Search results for: utility model
17238 Study on Filter for Semiconductor of Minimizing Damage by X-Ray Laminography
Authors: Chan Jong Park, Hye Min Park, Jeong Ho Kim, Ki Hyun Park, Koan Sik Joo
Abstract:
This research used the MCNPX simulation program to evaluate the utility of a filter that was developed to minimize the damage to a semiconductor device during defect testing with X-ray. The X-ray generator was designed using the MCNPX code, and the X-ray absorption spectrum of the semiconductor device was obtained based on the designed X-ray generator code. To evaluate the utility of the filter, the X-ray absorption rates of the semiconductor device were calculated and compared for Ag, Rh, Mo and V filters with thicknesses of 25μm, 50μm, and 75μm. The results showed that the X-ray absorption rate varied with the type and thickness of the filter, ranging from 8.74% to 49.28%. The Rh filter showed the highest X-ray absorption rates of 29.8%, 15.18% and 8.74% for the above-mentioned filter thicknesses. As shown above, the characteristics of the X-ray absorption with respect to the type and thickness of the filter were identified using MCNPX simulation. With these results, both time and expense could be saved in the production of the desired filter. In the future, this filter will be produced, and its performance will be evaluated.Keywords: X-ray, MCNPX, filter, semiconductor, damage
Procedia PDF Downloads 42417237 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud
Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal
Abstract:
Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid
Procedia PDF Downloads 32017236 Reaching New Levels: Using Systems Thinking to Analyse a Major Incident Investigation
Authors: Matthew J. I. Woolley, Gemma J. M. Read, Paul M. Salmon, Natassia Goode
Abstract:
The significance of high consequence, workplace failures within construction continues to resonate with a combined average of 12 fatal incidents occurring daily throughout Australia, the United Kingdom, and the United States. Within the Australian construction domain, more than 35 serious, compensable injury incidents are reported daily. These alarming figures, in conjunction with the continued occurrence of fatal and serious, occupational injury incidents globally suggest existing approaches to incident analysis may not be achieving required injury prevention outcomes. One reason may be that, incident analysis methods used in construction have not kept pace with advances in the field of safety science and are not uncovering the full range system-wide contributory factors that are required to achieve optimal levels of construction safety performance. Another reason underpinning this global issue may also be the absence of information surrounding the construction operating and project delivery system. For example, it is not clear who shares the responsibility for construction safety in different contexts. To respond to this issue, to the author’s best knowledge, a first of its kind, control structure model of the construction industry is presented and then used to analyse a fatal construction incident. The model was developed by applying and extending the Systems Theoretic and Incident Model and Process method to hierarchically represent the actors, constraints, feedback mechanisms, and relationships that are involved in managing construction safety performance. The Causal Analysis based on Systems Theory (CAST) method was then used to identify the control and feedback failures involved in the fatal incident. The conclusions from the Coronial investigation into the event are compared with the findings stemming from the CAST analysis. The CAST analysis highlighted additional issues across the construction system that were not identified in the coroner’s recommendations, suggested there is a potential benefit in applying a systems theory approach to incident analysis in construction. The findings demonstrate the utility applying systems theory-based methods to the analysis of construction incidents. Specifically, this study shows the utility of the construction control structure and the potential benefits for project leaders, construction entities, regulators, and construction clients in controlling construction performance.Keywords: construction project management, construction performance, incident analysis, systems thinking
Procedia PDF Downloads 13117235 Building Education Leader Capacity through an Integrated Information and Communication Technology Leadership Model and Tool
Authors: Sousan Arafeh
Abstract:
Educational systems and schools worldwide are increasingly reliant on information and communication technology (ICT). Unfortunately, most educational leadership development programs do not offer formal curricular and/or field experiences that prepare students for managing ICT resources, personnel, and processes. The result is a steep learning curve for the leader and his/her staff and dissipated organizational energy that compromises desired outcomes. To address this gap in education leaders’ development, Arafeh’s Integrated Technology Leadership Model (AITLM) was created. It is a conceptual model and tool that educational leadership students can use to better understand the ICT ecology that exists within their schools. The AITL Model consists of six 'infrastructure types' where ICT activity takes place: technical infrastructure, communications infrastructure, core business infrastructure, context infrastructure, resources infrastructure, and human infrastructure. These six infrastructures