. Although the optimal phase settings vary, one generic phase setting can be identified for each frequency at which the penalty in B1+ is at a max of 10%. Discussion: The simulations provide practical strategies for power optimization, B1 management, and maintaining safety. As expected, the B1 field is similar at 75MHz and 79MHz, but reduced at 120MHz. However, the B1 remains relatively constant when normalised by the square root of the peak local SAR. This is in contradiction to generalized SAR considerations of 1H MRI at different field strengths, which is defined by global SAR instead. Conclusion: Although the B1 decreases with frequency, SAR efficiency remains constant throughout the investigated frequency range. It is possible to shim the body coil to obtain a maximum of 10% extra B1+ in a specific organ in a body when compared to a generic setting.

Keywords: birdcage, multi-nuclear, B1 shimming, 7 Tesla MRI, liver, kidneys, heart, spleen

Procedia PDF Downloads 67
1223 Effects of Microwave Heating Rate on the Color, Total Anthocyanin Content and Total Phenolics of Elderberry Juice during Come-up-Time

Authors: Balunkeswar Nayak, Hanjun Cao, Xinruo Zhang

Abstract:

Elderberry could protect human health from oxidative stress, and reduce aging and certain cardiovascular diseases due to the presence of bioactive phytochemicals with high antioxidant capacity. However, these bioactive phytochemicals, such as anthocyanins and other phenolic acids, are susceptible to degradation during processing of elderberries to juice, jam, and powder due to intensity and duration of thermal exposure. The effects of microwave heating rate during come-up-times, using a domestic 2450 MHz microwave, on the color, total anthocyanin content and total phenolics on elderberry juice was studied. With a variation of come-up-time from 30 sec to 15 min at different power levels (10–50 % of total wattage), the temperature of elderberry juice vary from 40.6 °C to 91.5 °C. However, the color parameters (L, A, and B), total anthocyanin content (using pH differential method) and total phenolics did not vary significantly when compared to the control samples.

Keywords: elderberry, microwave, color, thermal exposure

Procedia PDF Downloads 603
1222 Magnetohydrodynamic Couette Flow of Fractional Burger’s Fluid in an Annulus

Authors: Sani Isa, Ali Musa

Abstract:

Burgers’ fluid with a fractional derivatives model in an annulus was analyzed. Combining appropriately the basic equations, with the fractionalized fractional Burger’s fluid model allow us to determine the velocity field, temperature and shear stress. The governing partial differential equation was solved using the combine Laplace transformation method and Riemann sum approximation to give velocity field, temperature and shear stress on the fluid flow. The influence of various parameters like fractional parameters, relaxation time and retardation time, are drawn. The results obtained are simulated using Mathcad software and presented graphically. From the graphical results, we observed that the relaxation time and time helps the flow pattern, on the other hand, other material constants resist the fluid flow while fractional parameters effect on fluid flow is opposite to each other.

Keywords: sani isa, Ali musaburger’s fluid, Laplace transform, fractional derivatives, annulus

Procedia PDF Downloads 24
1221 Cognitive Development Theories as Determinant of Children's Brand Recall and Ad Recognition: An Indian Perspective

Authors: Ruchika Sharma

Abstract:

In the past decade, there has been an explosion of research that has examined children’s understanding of TV advertisements and its persuasive intent, socialization of child consumer and child psychology. However, it is evident from the literature review that no studies in this area have covered advertising messages and its impact on children’s brand recall and ad recognition. Copywriters use various creative devices to lure the consumers and very impressionable consumers such as children face far more drastic effects of these creative ways of persuasion. On the basis of Piaget’s theory of cognitive development as a theoretical basis for predicting/understanding children’s response and understanding, a quasi-experiment was carried out for the study, that manipulated measurement timing and advertising messages (familiar vs. unfamiliar) keeping gender and age group as two prominent factors. This study also examines children’s understanding of Advertisements and its elements, predominantly - Language, keeping in view Fishbein’s model. Study revealed significant associations between above mentioned factors and children’s brand recall and ad identification. Further, to test the reliability of the findings on larger sample, bootstrap simulation technique was used. The simulation results are in accordance with the findings of experiment, suggesting that the conclusions obtained from the study can be generalized for entire children’s (as consumers) market in India.

