Search results for: vegetation changes
509 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia
Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju
Abstract:
Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization
Procedia PDF Downloads 87508 Employing Remotely Sensed Soil and Vegetation Indices and Predicting by Long Short-Term Memory to Irrigation Scheduling Analysis
Authors: Elham Koohikerade, Silvio Jose Gumiere
Abstract:
In this research, irrigation is highlighted as crucial for improving both the yield and quality of potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate soil moisture content, addressing the limitations of field data. Developed under the guidance of the Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing drought conditions and determining irrigation needs. This study validated the spectral characteristics of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture was developed using a machine learning approach combining model-based and satellite-based datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and times, with its accuracy verified through cross-validation and comparison with existing soil moisture datasets. The model effectively captures temporal dynamics, making it valuable for applications requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By identifying typical peak soil moisture values and observing distribution shapes, irrigation can be scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a uniform irrigation strategy might be effective across multiple parcels, with adjustments based on specific parcel characteristics and historical data trends. The application of the LSTM model to predict soil moisture and vegetation indices yielded mixed results. While the model effectively captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately predicting EVI, NDVI, and NMDI.Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation monitoring
Procedia PDF Downloads 41507 Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data
Authors: Zegrar Ahmed, Ghabi Mohamed
Abstract:
The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use.Keywords: remote sensing, SIG, ecosystem, degradation, desertification
Procedia PDF Downloads 339506 Comparing Remote Sensing and in Situ Analyses of Test Wheat Plants as Means for Optimizing Data Collection in Precision Agriculture
Authors: Endalkachew Abebe Kebede, Bojin Bojinov, Andon Vasilev Andonov, Orhan Dengiz
Abstract:
Remote sensing has a potential application in assessing and monitoring the plants' biophysical properties using the spectral responses of plants and soils within the electromagnetic spectrum. However, only a few reports compare the performance of different remote sensing sensors against in-situ field spectral measurement. The current study assessed the potential applications of open data source satellite images (Sentinel 2 and Landsat 9) in estimating the biophysical properties of the wheat crop on a study farm found in the village of OvchaMogila. A Landsat 9 (30 m resolution) and Sentinel-2 (10 m resolution) satellite images with less than 10% cloud cover have been extracted from the open data sources for the period of December 2021 to April 2022. An Unmanned Aerial Vehicle (UAV) has been used to capture the spectral response of plant leaves. In addition, SpectraVue 710s Leaf Spectrometer was used to measure the spectral response of the crop in April at five different locations within the same field. The ten most common vegetation indices have been selected and calculated based on the reflectance wavelength range of remote sensing tools used. The soil samples have been collected in eight different locations within the farm plot. The different physicochemical properties of the soil (pH, texture, N, P₂O₅, and K₂O) have been analyzed in the laboratory. The finer resolution images from the UAV and the Leaf Spectrometer have been used to validate the satellite images. The performance of different sensors has been compared based on the measured leaf spectral response and the extracted vegetation indices using the five sampling points. A scatter plot with the coefficient of determination (R2) and Root Mean Square Error (RMSE) and the correlation (r) matrix prepared using the corr and heatmap python libraries have been used for comparing the performance of Sentinel 2 and Landsat 9 VIs compared to the drone and SpectraVue 710s spectrophotometer. The soil analysis revealed the study farm plot is slightly alkaline (8.4 to 8.52). The soil texture of the study farm is dominantly Clay and Clay Loam.The vegetation indices (VIs) increased linearly with the growth of the plant. Both the scatter plot and the correlation matrix showed that Sentinel 2 vegetation indices have a relatively better correlation with the vegetation indices of the Buteo dronecompared to the Landsat 9. The Landsat 9 vegetation indices somewhat align better with the leaf spectrometer. Generally, the Sentinel 2 showed a better performance than the Landsat 9. Further study with enough field spectral sampling and repeated UAV imaging is required to improve the quality of the current study.Keywords: landsat 9, leaf spectrometer, sentinel 2, UAV
Procedia PDF Downloads 107505 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing
Authors: Neha Devi, P. K. Joshi
Abstract:
Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis
Procedia PDF Downloads 164504 Reinforcement Learning for Classification of Low-Resolution Satellite Images
Authors: Khadija Bouzaachane, El Mahdi El Guarmah
Abstract:
The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.Keywords: classification, deep learning, reinforcement learning, satellite imagery
Procedia PDF Downloads 213503 Biological Monitoring: Vegetation Cover, Bird Assemblages, Rodents, Terrestrial and Aquatic Invertebrates from a Closed Landfill
Authors: A. Cittadino, P. Gantes, C. Coviella, M. Casset, A. Sanchez Caro
Abstract:
Three currently active landfills receive the waste from Buenos Aires city and the Great Buenos Aires suburbs. One of the first landfills to receive solid waste from this area was located in Villa Dominico, some 7 km south from Buenos Aires City. With an area of some 750 ha, including riparian habitats, divided into 14 cells, it received solid wastes from June 1979 through February 2004. In December 2010, a biological monitoring program was set up by CEAMSE and Universidad Nacional de Lujan, still operational to date. The aim of the monitoring program is to assess the state of several biological groups within the landfill and to follow their dynamics overtime in order to identify if any, early signs of damage the landfill activities might have over the biota present. Bird and rodent populations, aquatic and terrestrial invertebrates’ populations, cells vegetation coverage, and surrounding areas vegetation coverage and main composition are followed by quarterly samplings. Bird species richness and abundance were estimated by observation over walk transects on each environment. A total of 74 different species of birds were identified. Species richness and diversity were high for both riparian surrounding areas and within the landfill. Several grassland -typical of the 'Pampa'- bird species were found within the landfill, as well as some migratory and endangered bird species. Sherman and Tomahawk traps are set overnight for small mammal sampling. Rodent populations are just above detection limits, and the few specimens captured belong mainly to species common to rural areas, instead of city-dwelling species. The two marsupial species present in the region were captured on occasions. Aquatic macroinvertebrates were sampled on a watercourse upstream and downstream the outlet of the landfill’s wastewater treatment plant and are used to follow water quality using biological indices. Water quality ranged between weak and severe pollution; benthic invertebrates sampled before and after the landfill, show no significant differences in water quality using the IBMWP index. Insect biota from yellow sticky cards and pitfall traps showed over 90 different morphospecies, with Shannon diversity index running from 1.9 to 3.9, strongly affected by the season. An easy-to-perform non-expert demandant method was used to assess vegetation coverage. Two scales of determination are utilized: field observation (1 m resolution), and Google Earth images (that allow for a better than 5 m resolution). Over the eight year period of the study, vegetation coverage over the landfill cells run from a low 83% to 100% on different cells, with an average between 95 to 99% for the entire landfill depending on seasonality. Surrounding area vegetation showed almost 100% coverage during the entire period, with an average density from 2 to 6 species per sq meter and no signs of leachate damaged vegetation.Keywords: biological indicators, biota monitoring, landfill species diversity, waste management
Procedia PDF Downloads 139502 An Examination of the Impact of Sand Dunes on Soils, Vegetation and Water Resources as the Major Means of Livelihood in Gada Local Government Area of Sokoto State, Nigeria
Authors: Abubakar Aminu
Abstract:
Sand dunes, as a major product of desertification, is well known to affect soil resources, water resources and vegetation, especially in arid and semi-arid region; this scenario disrupt the livelihood security of people in the affected areas. The research assessed the episode of sand dune accumulation on water resources, soil and vegetation in Gada local government of Sokoto State, Nigeria. In this paper, both qualitative and quantitative methods were used to generate data which was analyzed and discussed. The finding of the paper shows that livelihood was affected by accumulations of sand dunes as water resources and soils were affected negatively thereby reducing crop yields and making livestock domestication a very difficult and expensive task; the finding also shows that 60% of the respondents agreed to planting of trees as the major solution to combat sand dunes accumulation. However, the soil parameters tested indicated low Organic carbon, low Nitrogen, low Potassium, Calcium and Phosphorus but higher values were recorded in Sodium and Cation exchange capacity which served as evidence of the high or strong aridity nature of the soil in the area. In line with the above, the researcher recommended a massive tree planting campaign to curtail desertification as well as using organic manures for higher agricultural yield and as such, improvement in livelihood security.Keywords: soils, vegetatio, water, desertification
Procedia PDF Downloads 70501 Ecological and Cartographic Study of the Cork OAK of the Forest of Mahouna, North-Eastern of Algeria
Authors: Amina Beldjazia, Djamel Alatou, Khaled Missaoui
Abstract:
The forest of Mahouna is a part of the mountain range of the Tell Atlas in the northeast of Algeria. It is characterized by a significant biodiversity. The management of this resource requires thorough the understanding of the current state of the vegetation (inventories), degradation factors and ongoing monitoring of the various long-term ecological changes. Digital mapping is a very effective way to in-depth knowledge of natural resources. The realization of a vegetation map based on satellite images, aerial photographs and the use of geographic information system (GIS), shows large values results of the vegetation of the massif in the scientific view point (the development of a database of the different formations that exist on the site, ecological conditions) and economic (GIS facilitate our task of managing the various resources and diversity of the forest). The methodology is divided into three stages: the first involves an analysis of climate data (1988 to 2013); the second is to conduct field surveys (soil and phytoecological) during the months of June and July 2013 (10 readings), the third is based on the development of different themes and synthetic cards by software of GIS (ENVI 4.6 and 10 ARCMAP). The results show: cork oak covers an area of 1147 ha. Depending on the environmental conditions, it rests on sandstone and individualizes between 3 layers of vegetation from thermo-mediterranean (the North East part with 40ha), meso-Mediterranean (1061 ha) and finally the supra-Mediterranean (46ha ). The map shows the current actual state of the cork oak forest massif of Mahouna, it is an older forest (>150 years) where regeneration is absent because of several factors (fires, overgrazing, leaching, erosion, etc.). The cork oak is in the form of dense forest with Laburnum and heather as the dominant species. It may also present in open forest dominated by scrub species: Daphne gniduim, Erica arborea, Calycotome spinosa, Phillyrea angustifolia, Lavandula stoechas, Cistus salvifolius.Keywords: biodiversity, environmental, Mahouna, Cork oak
Procedia PDF Downloads 443500 Diversity and Distribution of Butterflies (Lepidoptera-Rhopalocera) along with Altitudinal Gradient and Vegetation Types at Lahoul Valley, Trans-Himalaya Region, India
Authors: Saveena Bogtapa, Jagbir Singh Kirti
Abstract:
Himalaya is one of the most fascinating ranges in the world. In India, it comprises 18 percent of the land area. Lahoul valley which is a part of Trans-Himalaya region is well known for its unique, diverse flora and fauna. It lies in the North-Eastern corner of the state Himachal Pradesh where its altitude ranges between 2500m to 5000m. Vegetation of this region is dry-temperate to alpine type. The diversity of the area is very less, rare, unique and highly endemic. But today, as a lot of environmental degradation has taken place in this hot spot of biodiversity because of frequent developmental and commercial activities which lead to the diversity of this area comes under a real threat. Therefore, as part of the research, butterflies which are known for their attractiveness as well as usefulness to the ecosystem, are used for the study. The diversity of butterflies of a particular area not only provides a healthy environment but also serves as the first step of conservation to the biodiversity. Their distribution in different habitats and altitude type helps us to understand the species richness and abundance in an area. Moreover, different environmental parameters which affect the butterfly community has also recorded. Hence, the present study documents the butterfly diversity in an unexplored habitat and altitude types at Lahoul valley. The valley has been surveyed along with altitudinal gradients (from 2500m to 4500m) and in various habitats like agriculture land, grassland, scrubland, riverine and in different types of forests. Very rare species of butterflies have been explored, and these will be discussed along with different parameters during the presentation.Keywords: butterflies, diversity, Lahoul valley, altitude, vegetation
Procedia PDF Downloads 246499 Floristic Diversity, Composition and Environmental Correlates on the Arid, Coralline Islands of the Farasan Archipelago, Red SEA, Saudi Arabia
Authors: Khalid Al Mutairi, Mashhor Mansor, Magdy El-Bana, Asyraf Mansor, Saud AL-Rowaily
Abstract:
Urban expansion and the associated increase in anthropogenic pressures have led to a great loss of the Red Sea’s biodiversity. Floristic composition, diversity, and environmental controls were investigated for 210 relive's on twenty coral islands of Farasan in the Red Sea, Saudi Arabia. Multivariate statistical analyses for classification (Cluster Analysis), ordination (Detrended Correspondence Analysis (DCA), and Redundancy Analysis (RDA) were employed to identify vegetation types and their relevance to the underlying environmental gradients. A total of 191 flowering plants belonging to 53 families and 129 genera were recorded. Geophytes and chamaephytes were the main life forms in the saline habitats, whereas therophytes and hemicryptophytes dominated the sandy formations and coral rocks. The cluster analysis and DCA ordination identified twelve vegetation groups that linked to five main habitats with definite floristic composition and environmental characteristics. The constrained RDA with Monte Carlo permutation tests revealed that elevation and soil salinity were the main environmental factors explaining the vegetation distributions. These results indicate that the flora of the study archipelago represents a phytogeographical linkage between Africa and Saharo-Arabian landscape functional elements. These findings should guide conservation and management efforts to maintain species diversity, which is threatened by anthropogenic activities and invasion by the exotic invasive tree Prosopis juliflora (Sw.) DC.Keywords: biodiversity, classification, conservation, ordination, Red Sea
Procedia PDF Downloads 343498 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images
Authors: Meenal Surawar, Rajashree Kotharkar
Abstract:
Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.Keywords: land use/land cover, land surface temperature, remote sensing, urban heat island
Procedia PDF Downloads 282497 Effect of Climate Change on Groundwater Recharge in a Sub-Humid Sub-Tropical Region of Eastern India
Authors: Suraj Jena, Rabindra Kumar Panda
Abstract:
The study region of the reported study was in Eastern India, having a sub-humid sub-tropical climate and sandy loam soil. The rainfall in this region has wide temporal and spatial variation. Due to lack of adequate surface water to meet the irrigation and household demands, groundwater is being over exploited in that region leading to continuous depletion of groundwater level. Therefore, there is an obvious urgency in reversing the depleting groundwater level through induced recharge, which becomes more critical under the climate change scenarios. The major goal of the reported study was to investigate the effects of climate change on groundwater recharge and subsequent adaptation strategies. Groundwater recharge was modelled using HELP3, a quasi-two-dimensional, deterministic, water-routing model along with global climate models (GCMs) and three global warming scenarios, to examine the changes in groundwater recharge rates for a 2030 climate under a variety of soil and vegetation covers. The relationship between the changing mean annual recharge and mean annual rainfall was evaluated for every combination of soil and vegetation using sensitivity analysis. The relationship was found to be statistically significant (p<0.05) with a coefficient of determination of 0.81. Vegetation dynamics and water-use affected by the increase in potential evapotranspiration for large climate variability scenario led to significant decrease in recharge from 49–658 mm to 18–179 mm respectively. Therefore, appropriate conjunctive use, irrigation schedule and enhanced recharge practices under the climate variability and land use/land cover change scenarios impacting the groundwater recharge needs to be understood properly for groundwater sustainability.Keywords: Groundwater recharge, climate variability, Land use/cover, GCM
Procedia PDF Downloads 281496 The Stable Isotopic Composition of Pedogenic Carbonate in the Minusinsk Basin, South Siberia
Authors: Jessica Vasil'chuk, Elena Ivanova, Pavel Krechetov, Vladimir Litvinsky, Nadine Budantseva, Julia Chizhova, Yurij Vasil'chuk
Abstract:
Carbonate minerals’ isotopic composition is widely used as a proxy for environmental parameters of the past. Pedogenic carbonate coatings on lower surfaces of coarse rock fragments are studied in order to indicate the climatic conditions and predominant vegetation under which they were formed. The purpose of the research is to characterize the isotopic composition of carbonate pedofeatures in soils of Minusink Hollow and estimate its correlation with isotopic composition of soil pore water, precipitation, vegetation and parent material. The samples of pedogenic carbonates, vegetation, carbonate parent material, soil water and precipitation water were analyzed using the Delta-V mass spectrometer with options of a gas bench and element analyser. The soils we studied are mainly Kastanozems that are poorly moisturized, therefore soil pore water was extracted by ethanol. Oxygen and carbon isotopic composition of pedogenic carbonates was analyzed in 3 key sites. Kazanovka Khakass state national reserve, Hankul salt lake, region of Sayanogorsk aluminum smelter. Vegetation photosynthetic pathway in the region is mainly C3. δ18O values of carbonate coatings in soils of Kazanovka vary in a range from −7.49 to −10.5‰ (vs V-PDB), and the smallest value −13.9‰ corresponds the coatings found between two buried soil horizons which 14C dates are 4.6 and 5.2 kyr BP. That may indicate cooler conditions of late Holocene than nowadays. In Sayanogorsk carbonates’ δ18O range is from −8.3 to −11.1‰ and near the Hankul Lake is from −9.0 