are further divided into 16 key areas that need management attention. The AITL Model was created by critically analyzing existing technology/ICT leadership models and working to make something more authentic and comprehensive regarding school leaders’ purview and experience. The AITL Model then served as a tool when it was distributed to over 150 educational leadership students who were asked to review it and qualitatively share their reactions. Students said the model presented crucial areas of consideration that they had not been exposed to before and that the exercise of reviewing and discussing the AITL Model as a group was useful for identifying areas of growth that they could pursue in the leadership development program and in their professional settings. While development in all infrastructures and key areas was important for students’ understanding of ICT, they noted that they were least aware of the importance of the intangible area of the resources infrastructure. The AITL Model will be presented and session participants will have an opportunity to review and reflect on its impact and utility. Ultimately, the AITL Model is one that could have significant policy and practice implications. At the very least, it might help shape ICT content in educational leadership development programs through curricular and pedagogical updates.Keywords: education leadership, information and communications technology, ICT, leadership capacity building, leadership development
Procedia PDF Downloads 11617234 Psychometric Properties of the Eq-5d-3l and Eq-5d-5l Instruments for Health Related Quality of Life Measurement in Indonesian Population
Authors: Dwi Endarti, Susi a Kristina, Rizki Noorizzati, Akbar E Nugraha, Fera Maharani, Kika a Putri, Asninda H Azizah, Sausanzahra Angganisaputri, Yunisa Yustikarini
Abstract:
Cost utility analysis is the most recommended pharmacoeconomic method since it allows widely comparison of cost-effectiveness results from different interventions. The method uses outcome of quality-adjusted life year (QALY) or disability-adjusted life year (DALY). Measurement of QALY requires the data of utility dan life years gained. Utility is measured with the instrument for quality of life measurement such as EQ-5D. Recently, the EQ-5D is available in two versions which are EQ-5D-3L and EQ-5D-5L. This study aimed to compare the EQ-5D-3L and EQ-5D-5L to examine the most suitable version for Indonesian population. This study was an observational study employing cross sectional approach. Data of quality of life measured with EQ-5D-3L and EQ-5D-5L were collected from several groups of population which were respondent with chronic diseases, respondent with acute diseases, and respondent from general population (without illness) in Yogyakarta Municipality, Indonesia. Convenience samples of hypertension patients (83), diabetes mellitus patients (80), and osteoarthritis patients (47), acute respiratory tract infection (81), cephalgia (43), dyspepsia (42), and respondent from general population (293) were recruited in this study. Responses on the 3L and 5L versions of EQ-5D were compared by examining the psychometric properties including agreement, internal consistency, ceiling effect, and convergent validity. Based on psychometric properties tests of EQ-5D-3L dan EQ-5D-5L, EQ-5D-5L tended to have better psychometric properties compared to EQ-5D-3L. Future studies for health related quality of life (HRQOL) measurements for pharmacoeconomic studies in Indonesia should apply EQ-5D-5L.Keywords: EQ-5D, Health Related Quality of Life, Indonesian Population, Psychometric Properties
Procedia PDF Downloads 47817233 Voltage and Current Control of Microgrid in Grid Connected and Islanded Modes
Authors: Megha Chavda, Parth Thummar, Rahul Ghetia
Abstract:
This paper presents the voltage and current control of microgrid accompanied by the synchronization of microgrid with the main utility grid in both islanded and grid-connected modes. Distributed Energy Resources (DERs) satisfy the wide-spread power demand of consumer by behaving as a micro source for a low voltage (LV) grid or microgrid. Synchronization of the microgrid with the main utility grid is done using PLL and PWM gate pulse generation technique is used for the Voltage Source Converter. Potential Function method achieves the voltage and current control of this microgrid in both islanded and grid-connected modes. A low voltage grid consisting of three distributed generators (DG) is considered for the study and is simulated in time-domain using PSCAD/EMTDC software. The simulation results depict the appropriateness of voltage and current control of microgrid and synchronization of microgrid with the medium voltage (MV) grid.Keywords: microgrid, distributed energy resources, voltage and current control, voltage source converter, pulse width modulation, phase locked loop
Procedia PDF Downloads 41417232 A New Nonlinear State-Space Model and Its Application
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this work, a new nonlinear model will be introduced. The model is in the state-space form. The nonlinearity of this model is in the state equation where the state vector is multiplied by its self. This technique makes our model generalizes many famous models as Lotka-Volterra model and Lorenz model which have many applications in the real life. We will apply our new model to estimate the wind speed by using a new nonlinear estimator which suitable to work with our model.Keywords: nonlinear systems, state-space model, Kronecker product, nonlinear estimator