Keywords: advertising, brand recall, cognitive development, preferences

Procedia PDF Downloads 290
1220 A Brief Exploration on the Green Urban Design for Carbon Neutrality

Authors: Gaoyuan Wang, Tian Chen

Abstract:

China’s emission peak and carbon neutrality strategies lead to the transformation of development patterns and call for new green urban design thinking. This paper begins by revealing the evolution of green urban design thinking during the periods of carbon enlightenment, carbon dependency, and carbon decoupling from the perspective of the energy transition. Combined with the current energy situation, national strengths, and technological trends, the emergence of green urban design towards carbon neutrality becomes inevitable. Based on the preliminary analysis of its connotation, the characteristics of the new type of green urban design are generalized as low-carbon orientation, carbon-related objects, carbon-reduction means, and carbon-control patterns. Its theory is briefly clarified in terms of the human-earth synergism, quality-energy interconnection, and form-flow interpromotion. Then, its mechanism is analyzed combined with the core tasks of carbon neutrality, and the scope of design issues is defined, including carbon flow mapping, carbon source regulation, carbon sink construction, and carbon emission management. Finally, a multi-scale spatial response system is proposed across the region, city, cluster, and neighborhood level. The discussion aims to provide support for the innovation of green urban design theories and methods in the context of peak neutrality.

Keywords: carbon neutrality, green urban design, energy transition, theoretical exploration

Procedia PDF Downloads 175
1219 Preparation, Characterization and Ionic Conductivity of (1‒x) (CdI2‒Ag2CrO4)‒(x) Al2O3 Composite Solid Electrolytes

Authors: Rafiuddin

Abstract:

Composite solid electrolyte of the salt and oxide type is an effective approach to improve the ionic conductivity in low and intermediate temperature regions. The conductivity enhancement in the composites occurs via interfaces. Because of their high ionic conduction, composite electrolytes have wide applications in different electrochemical devices such as solid-state batteries, solid oxide fuel cells, and electrochemical cells. In this work, a series of novel (1‒x) (CdI2‒Ag2CrO4)‒xAl2O3 composite solid electrolytes has been synthesized. The prepared materials were characterized by X‒ray diffraction, differential thermal analysis, and AC impedance spectroscopy. The impedance spectra show single semicircle representing the simultaneous contribution of grain and grain boundary. The conductivity increased with the increase of Al2O3 content and shows the maximum conductivity (σ= 0.0012 S cm‒1) for 30% of Al2O3 content at 30 ℃.

Keywords: composite solid electrolyte, X-ray diffraction, Impedance spectroscopy, ionic conductivity

Procedia PDF Downloads 405
1218 Recovery of Zn from Different Çinkur Leach Residues by Acidic Leaching

Authors: Mehmet Ali Topçu, Aydın Ruşen

Abstract:

Çinkur is the only plant in Turkey that produces zinc from primary ore containing zinc carbonate from its establishment until 1997. After this year, zinc concentrate coming from Iran was used in this plant. Therefore, there are two different leach residues namely Turkish leach residue (TLR) and Iranian leach residue (ILR), in Çinkur stock piles. This paper describes zinc recovery by sulphuric acid (H2SO4) treatment for each leach residue and includes comparison of blended of TLR and ILR. Before leach experiments; chemical, mineralogical and thermal analysis of three different leach residues was carried out by using atomic absorption spectrometry (AAS), X-Ray diffraction (XRD) and differential thermal analysis (DTA), respectively. Leaching experiments were conducted at optimum conditions; 100 oC, 150 g/L H2SO4 and 2 hours. In the experiments, stirring rate was kept constant at 600 r/min which ensures complete mixing in leaching solution. Results show that zinc recovery for Iranian LR was higher than Turkish LR due to having different chemical composition from each other.