to −10.2‰ all ranges are quite similar and may indicate coatings’ uniform formation conditions. δ13C values of carbonate coatings in Kazanovka vary from −2.5 to −6.7‰, the highest values correspond to the soils of Askiz and Syglygkug rivers former floodplains. For Sayanogorsk the range is from −4.9 to −6.8‰ and for Hankul from −2.3 to −5.7‰, where the highest value is for the modern salt crust. δ13C values of coatings strongly decrease from inner (older) to outer (younger) layers of coatings, that can indicate differences connected with the diffusion of organic material. Carbonate parent material δ18O value in the region vary from −11.1 to −12.0‰ and δ13C values vary from −4.9 to −5.7‰. Soil pore water δ18O values that determine the oxygen isotope composition of carbonates vary due to the processes of transpiration and mixing in the studied sites in a wide range of −2.0 to −13.5‰ (vs V-SMOW). Precipitation waters show δ18O values from -6.6‰ in May and -19.0‰ in January (snow) due to the temperature difference. The main conclusions are as follows: pedogenic carbonates δ13C values (−7…−2,5‰) show no correlation with modern C3 vegetation δ13C values (−30…−26‰), expected values under such vegetation are (−19…−15‰) but are closer to C4 vegetation. Late Holocene climate for the Minusinsk Hollow according to obtained data on isotope composition of carbonates and soil pore water chemical composition was dryer and cooler than present, that does not contradict with paleocarpology data obtained for the region. The research was supported by Russian Science Foundation (grant №14-27-00083).Keywords: carbon, oxygen, pedogenic carbonates, South Siberia, stable isotopes
Procedia PDF Downloads 297495 Interference of Mild Drought Stress on Estimation of Nitrogen Status in Winter Wheat by Some Vegetation Indices
Authors: H. Tavakoli, S. S. Mohtasebi, R. Alimardani, R. Gebbers
Abstract:
Nitrogen (N) is one of the most important agricultural inputs affecting crop growth, yield and quality in rain-fed cereal production. N demand of crops varies spatially across fields due to spatial differences in soil conditions. In addition, the response of a crop to the fertilizer applications is heavily reliant on plant available water. Matching N supply to water availability is thus essential to achieve an optimal crop response. The objective of this study was to determine effect of drought stress on estimation of nitrogen status of winter wheat by some vegetation indices. During the 2012 growing season, a field experiment was conducted at the Bundessortenamt (German Plant Variety Office) Marquardt experimental station which is located in the village of Marquardt about 5 km northwest of Potsdam, Germany (52°27' N, 12°57' E). The experiment was designed as a randomized split block design with two replications. Treatments consisted of four N fertilization rates (0, 60, 120 and 240 kg N ha-1, in total) and two water regimes (irrigated (Irr) and non-irrigated (NIrr)) in total of 16 plots with dimension of 4.5 × 9.0 m. The indices were calculated using readings of a spectroradiometer made of tec5 components. The main parts were two “Zeiss MMS1 nir enh” diode-array sensors with a nominal rage of 300 to 1150 nm with less than 10 nm resolutions and an effective range of 400 to 1000 nm. The following vegetation indices were calculated: NDVI, GNDVI, SR, MSR, NDRE, RDVI, REIP, SAVI, OSAVI, MSAVI, and PRI. All the experiments were conducted during the growing season in different plant growth stages including: stem elongation (BBCH=32-41), booting stage (BBCH=43), inflorescence emergence, heading (BBCH=56-58), flowering (BBCH=65-69), and development of fruit (BBCH=71). According to the results obtained, among the indices, NDRE and REIP were less affected by drought stress and can provide reliable wheat nitrogen status information, regardless of water status of the plant. They also showed strong relations with nitrogen status of winter wheat.Keywords: nitrogen status, drought stress, vegetation indices, precision agriculture
Procedia PDF Downloads 319494 Application of Vegetation Health Index for Drought Monitoring in the North-East Region of Nigeria
Authors: Abdulkadir I.
Abstract:
Scientists have come to terms with the fact that climate change has been and is expected to cause a significant increase in the severity and frequency of drought events. The northeast region of Nigeria is one of the most, if not the most, affected regions by drought in the country. Therefore, it is on this note that the present study applied ArcGIS and XLSTAT Software and explored drought and its trend in the northeast region of the country using the vegetation health index (VHI), Mann-Kendal, and Sen’s slope between 2001 and 2020. The study also explored the areas that remained under drought and no-drought conditions at intervals of five years for the period under review. The result of Mann-Kendal (-0.07) and Sen’s slope (-0.19) revealed that there was a decreasing trend in VHI over the period under review. The result further showed that the period between 2010 and 2015 had a minimum area of no-drought conditions of about 24%, with Gombe State accounting for the lowest percentage among the six States, about 0.9% of the total area of no-drought conditions. The result further showed the areas that were under drought conditions between 2010 and 2015 represented about 9.1%, with Borno State accounting for the highest percentage among the six States, about 2.5% of the total area under drought conditions. The masked-out areas stood at 66.8%, with Borno State accounting for the highest percentage among the six States, about 20.2% of the total area under drought conditions. Therefore, collective efforts are needed to put in place sustainable land management in the affected areas so as to mitigate the sprawl of desertification in the region.Keywords: climate change, drought, Mann Kendal, sustainable land management, vegetation health index
Procedia PDF Downloads 68493 Quantification of NDVI Variation within the Major Plant Formations in Nunavik
Authors: Anna Gaspard, Stéphane Boudreau, Martin Simard
Abstract:
Altered temperature and precipitation regimes associated with climate change generally result in improved conditions for plant growth. For Arctic and sub-Arctic ecosystems, this new climatic context favours an increase in primary productivity, a phenomenon often referred to as "greening". The development of an erect shrub cover has been identified as the main driver of Arctic greening. Although this phenomenon has been widely documented at the circumpolar scale, little information is available at the scale of plant communities, the basic unit of the Arctic, and sub-Arctic landscape mosaic. The objective of this study is to quantify the variation of NDVI within the different plant communities of Nunavik, which will allow us to identify the plant formations that contribute the most to the increase in productivity observed in this territory. To do so, the variation of NDVI extracted from Landsat images for the period 1984 to 2020 was quantified. From the Landsat scenes, annual summer NDVI mosaics with a resolution of 30 m were generated. The ecological mapping of Northern Quebec vegetation was then overlaid on the time series of NDVI maps to calculate the average NDVI per vegetation polygon for each year. Our results show that NDVI increases are more important for the bioclimatic domains of forest tundra and erect shrub tundra, and shrubby formations. Surface deposits, variations in mean annual temperature, and variations in winter precipitation are involved in NDVI variations. This study has thus allowed us to quantify changes in Nunavik's vegetation communities, using fine spatial resolution satellite imagery data.Keywords: climate change, latitudinal gradient, plant communities, productivity
Procedia PDF Downloads 182492 Land Use, Land Cover Changes and Woody Vegetation Status of Tsimur Saint Gebriel Monastery, in Tigray Region, Northern Ethiopia
Authors: Abraha Hatsey, Nesibu Yahya, Abeje Eshete
Abstract:
Ethiopian Orthodox Tewahido Church has a long tradition of conserving the Church vegetation and is an area treated as a refugee camp for many endangered indigenous tree species in Northern Ethiopia. Though around 36,000 churches exist in Ethiopia, only a few churches have been studied so far. Thus, this study assessed the land use land cover change of 3km buffer (1986-2018) and the woody species diversity and regeneration status of Tsimur St. Gebriel monastery in Tigray region, Northern Ethiopia. For vegetation study, systematic sampling was used with 100m spacing between plots and between transects. Plot size was 20m*20m for the main plot and 2 subplots (5m*5m each) for the regeneration study. Tree height, diameter at breast height(DBH) and crown area were measured in the main plot for all trees with DBH ≥ 5cm. In the subplots, all seedlings and saplings were counted with DBH < 5cm. The data was analyzed on excel and Pass biodiversity software for diversity and evenness analysis. The major land cover classes identified include bare land, farmland, forest, shrubland and wetland. The extents of forest and shrubland were declined considerably due to bare land and agricultural land expansions within the 3km buffer, indicating an increasing pressure on the church forest. Regarding the vegetation status, A total of 19 species belonging to 13 families were recorded in the monastery. The diversity (H’) and evenness recorded were 2.4 and 0.5, respectively. The tree density (DBH ≥ 5cm) was 336/ha and a crown cover of 65%. Olea europaea was the dominant (6.4m2/ha out of 10.5m2 total basal area) and a frequent species (100%) with good regeneration in the monastery. The rest of the species are less frequent and are mostly confined to water sources with good site conditions. Juniperus procera (overharvested) and the other indigenous species were with few trees left and with no/very poor regeneration status. The species having poor density, frequency and regeneration (Junperus procera, Nuxia congesta Fersen and Jasminium abyssinica) need prior conservation and enrichment planting. The indigenous species could also serve as a potential seed source for the reproduction and restoration of nearby degraded landscapes. The buffer study also demonstrated expansion of agriculture and bare land, which could be a threat to the forest of the isolated monastery. Hence, restoring the buffer zone is the only guarantee for the healthy existence of the church forest.Keywords: church forests, regeneration, land use change, vegetation status
Procedia PDF Downloads 205491 Data Integration in a GIS Geographic Information System Mapping of Agriculture in Semi-Arid Region of Setif, Algeria
Authors: W. Riahi, M. L. Mansour
Abstract:
Using tools of data processing such as geographic information system (GIS) for the contribution of the space management becomes more and more frequent. It allows collecting and analyzing diverse natural information relative to the same territory. Space technologies play crucial role in agricultural phenomenon analysis. For this, satellite images treatment were used to classify vegetation density and particularly agricultural areas in Setif province by making recourse to the Normalized Difference Vegetation Index (NDVI). This step was completed by mapping agricultural activities of the province by using ArcGIS.10 software in order to display an overall view and to realize spatial analysis of various themes combined between them which are chosen according to their strategic importance in different thematic maps. The synthesis map elaborately showed that geographic information system can contribute significantly to agricultural management by describing potentialities and development opportunities of production systems and agricultural sectors.Keywords: GIS, satellite image, agriculture, NDVI, thematic map
Procedia PDF Downloads 424490 The Use of Empirical Models to Estimate Soil Erosion in Arid Ecosystems and the Importance of Native Vegetation
Authors: Meshal M. Abdullah, Rusty A. Feagin, Layla Musawi
Abstract:
When humans mismanage arid landscapes, soil erosion can become a primary mechanism that leads to desertification. This study focuses on applying soil erosion models to a disturbed landscape in Umm Nigga, Kuwait, and identifying its predicted change under restoration plans, The northern portion of Umm Nigga, containing both coastal and desert ecosystems, falls within the boundaries of the Demilitarized Zone (DMZ) adjacent to Iraq, and has been fenced off to restrict public access since 1994. The central objective of this project was to utilize GIS and remote sensing to compare the MPSIAC (Modified Pacific South West Inter Agency Committee), EMP (Erosion Potential Method), and USLE (Universal Soil Loss Equation) soil erosion models and determine their applicability for arid regions such as Kuwait. Spatial analysis was used to develop the necessary datasets for factors such as soil characteristics, vegetation cover, runoff, climate, and topography. Results showed that the MPSIAC and EMP models produced a similar spatial distribution of erosion, though the MPSIAC had more variability. For the MPSIAC model, approximately 45% of the land surface ranged from moderate to high soil loss, while 35% ranged from moderate to high for the EMP model. The USLE model had contrasting results and a different spatial distribution of the soil loss, with 25% of area ranging from moderate to high erosion, and 75% ranging from low to very low. We concluded that MPSIAC and EMP were the most suitable models for arid regions in general, with the MPSIAC model best. We then applied the MPSIAC model to identify the amount of soil loss between coastal and desert areas, and fenced and unfenced sites. In the desert area, soil loss was different between fenced and unfenced sites. In these desert fenced sites, 88% of the surface was covered with vegetation and soil loss was very low, while at the desert unfenced sites it was 3% and correspondingly higher. In the coastal areas, the amount of soil loss was nearly similar between fenced and unfenced sites. These results implied that vegetation cover played an important role in reducing soil erosion, and that fencing is much more important in the desert ecosystems to protect against overgrazing. When applying the MPSIAC model predictively, we found that vegetation cover could be increased from 3% to 37% in unfenced areas, and soil erosion could then decrease by 39%. We conclude that the MPSIAC model is best to predict soil erosion for arid regions such as Kuwait.Keywords: soil erosion, GIS, modified pacific South west inter agency committee model (MPSIAC), erosion potential method (EMP), Universal soil loss equation (USLE)