Procedia PDF Downloads 69117231 Determining Disparities in the Distribution of the Energy Efficiency Resource through the History of Michigan Policy
Authors: M. Benjamin Stacey
Abstract:
Energy efficiency has been increasingly recognized as a high value resource through state policies that require utility companies to implement efficiency programs. While policymakers have recognized the statewide economic, environmental, and health related value to residents who rely on this grid supplied resource, varying interests in energy efficiency between socioeconomic groups stands undifferentiated in most state legislation. Instead, the benefits are oftentimes assumed to be distributed equitably across these groups. Despite this fact, these policies are frequently sited by advocacy groups, regulatory bodies and utility companies for their ability to address the negative financial, health and other social impacts of energy poverty in low income communities. Yet, while most states like Michigan require programs that target low income consumers, oftentimes no requirements exist for the equitable investment and energy savings for low income consumers, nor does it stipulate minimal spending levels on low income programs. To further understand the impact of the absence of these factors in legislation, this study examines the distribution of program funds and energy efficiency savings to answer a fundamental energy justice concern; Are there disparities in the investment and benefits of energy efficiency programs between socioeconomic groups? This study compiles data covering the history of Michigan’s Energy Efficiency policy implementation from 2010-2016, analyzing the energy efficiency portfolios of Michigan’s two main energy providers. To make accurate comparisons between these two energy providers' investments and energy savings in low and non-low income programs, the socioeconomic variation for each utility coverage area was captured and accounted for using GIS and US Census data. Interestingly, this study found that both providers invested more equitably in natural gas efficiency programs, however, together these providers invested roughly three times less per household in low income electricity efficiency programs, which resulted in ten times less electricity savings per household. This study also compares variation in commission approved utility plans and actual spending and savings results, with varying patterns pointing to differing portfolio management strategies between companies. This study reveals that for the history of the implementation of Michigan’s Energy Efficiency Policy, that the 35% of Michigan’s population who qualify as low income have received substantially disproportionate funding and energy savings because of the policy. This study provides an overview of results from a social perspective, raises concerns about the impact on energy poverty and equity between consumer groups and is an applicable tool for law makers, regulatory agencies, utility portfolio managers, and advocacy groups concerned with addressing issues related to energy poverty.Keywords: energy efficiency, energy justice, low income, state policy
Procedia PDF Downloads 18917230 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 6517229 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 5817228 Landscape Management in the Emergency Hazard Planning Zone of the Nuclear Power Plant Temelin: Preventive Improvement of Landscape Functions
Authors: Ivana Kašparová, Emilie Pecharová
Abstract:
The experience of radiological contamination of land, especially after the Chernobyl and Fukushima disasters have shown the need to explore possibilities to the capture of radionuclides in the area affected and to adapt the landscape management to this purpose ex –ante the considered accident in terms of prevention. The project‚ Minimizing the impact of radiation contamination on land in the emergency zone of Temelin NPP‘ (2012-2015), dealt with the possibility of utilization of wetlands as retention sites for water carrying radionuclides in the case of a radiation accident. A model artificial wetland was designed and adopted as a utility model by the Ministry of Industry and Trade of the Czech Republic. The article shows the conditions of construction of designed wetlands in the landscape with regard to minimizing the negative effect on agricultural production and enhancing the hydrological functionality of the landscape.Keywords: artificial wetland, land use/ land cover, old maps, surface-to-water transport of radionuclides
Procedia PDF Downloads 36017227 Characterizing the Geometry of Envy Human Behaviour Using Game Theory Model with Two Types of Homogeneous Players
Authors: A. S. Mousa, R. I. Rajab, A. A. Pinto
Abstract:
An envy behavioral game theoretical model with two types of homogeneous players is considered in this paper. The strategy space of each type of players is a discrete set with only two alternatives. The preferences of each type of players is given by a discrete utility function. All envy strategies that form Nash equilibria and the corresponding envy Nash domains for each type of players have been characterized. We use geometry to construct two dimensional envy tilings where the horizontal axis reflects the preference for players of type one, while the vertical axis reflects the preference for the players of type two. The influence of the envy behavior parameters on the Cartesian position of the equilibria has been studied, and in each envy tiling we determine the envy Nash equilibria. We observe that there are 1024 combinatorial classes of envy tilings generated from envy chromosomes: 256 of them are being structurally stable while 768 are with bifurcation. Finally, some conditions for the disparate envy Nash equilibria are stated.Keywords: game theory, Nash equilibrium, envy Nash behavior, geometric tilings, bifurcation thresholds