Keywords: hydrometallurgy, leaching, metal extraction, metal recovery

Procedia PDF Downloads 354
1217 Liquid Phase Sintering of Boron-Alloyed Powder Metallurgy Stainless Steel

Authors: Ming-Wei Wu, Zih-Jie Lin

Abstract:

Liquid phase sintering (LPS) is a feasible means for decreasing the porosity of powder metallurgy (PM) Fe-based material without substantially increase the production cost. The aim of this study was to investigate the effect of 0.6 wt% boron on the densification of PM 304L stainless steel by LPS. The results indicated that the increase in the sintered density of 304L+0.6B steel is obvious after 1250 ºC sintering, and eutectic structures with borides are observed at the interfaces of the raw steel powders. Differential scanning calorimetry (DSC) results show that liquid is generated at 1244ºC during sintering. The boride in the eutectic structure is rich in boron and chromium atoms and is deficient in nickel atoms, as identified by electron probe micro-analyzer (EPMA). Furthermore, the sintered densities of 304L and 304L+0.6B steels sintered at 1300 ºC are 6.99 g/cm3 and 7.69 g/cm3, respectively, indicating that boron is a suitable alloying element for facilitating LPS of PM 304L stainless steel.

Keywords: powder metallurgy, liquid phase sintering, stainless steel, boron, microstructure

Procedia PDF Downloads 336
1216 Invasive Ranges of Gorse (Ulex europaeus) in South Australia and Sri Lanka Using Species Distribution Modelling

Authors: Champika S. Kariyawasam

Abstract:

The distribution of gorse (Ulex europaeus) plants in South Australia has been modelled using 126 presence-only location data as a function of seven climate parameters. The predicted range of U. europaeus is mainly along the Mount Lofty Ranges in the Adelaide Hills and on Kangaroo Island. Annual precipitation and yearly average aridity index appeared to be the highest contributing variables to the final model formulation. The Jackknife procedure was employed to identify the contribution of different variables to gorse model outputs and response curves were used to predict changes with changing environmental variables. Based on this analysis, it was revealed that the combined effect of one or more variables could make a completely different impact to the original variables on their own to the model prediction. This work also demonstrates the need for a careful approach when selecting environmental variables for projecting correlative models to climatically distinct area. Maxent acts as a robust model when projecting the fitted species distribution model to another area with changing climatic conditions, whereas the generalized linear model, bioclim, and domain models to be less robust in this regard. These findings are important not only for predicting and managing invasive alien gorse in South Australia and Sri Lanka but also in other countries of the invasive range.

Keywords: invasive species, Maxent, species distribution modelling, Ulex europaeus

Procedia PDF Downloads 134
1215 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89

Authors: A. Chatel, I. S. Torreguitart, T. Verstraete

Abstract:

The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.

Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness

Procedia PDF Downloads 110
1214 Disintegration of Deuterons by Photons Reaction Model for GEANT4 with Dibaryon Formalism

Authors: Jae Won Shin, Chang Ho Hyun

Abstract:

A disintegration of deuterons by photons (dγ → np) reaction model for GEANT4 is developed in this work. An effective field theory with dibaryon fields Introducing a dibaryon field, we can take into account the effective range contribution to the propagator up to infinite order, and it consequently makes the convergence of the theory better than the pionless effective field theory without dibaryon fields. We develop a hadronic model for GEANT4 which is specialized for the disintegration of the deuteron by photons, dγ → np. For the description of two-nucleon interactions, we employ an effective field theory so called pionless theory with dibaryon fields (dEFT). In spite of its simplicity, the theory has proven very effective and useful in the applications to various two-nucleon systems and processes at low energies. We apply the new model of GEANT4 (G4dEFT) to the calculation of total and differential cross sections in dγ → np, and obtain good agreements to experimental data for a wide range of incoming photon energies.

Keywords: dγ → np, dibaryon fields, effective field theory, GEANT4

Procedia PDF Downloads 378
1213 Supplementation of Mannan Oligosaccharides in Guinea Pigs: Mortality and Growth Performance

Authors: C. Minguez, J. Bueso-Rodenas, C. Ibanez, A. Calvo

Abstract:

Mannan oligosaccharides (MOS) is one of the prebiotic most used in livestock nutrition. In this research, the effect of MOS dietary supplementation on growth performance and mortality in meat guinea pigs were studied. Three different experimental groups were compared: Control group (no additives); MOS 1 (1.5 g kg−1); MOS 2 (2 g kg−1). Guinea pigs were housed in 15 collective cages (n = 50 animals in each trial; 10 animals per cage). The young guinea pigs were weaning at day 28 and individually identified by a little ear tag. The fattening period was 49 days. Guinea pigs in both groups were fed ad libitum, with a standard commercial pellet diet (10 MJ of digestible energy/kg, 17% crude protein, 11% crude fiber, and 4.5% crude fat) and alfalfa (Medicago sativa) as forage. Growth traits, including body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion ratio (FCR), were measured weekly. On day 74, the animals were slaughtered. Contrasts between groups were obtained by calculated generalized least squares values. Mortality were evaluated by Fisher's exact test. Between MOS groups no significant differences were observed for growth traits and mortality. However, significant differences against the control group were observed for traits studied (pvalue < 0.05). In conclusion, the use of MOS could be a good prebiotic supplement to raise guinea pigs because it MOS has shown positive effects in growth traits and immune response in animals.

Keywords: guinea pig, growth, mannan oligosaccharides, mortality

Procedia PDF Downloads 139
1212 Early Return to Play in Football Player after ACL Injury: A Case Report

Authors: Nicola Milani, Carla Bellissimo, Davide Pogliana, Davide Panzin, Luca Garlaschelli, Giulia Facchinetti, Claudia Casson, Luca Marazzina, Andrea Sartori, Simone Rivaroli, Jeff Konin

Abstract:

The patient is a 26 year-old male amateur football player from Milan, Italy; (81kg; 185cm; BMI 23.6 kg/m²). He sustained a non-contact anterior cruciate ligament tear to his right knee in June 2021. In September 2021, his right knee ligament was reconstructed using a semitendinosus graft. The injury occurred during a football match on natural grass with typical shoes on a warm day (32 degrees celsius). Playing as a defender he sustained the injury during a change of direction, where the foot was fixated on the grass. He felt pain and was unable to continue playing the match. The surgeon approved his rehabilitation to begin two weeks post-operative. The initial physiotherapist assessment determined performing two training sessions per day within the first three months. In the first three weeks, the pain was 4/10 on Numerical Rating Scale (NRS), no swelling, a range of motion was 0-110°, with difficulty fully extending his knee and minimal quadriceps activation. Crutches were discontinued at four weeks with improved walking. Active exercise, electrostimulator, physical therapy, massages, osteopathy, and passive motion were initiated. At week 6, he completed his first functional movement screen; the score was 16/21 with no pain and no swelling. At week 8, the isokinetic test showed a 23% differential deficit between the two legs in maximum strength (at 90°/s). At week 10, he improved to 15% of injury-induced deficit which suggested he was ready to start running. At week 12, the athlete sustained his first threshold test. At week 16, he performed his first return to sports movement assessment, which revealed a 10% stronger difference between the legs. At week 16, he had his second threshold test. At week 17, his first on-field test revealed a 5% differential deficit between the two legs in the hop test. At week 18, isokinetic test demonstrates that the uninjured leg was 7% stronger than the recovering leg in maximum strength (at 90°/s). At week 20, his second on-field test revealed a 2% difference in hop test; at week 21, his third isokinetic test demonstrated a difference of 5% in maximum strength (at 90°/s). At week 21, he performed his second return to sports movement assessment which revealed a 2% difference between the limbs. Since it was the end of the championship, the team asked him to partake in the playoffs; moreover the player was very motivated to participate in the playoffs also because he was the captain of the team. Together with the player and the team, we decided to let him play even though we were aware of a heightened risk of injury than what is reported in the literature because of two factors: biological recovery times and the results of the tests we performed. In the decision making process about the athlete’s recovery time, it is important to balance the information available from the literature with the desires of the patient to avoid frustration.

Keywords: ACL, football, rehabilitation, return to play

Procedia PDF Downloads 119
1211 Vibration Propagation in Body-in-White Structures Through Structural Intensity Analysis

Authors: Jamal Takhchi

Abstract:

The understanding of vibration propagation in complex structures such as automotive body in white remains a challenging issue in car design regarding NVH performances. The current analysis is limited to the low frequency range where modal concepts are dominant. Higher frequencies, between 200 and 1000 Hz, will become critical With the rise of electrification. EVs annoying sounds are mostly whines created by either Gears or e-motors between 300 Hz and 2 kHz. Structural intensity analysis was Experienced a few years ago on finite element models. The application was promising but limited by the fact that the propagating 3D intensity vector field is masked by a rotational Intensity field. This rotational field should be filtered using a differential operator. The expression of this operator in the framework of finite element modeling is not yet known. The aim of the proposed work is to implement this operator in the current dynamic solver (NASTRAN) of Stellantis and develop the Expected methodology for the mid-frequency structural analysis of electrified vehicles.