Procedia PDF Downloads 297489 Effects of Drought and Anthropism on Vegetation and Soil Elements in the Steppe of Algeria: Case of the Station of Tadmit (Wilaya of Djelfa)
Authors: L. Benseghir, H. Kadi-Hanifi
Abstract:
Vegetation of the high steppic plains of southern Algiers region has ever been used by human occupation. The harsh climatic context characterized by long periods of drought and an ovine livestock in constant growth lead us to devote a particular attention to the biodiversity of those living environment. The diachronic study made in Tadmit (50 km south of the district of Djelfa) about the specific recording led us to notice that: The floristic recording of Tadmit is not reduced in time but fluctuate, depending on the pasture intensity, the annual rainfall and especially by the protection area of the following two years from January 2004. The forming specific recording of the station undergo significant changes from a period to another. Those changes in floristic list concern nearly 50% of the initial flora that could disappear or be replaced by new species. Finally, the alfa steppe is in a marked decline and is substituted by new facies that were privileged by the overgrazing, stranding or clearance.Keywords: overgrazing, diachronic study, protection area, climate, desertification
Procedia PDF Downloads 269488 Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia
Authors: Mohammed Abaoli, Omer Kara
Abstract:
The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam. Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area.Keywords: commiphora species, dryland vegetation, ecological significance, soil quality, salinity problem
Procedia PDF Downloads 195487 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages
Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong
Abstract:
Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale
Procedia PDF Downloads 64486 Influence of Water Physicochemical Properties and Vegetation Type on the Distribution of Schistosomiasis Intermediate Host Snails in Nelson Mandela Bay
Authors: Prince S. Campbell, Janine B. Adams, Melusi Thwala, Opeoluwa Oyedele, Paula E. Melariri
Abstract:
Schistosomiasis is an infectious water-borne disease that holds substantial medical and veterinary importance and is transmitted by Schistosoma flatworms. The transmission and spread of the disease are geographically and temporally confined to water bodies (rivers, lakes, lagoons, dams, etc.) inhabited by its obligate intermediate host snails and human water contact. Human infection with the parasite occurs via skin penetration subsequent to exposure to water infested with schistosome cercariae. Environmental factors play a crucial role in the spread of the disease, as the survival of intermediate host snails is dependent on favourable conditions. These factors include physical and chemical components of water, including pH, salinity, temperature, electrical conductivity, dissolved oxygen, turbidity, water hardness, total dissolved solids, and velocity, as well as biological factors such as predator-prey interactions, competition, food availability, and the presence and density of aquatic vegetation. This study evaluated the physicochemical properties of the water bodies, vegetation type, distribution, and habitat presence of the snail intermediate host. A quantitative cross-sectional research design approach was employed in this study. Eight sampling sites were selected based on their proximity to residential areas. Snails and water physicochemical properties were collected over different seasons for 9 months. A simple dip method was used for surface water samples and measurements were done using multiparameter meters. Snails captured using a 300 µm mesh scoop net and predominant plant species were gathered and transported to experts for identification. Vegetation composition and cover were visually estimated and recorded at each sampling point. Data was analysed using R software (version 4.3.1). A total of 844 freshwater snails were collected, with Physa genera accounting for 95.9% of the snails. Bulinus and Biomphalaria snails, which serve as intermediate hosts for the disease, accounted for (0.9%) and (0.6%) respectively. Indicator macrophytes such as Eicchornia crassipes, Stuckenia pectinate, Typha capensis, and floating macroalgae were found in several water bodies. A negative and weak correlation existed between the number of snails and physicochemical properties such as electrical conductivity (r=-0.240), dissolved oxygen (r=-0.185), hardness (r=-0.210), pH (r=-0.235), salinity (r=-0.242), temperature (r=-0.273), and total dissolved solids (r=-0.236). There was no correlation between the number of snails and turbidity (r=-0.070). Moreover, there was a negative and weak correlation between snails and vegetation coverage (r=-0.127). Findings indicated that snail abundance marginally declined with rising physicochemical concentrations, and the majority of snails were located in regions with less vegetation cover. The reduction in Bulinus and Biomphalaria snail populations may also be attributed to other factors, such as competition among the snails. Snails of the Physa genus were abundant due to their noteworthy resilience in difficult environments. These snails have the potential to function as biological control agents in areas where the disease is endemic, as they outcompete other snails, including schistosomiasis intermediate host snails.Keywords: intermediate host snails, physicochemical properties, schistosomiasis, vegetation type
Procedia PDF Downloads 20485 Evaluation of Agricultural Drought Impact in the Crop Productivity of East Gojjam Zone
Authors: Walelgn Dilnesa Cherie, Fasikaw Atanaw Zimale, Bekalu W. Asres
Abstract:
The most catastrophic condition for agricultural production is a drought event, which is also one of the most hydro-metrological-related hazards. According to the combined susceptibility of plants to meteorological and hydrological conditions, agricultural drought is defined as the magnitude, severity, and duration of a drought that affects crop production. The accurate and timely assessment of agricultural drought can lead to the development of risk management strategies, appropriate proactive mechanisms for the protection of farmers, and the improvement of food security. The evaluation of agricultural drought in the East Gojjam zone was the primary subject of this study. To identify the agricultural drought, soil moisture anomalies, soil moisture deficit indices, and Normalized Difference Vegetation Indices (NDVI) are used. The measured welting point, field capacity, and soil moisture were utilized to validate the soil water deficit indices computed from the satellite data. The soil moisture and soil water deficit indices in 2013 in all woredas were minimum; this makes vegetation stress also in all woredas. The soil moisture content decreased in 2013/2014/2019, and 2021 in Dejen, 2014, and 2019 in Awobel Woreda. The max/ min values of NDVI in 2013 are minimum; it dominantly shows vegetation stress and an observed agricultural drought that happened in all woredas. The validation process of satellite and in-situ soil moisture and soil water deficit indices shows a good agreement with a value of R²=0.87 and 0.56, respectively. The study area becomes drought detected region, so government officials, policymakers, and environmentalists pay attention to the protection of drought effects.Keywords: NDVI, agricultural drought, SWDI, soil moisture
Procedia PDF Downloads 85484 Spatio-Temporal Land Cover Changes Monitoring Using Remotely Sensed Techniques in Riyadh Region, KSA
Authors: Abdelrahman Elsehsah
Abstract:
Land Use and Land Cover (LULC) dynamics in Riyadh over a decade were comprehensively analyzed using the Google Earth Engine (GEE) platform. By harnessing the Landsat 8 Image collection and night-time light image collection from May to August for the years 2013 and 2023, we were able to generate insightful datasets capturing the changing landscape of the region. Our approach involved a Random Forest (RF) classification model that consistently displayed commendable precision scores above 92% for both years. A notable discovery from the study was the pronounced urban expansion, particularly around Riyadh city. Within a mere ten-year span, urbanization surged noticeably, affecting the broader ecological environment of the region. Interestingly, the northeastern part of Riyadh emerged as a focal point of this growth, signaling rapid urban growth of urban sprawl and development. A comparison between the two years indicates a 21.51% increase in built-up areas, revealing the transformative pace of urban sprawl. Contrastingly, vegetation cover patterns presented a more nuanced picture. While our initial hypothesis predicted a decline in vegetation, the actual findings depicted both vegetation reduction in certain pockets and new growth in others, resulting in an overall 25.89% increase. This intricate pattern might be attributed to shifting agricultural practices, afforestation efforts, or even satellite image timings not aligning with seasonal vegetation growth. The bare soil, predominant in the desert landscape of Riyadh, saw a marginal reduction of 0.37% over the decade, challenging our initial expectations. Urban and agricultural advancements in Saudi Arabia appear to have slightly reduced the expanse of barren terrains. This study, underpinned by a rigorous methodological framework, reveals the multifaceted land cover changes in Riyadh in response to urban development and environmental factors. The precise, data-driven insights provided by our analysis serve as invaluable tools for understanding urban growth trajectories, guiding urban planning, policy formulation, and sustainable development endeavors in the region.Keywords: remote sensing, KSA, ArcGIS, spatio-temporal
Procedia PDF Downloads 35483 Geoinformation Technology of Agricultural Monitoring Using Multi-Temporal Satellite Imagery
Authors: Olena Kavats, Dmitry Khramov, Kateryna Sergieieva, Vladimir Vasyliev, Iurii Kavats
Abstract:
Geoinformation technologies of space agromonitoring are a means of operative decision making support in the tasks of managing the agricultural sector of the economy. Existing technologies use satellite images in the optical range of electromagnetic spectrum. Time series of optical images often contain gaps due to the presence of clouds and haze. A geoinformation technology is created. It allows to fill gaps in time series of optical images (Sentinel-2, Landsat-8, PROBA-V, MODIS) with radar survey data (Sentinel-1) and use information about agrometeorological conditions of the growing season for individual monitoring years. The technology allows to perform crop classification and mapping for spring-summer (winter and spring crops) and autumn-winter (winter crops) periods of vegetation, monitoring the dynamics of crop state seasonal changes, crop yield forecasting. Crop classification is based on supervised classification algorithms, takes into account the peculiarities of crop growth at different vegetation stages (dates of sowing, emergence, active vegetation, and harvesting) and agriculture land state characteristics (row spacing, seedling density, etc.). A catalog of samples of the main agricultural crops (Ukraine) is created and crop spectral signatures are calculated with the preliminary removal of row spacing, cloud cover, and cloud shadows in order to construct time series of crop growth characteristics. The obtained data is used in grain crop growth tracking and in timely detection of growth trends deviations from reference samples of a given crop for a selected date. Statistical models of crop yield forecast are created in the forms of linear and nonlinear interconnections between crop yield indicators and crop state characteristics (temperature, precipitation, vegetation indices, etc.). Predicted values of grain crop yield are evaluated with an accuracy up to 95%. The developed technology was used for agricultural areas monitoring in a number of Great Britain and Ukraine regions using EOS Crop Monitoring Platform (https://crop-monitoring.eos.com). The obtained results allow to conclude that joint use of Sentinel-1 and Sentinel-2 images improve separation of winter crops (rapeseed, wheat, barley) in the early stages of vegetation (October-December). It allows to separate successfully the soybean, corn, and sunflower sowing areas that are quite similar in their spectral characteristics.Keywords: geoinformation technology, crop classification, crop yield prediction, agricultural monitoring, EOS Crop Monitoring Platform
Procedia PDF Downloads 456482 The Mapping of Pastoral Area as a Basis of Ecological for Beef Cattle in Pinrang Regency, South Sulawesi, Indonesia
Authors: Jasmal A. Syamsu, Muhammad Yusuf, Hikmah M. Ali, Mawardi A. Asja, Zulkharnaim
Abstract:
This study was conducted and aimed in identifying and mapping the pasture as an ecological base of beef cattle. A survey was carried out during a period of April to June 2016, in Suppa, Mattirobulu, the district of Pinrang, South Sulawesi province. The mapping process of grazing area was conducted in several stages; inputting and tracking of data points into Google Earth Pro (version 7.1.4.1529), affirmation and confirmation of tracking line visualized by satellite with a variety of records at the point, a certain point and tracking input data into ArcMap Application (ArcGIS version 10.1), data processing DEM/SRTM (S04E119) with respect to the location of the grazing areas, creation of a contour map (a distance of 5 m) and mapping tilt (slope) of land and land cover map-making. Analysis of land cover, particularly the state of the vegetation was done through the identification procedure NDVI (Normalized Differences Vegetation Index). This procedure was performed by making use of the Landsat-8. The results showed that the topography of the grazing areas of hills and some sloping surfaces and flat with elevation vary from 74 to 145 above sea level (asl), while the requirements for growing superior grass and legume is an altitude of up to 143-159 asl. Slope varied between 0 - > 40% and was dominated by a slope of 0-15%, according to the slope/topography pasture maximum of 15%. The range of NDVI values for pasture image analysis results was between 0.1 and 0.27. Characteristics of vegetation cover of pasture land in the category of vegetation density were low, 70% of the land was the land for cattle grazing, while the remaining approximately 30% was a grove and forest included plant water where the place for shelter of the cattle during the heat and drinking water supply. There are seven types of graminae and 5 types of legume that was dominant in the region. Proportionally, graminae class dominated up 75.6% and legume crops up to 22.1% and the remaining 2.3% was another plant trees that grow in the region. The dominant weed species in the region were Cromolaenaodorata and Lantana camara, besides that there were 6 types of floor plant that did not include as forage fodder.Keywords: pastoral, ecology, mapping, beef cattle
Procedia PDF Downloads 353481 The Response of Mammal Populations to Abrupt Changes in Fire Regimes in Montane Landscapes of South-Eastern Australia
Authors: Jeremy Johnson, Craig Nitschke, Luke Kelly
Abstract:
Fire regimes, climate and topographic gradients interact to influence ecosystem structure and function across fire-prone, montane landscapes worldwide. Biota have developed a range of adaptations to historic fire regime thresholds, which allow them to persist in these environments. In south-eastern Australia, a signal of fire regime changes is emerging across these landscapes, and anthropogenic climate change is likely to be one of the main drivers of an increase in burnt area and more frequent wildfire over the last 25 years. This shift has the potential to modify vegetation structure and composition at broad scales, which may lead to landscape patterns to which biota are not adapted, increasing the likelihood of local extirpation of some mammal species. This study aimed to address concerns related to the influence of abrupt changes in fire regimes on mammal populations in montane landscapes. It first examined the impact of climate, topography, and vegetation on fire patterns and then explored the consequences of these changes on mammal populations and their habitats. Field studies were undertaken across diverse vegetation, fire severity and fire frequency gradients, utilising camera trapping and passive acoustic monitoring methodologies and the collection of fine-scale vegetation data. Results show that drought is a primary contributor to fire regime shifts at the landscape scale, while topographic factors have a variable influence on wildfire occurrence at finer scales. Frequent, high severity wildfire influenced forest structure and composition at broad spatial scales, and at fine scales, it reduced occurrence of hollow-bearing trees and promoted coarse woody debris. Mammals responded differently to shifts in forest structure and composition depending on their habitat requirements. This study highlights the complex interplay between fire regimes, environmental gradients, and biotic adaptations across temporal and spatial scales. It emphasizes the importance of understanding complex interactions to effectively manage fire-prone ecosystems in the face of climate change.Keywords: fire, ecology, biodiversity, landscape ecology
Procedia PDF Downloads 73480 Analysis of Ozone Episodes in the Forest and Vegetation Areas with Using HYSPLIT Model: A Case Study of the North-West Side of Biga Peninsula, Turkey
Authors: Deniz Sari, Selahattin İncecik, Nesimi Ozkurt
Abstract:
Surface ozone, which named as one of the most critical pollutants in the 21th century, threats to human health, forest and vegetation. Specifically, in rural areas surface ozone cause significant influences on agricultural productions and trees. In this study, in order to understand to the surface ozone levels in rural areas we focus on the north-western side of Biga Peninsula which covers by the mountainous and forested area. Ozone concentrations were measured for the first time with passive sampling at 10 sites and two online monitoring stations in this rural area from 2013 and 2015. Using with the daytime hourly O3 measurements during light hours (08:00–20:00) exceeding the threshold of 40 ppb over the 3 months (May, June and July) for agricultural crops, and over the six months (April to September) for forest trees AOT40 (Accumulated hourly O3 concentrations Over a Threshold of 40 ppb) cumulative index was calculated. AOT40 is defined by EU Directive 2008/50/EC to evaluate whether ozone pollution is a risk for vegetation, and is calculated by using hourly ozone concentrations from monitoring systems. In the present study, we performed the trajectory analysis by The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to follow the long-range transport sources contributing to the high ozone levels in the region. The ozone episodes observed between 2013 and 2015 were analysed using the HYSPLIT model developed by the NOAA-ARL. In addition, the cluster analysis is used to identify homogeneous groups of air mass transport patterns can be conducted through air trajectory clustering by grouping similar trajectories in terms of air mass movement. Backward trajectories produced for 3 years by HYSPLIT model were assigned to different clusters according to their moving speed and direction using a k-means clustering algorithm. According to cluster analysis results, northerly flows to study area cause to high ozone levels in the region. The results present that the ozone values in the study area are above the critical levels for forest and vegetation based on EU Directive 2008/50/EC.Keywords: AOT40, Biga Peninsula, HYSPLIT, surface ozone
Procedia PDF Downloads 255