Procedia PDF Downloads 23017226 Mixed Effects Models for Short-Term Load Forecasting for the Spanish Regions: Castilla-Leon, Castilla-La Mancha and Andalucia
Authors: C. Senabre, S. Valero, M. Lopez, E. Velasco, M. Sanchez
Abstract:
This paper focuses on an application of linear mixed models to short-term load forecasting. The challenge of this research is to improve a currently working model at the Spanish Transport System Operator, programmed by us, and based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. A load forecasting system has been verified in this work by using the real data from a utility. In this research it has been used an integration of several regions into a linear mixed model as starting point to obtain the information from other regions. Firstly, the systems to learn general behaviors present in all regions, and secondly, it is identified individual deviation in each regions. The technique can be especially useful when modeling the effect of special days with scarce information from the past. The three most relevant regions of the system have been used to test the model, focusing on special day and improving the performance of both currently working models used as benchmark. A range of comparisons with different forecasting models has been conducted. The forecasting results demonstrate the superiority of the proposed methodology.Keywords: short-term load forecasting, mixed effects models, neural networks, mixed effects models
Procedia PDF Downloads 19217225 A Comparative Study of the Use of Medicinal Plants and Conventional Medicine for the Treatment of Hepatitis B Virus in Ibadan Metropolis
Authors: Julius Adebayo John
Abstract:
The objective of this study is to compare the use of medicinal plants and Conventional medicine intervention in the management of HBV among Ibadan populace. A purposive sampling technique was used to administer questionnaires at 2 places, namely, the University College Hospital and Total Healthcare Diagnostic Centre, Ibadan, where viral loads are carried out. A EuroQol (EQ – 5D) was adopted to collect data. Descriptive and inferential analyses were performed. Also, ANOVA, Correlation, charts, and tables were used. Findings revealed a high prevalence of HBV among female respondents and sample between ages 26years to 50years. Results showed that the majority discovered their health status through free HBV tests. Analysis indicated that the use of medicinal plant extract is cost-effective in 73% of cases. Rank order utility derived from medicinal plants is higher than other interventions. Correlation analysis performed for the current health status of respondents were significant at P<0.01 against the intervention management adopted (0.046), cost of treatment (0.549), utility (0.407) at P<0.00, duration of the treatment (0.604) at P<0.01; viral load before treatment (-0.142) not significant at P<0.01, the R2 (72.2%) showed the statistical variance in respondents current health status as explained by the independent variables. Respondents gained quality-adjusted life-years (QALYs) of between 1year to 3years. Suggestions were made for a public-private partnership effort against HBV with emphasis on periodic screening, viral load test subsidy, and free vaccination of people with –HBV status. Promoting phytomedicine through intensive research with strong regulation of herbal practitioners will go a long way in alleviating the burdens of the disease in society.Keywords: medicinal plant, HBV management interventions, utility, QALYs, ibadan metropolis
Procedia PDF Downloads 15617224 Towards Safety-Oriented System Design: Preventing Operator Errors by Scenario-Based Models
Authors: Avi Harel
Abstract:
Most accidents are commonly attributed in hindsight to human errors, yet most methodologies for safety focus on technical issues. According to the Black Swan theory, this paradox is due to insufficient data about the ways systems fail. The article presents a study of the sources of errors, and proposes a methodology for utility-oriented design, comprising methods for coping with each of the sources identified. Accident analysis indicates that errors typically result from difficulties of operating in exceptional conditions. Therefore, following STAMP, the focus should be on preventing exceptions. Exception analysis indicates that typically they involve an improper account of the operational scenario, due to deficiencies in the system integration. The methodology proposes a model, which is a formal definition of the system operation, as well as principles and guidelines for safety-oriented system integration. The article calls to develop and integrate tools for recording and analysis of the system activity during the operation, required to implement validate the model.Keywords: accidents, complexity, errors, exceptions, interaction, modeling, resilience, risks
Procedia PDF Downloads 19817223 Double Layer Security Authentication Model for Automatic Dependent Surveillance-Broadcast
Authors: Buse T. Aydin, Enver Ozdemir
Abstract:
An automatic dependent surveillance-broadcast (ADS-B) system has serious security problems. In this study, a double layer authentication scheme between the aircraft and ground station, aircraft to aircraft, ground station to ATC tower is designed to prevent any unauthorized aircrafts from introducing themselves as friends. This method can be used as a solution to the problem of authentication. The method is a combination of classical cryptographic methods and new generation physical layers. The first layer has employed the embedded key of the aircraft. The embedded key is assumed to installed during the construction of the utility. The other layer is a physical attribute (flight path, distance, etc.) between the aircraft and the ATC tower. We create a mathematical model so that two layers’ information is employed and an aircraft is authenticated as a friend or unknown according to the accuracy of the results of the model. The results of the aircraft are compared with the results of the ATC tower and if the values found by the aircraft and ATC tower match within a certain error margin, we mark the aircraft as friend. As a result, the ADS-B messages coming from this authenticated friendly aircraft will be processed. In this method, even if the embedded key is captured by the unknown aircraft, without the information of the second layer, the unknown aircraft can easily be determined. Overall, in this work, we present a reliable system by adding physical layer in the authentication process.Keywords: ADS-B, authentication, communication with physical layer security, cryptography, identification friend or foe
Procedia PDF Downloads 17917222 Elevating Healthcare Social Work: Implementing and Evaluating the (Introduction, Subjective, Objective, Assessment, Plan, Summary) Documentation Model
Authors: Shir Daphna-Tekoah, Nurit Eitan-Gutman, Uri Balla
Abstract:
Background: Systemic documentation is essential in social work practice. Collaboration between an institution of higher education and social work health care services enabled adaptation of the medical documentation model of SOAP in the field of social work, by creating the ISOAPS model (Introduction, Subjective, Objective, Assessment, Plan, Summary) model. Aims: The article describes the ISOAPS model and its implementation in the field of social work, as a tool for standardization of documentation and the enhancement of multidisciplinary collaboration. Methods: We examined the changes in standardization using a mixed methods study, both before and after implementation of the model. A review of social workers’ documentation was carried out by medical staff and social workers in the Clalit Healthcare Services, the largest provider of public and semi-private health services in Israel. After implementation of the model, semi-structured qualitative interviews were undertaken. Main findings: The percentage of reviewers who evaluated their documentation as correct increased from 46%, prior to implementation, to 61% after implementation. After implementation, 81% of the social workers noted that their documentation had become standardized. The training process prepared them for the change in documentation and most of them (83%) started using the model on a regular basis. The qualitative data indicate that the use of the ISOAPS model creates uniform documentation, improves standards and is important to teach social work students. Conclusions: The ISOAPS model standardizes documentation and promotes communication between social workers and medical staffs. Implications for practice: In the intricate realm of healthcare, efficient documentation systems are pivotal to ensuring coherent interdisciplinary communication and patient care. The ISOAPS model emerges as a quintessential instrument, meticulously tailored to the nuances of social work documentation. While it extends its utility across the broad spectrum of social work, its specificity is most pronounced in the medical domain. This model not only exemplifies rigorous academic and professional standards but also serves as a testament to the potential of contextualized documentation systems in elevating the overall stature of social work within healthcare. Such a strategic documentation tool can not only streamline the intricate processes inherent in medical social work but also underscore the indispensable role that social workers play in the broader healthcare ecosystem.Keywords: ISOAPS, professional documentation, medial social-work, social work
Procedia PDF Downloads 7217221 Design of Control Systems for Grid Interconnection and Power Control of a Grid Tie Inverter for Micro-Grid Application
Authors: Deepak Choudhary
Abstract:
COEP-Microgrid, a project by the students of College of Engineering Pune aims at establishing a micro grid in the college campus serving as a living laboratory for research and development of novel grid technologies. Proposed micro grid has an AC-bus and DC-bus, interconnected together with a tie line DC-AC converter. In grid-connected mode AC bus of microgrid is synchronized with utility grid. Synchronization with utility grid requires grid and AC bus to have synchronism in frequency, phase sequence and voltage. Power flow requires phase difference between grid and AC bus. Control System is required to effectively regulate power flow between the grid and AC bus. The grid synchronizing control system is composed of frequency and phase control for regulated power flow and voltage control system for reduction of reactive power flow. The control system involves automatic active power flow control. It takes the feedback of DC link Capacitor and changes the power angle accordingly. Control system incorporating voltage, phase and power control was developed for grid-tie inverter. This paper discusses the design, simulation and practical implementation of control system described in various micro grid scenarios.Keywords: microgrid, Grid-tie inverter, voltage control, automatic power control