Keywords: structural intensity, NVH, body in white, irrotatational intensity

Procedia PDF Downloads 155
1210 Production and Characterization of Biochars from Torrefaction of Biomass

Authors: Serdar Yaman, Hanzade Haykiri-Acma

Abstract:

Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.

Keywords: biochar, biomass, fuel upgrade, torrefaction

Procedia PDF Downloads 373
1209 Mechanical Structural and Optical Properties of Lu₂SiO₅ Scintillator-Polymer Composite Films

Authors: M. S. E. Hamroun, K. Bachari, A. Berrayah, L. Mechernene, L. Guerbous

Abstract:

Composite films containing homogeneously dispersed scintillation nano-particles of Lu₂SiO₅:Ce³⁺, in optically transparent polymer matrix, have been prepared and characterized through X-ray diffraction, differential scanning calorimetric (DSC), thermogravimetric analysis (ATG), dynamic mechanical analysis (DMA), electron scanning microscopy morphology (SEM) and photoluminescence (PL). Lu₂SiO₅:Ce³⁺ scintillator powder was successfully synthesized via Sol-Gel method. This study is realized with different mass ratios of nano-particles embedded in polystyrene and polylactic acid polymer matrix (5, 10, 15, 20%) to see the influence of nano-particles on the mechanical, structural and optical properties of films. The composites have been prepared with 400 µm thickness. It has found that the structural proprieties change with mass ratio on each sample. PL photoluminescence shows the characteristic Lu₂SiO₅:Ce³⁺ emission in the blue region and intensity varied for each film.

Keywords: nano-particles, sol gel, photoluminescence, Ce³⁺, scintillator, polystyrene

Procedia PDF Downloads 120
1208 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media

Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.

Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility

Procedia PDF Downloads 218
1207 Offshore Power Transition Project

Authors: Kashmir Johal

Abstract:

Within a wider context of improving whole-life effectiveness of gas and oil fields, we have been researching how to generate power local to the wellhead. (Provision of external power to a subsea wellhead can be prohibitively expensive and results in uneconomic fields. This has been an oil/gas industry challenge for many years.) We have been developing a possible approach to “local” power generation and have been conducting technical, environmental, (and economic) research to develop a viable approach. We sought to create a workable design for a new type of power generation system that makes use of differential pressure that can exist between the sea surface and a gas (or oil reservoir). The challenge has not just been to design a system capable of generating power from potential energy but also to design it in such a way that it anticipates and deals with the wide range of technological, environmental, and chemical constraints faced in such environments. We believe this project shows the enormous opportunity in deriving clean, economic, and zero emissions renewable energy from offshore sources. Since this technology is not currently available, a patent has been filed to protect the advancement of this technology.

Keywords: renewable, energy, power, offshore

Procedia PDF Downloads 65
1206 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: electrospininng, nanoparticle, polystyrene, ZnO

Procedia PDF Downloads 240
1205 Discrete Choice Modeling in Education: Evaluating Early Childhood Educators’ Practices

Authors: Michalis Linardakis, Vasilis Grammatikopoulos, Athanasios Gregoriadis, Kalliopi Trouli

Abstract:

Discrete choice models belong to the family of Conjoint analysis that are applied on the preferences of the respondents towards a set of scenarios that describe alternative choices. The scenarios have been pre-designed to cover all the attributes of the alternatives that may affect the choices. In this study, we examine how preschool educators integrate physical activities into their everyday teaching practices through the use of discrete choice models. One of the advantages of discrete choice models compared to other more traditional data collection methods (e.g. questionnaires and interviews that use ratings) is that the respondent is called to select among competitive and realistic alternatives, rather than objectively rate each attribute that the alternatives may have. We present the effort to construct and choose representative attributes that would cover all possible choices of the respondents, and the scenarios that have arisen. For the purposes of the study, we used a sample of 50 preschool educators in Greece that responded to 4 scenarios (from the total of 16 scenarios that the orthogonal design resulted), with each scenario having three alternative teaching practices. Seven attributes of the alternatives were used in the scenarios. For the analysis of the data, we used multinomial logit model with random effects, multinomial probit model and generalized mixed logit model. The conclusions drawn from the estimated parameters of the models are discussed.

Keywords: conjoint analysis, discrete choice models, educational data, multivariate statistical analysis

Procedia PDF Downloads 465
1204 Finite Element Modeling of Heat and Moisture Transfer in Porous Material

Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume

Abstract:

This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.

Keywords: finite element method, heat transfer, moisture transfer, porous materials, wood

Procedia PDF Downloads 400
1203 Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage

Authors: Awni H. Alkhazaleh, Baljinder K. Kandola

Abstract:

In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications.

Keywords: building materials, flammability, phase change materials, thermal energy storage

Procedia PDF Downloads 335
1202 Thyroid Stimulating Hormone Is a Biomarker for Stress: A Prospective Longitudinal Study

Authors: Jeonghun Lee

Abstract:

Thyroid-stimulating hormone (TSH) is regulated by the negative feedback of T3 and T4 but is affected by cortisol and cytokines during allostasis. Hence, TSH levels can be influenced by stress through cortisol. In the present study, changes in TSH levels under stress and the potential of TSH as a stress marker were examined in patients lacking T3 or T4 feedback after thyroid surgery. The three stress questionnaires (Korean version of the Daily Stress Inventory, Social Readjustment Rating Scale, and Stress Overload Scale-Short [SOSS]), open-ended question (OQ), and thyroid function tests were performed twice in 106 patients enrolled from January 2019 to October 2020. Statistical analysis was performed using the generalized linear mixed effect model (GLMM) in R software version 4.1.0. In a multiple LMM involving 106 patients, T3, T4, SOSS (category), open-ended questions, the extent of thyroidectomy, and preoperative TSH were significantly correlated with lnTSH. T3 and T4 increased by 1 and lnTSH decreased by 0.03, 3.52, respectively. In case of a stressful event on OQ, lnTSH increased by 1.55. In the high-risk group, lnTSH increased by 0.79, compared with the low group (p<0.05). TSH had a significant relationship with stress, together with T3, T4, and the extent of thyroidectomy. As such, it has the potential to be used as a stress marker, though it showed a low correlation with other stress questionnaires. To address this limitation, questionnaires on various social environments and research on copy strategies are necessary for future studies.

Keywords: stress, surgery, thyroid stimulating hormone, thyroidectomy

Procedia PDF Downloads 91
1201 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation

Authors: Yaping Zhao

Abstract:

In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.

Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density

Procedia PDF Downloads 503
1200 Stimulated Raman Scattering of Ultra Intense Hollow Gaussian Beam

Authors: Prerana Sharma

Abstract:

Effect of relativistic nonlinearity on stimulated Raman scattering of the propagating laser beam carrying null intensity in center (hollow Gaussian beam) by excited plasma wave are studied in a collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The analysis is done using eikonal method. The phenonmenon of Stimulated Raman scattering is shown along with the excitation of seed plasma wave. The power of plasma wave and back reflectivity is observed for higher order of hollow Gaussian beam. Back reflectivity is studied numerically for various orders of HGLB with different value of plasma density, laser power and beam radius. Numerical analysis shows that these parameters play vital role on reflectivity characteristics.

Keywords: Hollow Gaussian beam, relativistic nonlinearity, plasma physics, Raman scattering

Procedia PDF Downloads 638
1199 Conventional Synthesis and Characterization of Zirconium Molybdate, Nd2Zr3(MoO4)9

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

Rare earths containing complex metal oxides have drawn much attention due to physical, chemical and optical properties which make them feasible in so many areas such as non-linear optical materials and ion exchanger. We have researched a systematic study to obtain rare earth containing zirconium molybdate compound, characterization, investigation of crystal system and calculation of unit cell parameters.  After a successful synthesis of Nd2Zr3(MoO4)9 which is a member of rare earth metal containing complex oxides family, X-ray diffraction (XRD), High Score Plus/Rietveld refinement analysis, and Fourier Transform Infrared Spectroscopy (FTIR) were completed to determine the crystal structure. Morphological properties and elemental composition were determined by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. Thermal properties were observed via Thermogravimetric-differential thermal analysis (TG/DTA).

Keywords: Nd₂Zr₃(MoO₄)₉, powder x-ray diffraction, solid state synthesis, zirconium molybdates

Procedia PDF Downloads 398
1198 Microwave Assisted Synthesis and Metal Complexes of Some Copolymers Based on Itaconic Acid

Authors: Mohamed H. El-Newehy, Sameh M. Osman, Moamen S. Refat, Salem S. Al-Deyab, Ayman El-Faham

Abstract:

The two copolymers itaconic acid-methyl methacrylate and itaconic acid-acrylamide have been prepared in different ratio by radical copolymerization in the presence of azobisisobutyronitrile (AIBN) as initiator and using 2-butanone as reaction medium using microwave irradiation. The microwave technique is safe, fast, and gives high yield of the products with high purity in an optimum time, comparing to the traditional conventional heating. All the prepared copolymers were characterized by FT-IR, thermal analysis and elemental microanalysis. The itaconic acid-based copolymers showed a good sensitivity in alkaline media for scavenging Cu (II) and Pb (II). The chelation behavior of both Cu (II) and Pb (II) complexes were checked using FT-IR, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). The infrared data are in a good agreement with the coordination through carboxylate-to-metal, in which the copolymers acting as a bidentate ligand.

Keywords: microwave synthesis, itaconic acid, copolymerization, scavenging, thermal stability

Procedia PDF Downloads 458
1197 Umbilical Epidermal Inclusion Cysts, a Rare Cause of Umbilical Mass: A Case Report and Review of Literature

Authors: Christine Li, Amanda Robertson

Abstract:

Epidermal inclusion cysts occur when epidermal cells are implanted in the dermis following trauma, or surgery. They are a rare cause of an umbilical mass, with very few cases previously reported following abdominal surgery. These lesions can present with a range of symptoms, including palpable mass, pain, redness, or discharge. This paper reports a case of an umbilical epidermal inclusion cyst in a 52-year-old female presenting with a six-week history of a painful, red umbilical lump on a background of two previous diagnostic laparoscopies. Abdominal computed tomography (CT) scans revealed non-specific soft tissue thickening in the umbilical region. This was successfully treated with complete excision of the lesion. Umbilical lumps are a common presentation but can represent a diagnostic challenge. The differential diagnosis should include an epidermal inclusion cyst, particularly in a patient who has had previous abdominal surgery, including laparoscopic surgery.

Keywords: epidermal inclusion cyst, laparoscopy, umbilical mass, umbilicus

Procedia PDF Downloads 83
1196 Chaotic Motion of Single-Walled Carbon Nanotube Subject to Damping Effect

Authors: Tai-Ping Chang

Abstract:

In the present study, the effects on chaotic motion of single-walled carbon nanotube (SWCNT) due to the linear and nonlinear damping are investigated. By using the Hamilton’s principle, the nonlinear governing equation of the single-walled carbon nanotube embedded in a matrix is derived. The Galerkin’s method is adopted to simplify the integro-partial differential equation into a nonlinear dimensionless governing equation for the SWCNT, which turns out to be a forced Duffing equation. The variations of the Lyapunov exponents of the SWCNT with damping and harmonic forcing amplitudes are investigated. Based on the computations of the top Lyapunov exponent, it is concluded that the chaotic motion of the SWCNT occurs when the amplitude of the periodic excitation exceeds certain value, besides, the chaotic motion of the SWCNT occurs with small linear damping and tiny nonlinear damping.

Keywords: chaotic motion, damping, Lyapunov exponents, single-walled carbon nanotube

Procedia PDF Downloads 320
1195 Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”

Authors: M. R. Akbari, P. Soleimani, R. Khalili, Sara Akbari

Abstract:

Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity.

Keywords: new method (AGM), arched beam bridges, angular frequency, harmonic loads

Procedia PDF Downloads 297