Procedia PDF Downloads 66517220 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution
Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino
Abstract:
This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization
Procedia PDF Downloads 13717219 The Analysis of Noise Harmfulness in Public Utility Facilities
Authors: Monika Sobolewska, Aleksandra Majchrzak, Bartlomiej Chojnacki, Katarzyna Baruch, Adam Pilch
Abstract:
The main purpose of the study is to perform the measurement and analysis of noise harmfulness in public utility facilities. The World Health Organization reports that the number of people suffering from hearing impairment is constantly increasing. The most alarming is the number of young people occurring in the statistics. The majority of scientific research in the field of hearing protection and noise prevention concern industrial and road traffic noise as the source of health problems. As the result, corresponding standards and regulations defining noise level limits are enforced. However, there is another field uncovered by profound research – leisure time. Public utility facilities such as clubs, shopping malls, sport facilities or concert halls – they all generate high-level noise, being out of proper juridical control. Among European Union Member States, the highest legislative act concerning noise prevention is the Environmental Noise Directive 2002/49/EC. However, it omits the problem discussed above and even for traffic, railway and aircraft noise it does not set limits or target values, leaving these issues to the discretion of the Member State authorities. Without explicit and uniform regulations, noise level control at places designed for relaxation and entertainment is often in the responsibility of people having little knowledge of hearing protection, unaware of the risk the noise pollution poses. Exposure to high sound levels in clubs, cinemas, at concerts and sports events may result in a progressive hearing loss, especially among young people, being the main target group of such facilities and events. The first step to change this situation and to raise the general awareness is to perform reliable measurements the results of which will emphasize the significance of the problem. This project presents the results of more than hundred measurements, performed in most types of public utility facilities in Poland. As the most suitable measuring instrument for such a research, personal noise dosimeters were used to collect the data. Each measurement is presented in the form of numerical results including equivalent and peak sound pressure levels and a detailed description considering the type of the sound source, size and furnishing of the room and the subjective sound level evaluation. In the absence of a straight reference point for the interpretation of the data, the limits specified in EU Directive 2003/10/EC were used for comparison. They set the maximum sound level values for workers in relation to their working time length. The analysis of the examined problem leads to the conclusion that during leisure time, people are exposed to noise levels significantly exceeding safe values. As the hearing problems are gradually progressing, most people underplay the problem, ignoring the first symptoms. Therefore, an effort has to be made to specify the noise regulations for public utility facilities. Without any action, in the foreseeable future the majority of Europeans will be dealing with serious hearing damage, which will have a negative impact on the whole societies.Keywords: hearing protection, noise level limits, noise prevention, noise regulations, public utility facilities
Procedia PDF Downloads 22517218 Efficient Frontier: Comparing Different Volatility Estimators
Authors: Tea Poklepović, Zdravka Aljinović, Mario Matković
Abstract:
Modern Portfolio Theory (MPT) according to Markowitz states that investors form mean-variance efficient portfolios which maximizes their utility. Markowitz proposed the standard deviation as a simple measure for portfolio risk and the lower semi-variance as the only risk measure of interest to rational investors. This paper uses a third volatility estimator based on intraday data and compares three efficient frontiers on the Croatian Stock Market. The results show that range-based volatility estimator outperforms both mean-variance and lower semi-variance model.Keywords: variance, lower semi-variance, range-based volatility, MPT
Procedia PDF Downloads 51417217 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance
Authors: Yuguang Gao, Mingtao Deng
Abstract:
The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.Keywords: collaborative medical alliance, disease related group, patient referral, simulation
Procedia PDF Downloads 6017216 Modelling Mode Choice Behaviour Using Cloud Theory
Authors: Leah Wright, Trevor Townsend
Abstract:
Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty
Procedia PDF Downloads 38917215 Developing a Process and Cost Model for Xanthan Biosynthesis from Bioethanol Production Waste Effluents
Authors: Bojana Ž. Bajić, Damjan G. Vučurović, Siniša N. Dodić, Jovana A. Grahovac, Jelena M. Dodić
Abstract:
Biosynthesis of xanthan, a microbial polysaccharide produced by Xanthomonas campestris, is characterized by the possibility of using non-specific carbohydrate substrates, which means different waste effluents can be used as a basis for the production media. Potential raw material sources for xanthan production come from industries with large amounts of waste effluents that are rich in compounds necessary for microorganism growth and multiplication. Taking into account the amount of waste effluents generated by the bioethanol industry and the fact that it contains a high inorganic and organic load it is clear that they represent a potential environmental pollutants if not properly treated. For this reason, it is necessary to develop new technologies which use wastes and wastewaters of one industry as raw materials for another industry. The result is not only a new product, but also reduction of pollution and environmental protection. Biotechnological production of xanthan, which consists of using biocatalysts to convert the bioethanol waste effluents into a high-value product, presents a possibility for sustainable development. This research uses scientific software developed for the modeling of biotechnological processes in order to design a xanthan production plant from bioethanol production waste effluents as raw material. The model was developed using SuperPro Designer® by using input data such as the composition of raw materials and products, defining unit operations, utility consumptions, etc., while obtaining capital and operating costs and the revenues from products to create a baseline production plant model. Results from this baseline model can help in the development of novel biopolymer production technologies. Additionally, a detailed economic analysis showed that this process for converting waste effluents into a high value product is economically viable. Therefore, the proposed model represents a useful tool for scaling up the process from the laboratory or pilot plant to a working industrial scale plant.Keywords: biotechnology, process model, xanthan, waste effluents
Procedia PDF Downloads 35017214 Logistic Regression Model versus Additive Model for Recurrent Event Data
Authors: Entisar A. Elgmati
Abstract:
Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model.Keywords: additive model, cumulative probabilities, infant diarrhoea, recurrent event
Procedia PDF Downloads 63617213 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques
Authors: Umit Cali
Abstract:
The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids
Procedia PDF Downloads 51917212 Valuing Non-Market Environmental Benefits of the Biodiversity Conservation Project
Authors: Huynh Viet Khai, Mitsuyasu Yabe
Abstract:
The study investigated the economic value of biodiversity attributes that could provide policy-makers reliable information to estimate welfare losses due to biodiversity reductions and analyse the trade-off between biodiversity and economics. In order to obtain the non-market benefits of biodiversity conservation, an indirect utility function and willingness to pay for biodiversity attributes were applied using the approach of choice modelling with the analysis of conditional logit model. The study found that Mekong Delta residents accepted their willingness to pay for VND 913 monthly for a one percent increase in healthy vegetation, VND 360 for an additional mammal species and VND 2,440 to avoid the welfare losses of 100 local farmers.Keywords: choice modelling, genetic resources, wetland conservation, marginal willingness to pay
Procedia PDF Downloads 32717211 Robust Variogram Fitting Using Non-Linear Rank-Based Estimators
Authors: Hazem M. Al-Mofleh, John E. Daniels, Joseph W. McKean
Abstract:
In this paper numerous robust fitting procedures are considered in estimating spatial variograms. In spatial statistics, the conventional variogram fitting procedure (non-linear weighted least squares) suffers from the same outlier problem that has plagued this method from its inception. Even a 3-parameter model, like the variogram, can be adversely affected by a single outlier. This paper uses the Hogg-Type adaptive procedures to select an optimal score function for a rank-based estimator for these non-linear models. Numeric examples and simulation studies will demonstrate the robustness, utility, efficiency, and validity of these estimates.Keywords: asymptotic relative efficiency, non-linear rank-based, rank estimates, variogram
Procedia PDF Downloads 43217210 Numerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Study
Authors: Amit Kumar
Abstract:
Accurate identification of deteriorated air quality regions is very helpful in devising better environmental practices and mitigation efforts. In the present study, an attempt has been made to identify the air pollutant dispersion patterns especially NOX due to vehicular and industrial sources over a rapidly developing urban city, Visakhapatnam (17°42’ N, 83°20’ E), India, during April 2009. Using the emission factors of different vehicles as well as the industry, a high resolution 1 km x 1 km gridded emission inventory has been developed for Visakhapatnam city. A dispersion model AERMOD with explicit representation of planetary boundary layer (PBL) dynamics and offline coupled through a developed coupler mechanism with a high resolution mesoscale model WRF-ARW resolution for simulating the dispersion patterns of NOX is used in the work. The meteorological as well as PBL parameters obtained by employing two PBL schemes viz., non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) of WRF-ARW model, which are reasonably representing the boundary layer parameters are considered for integrating AERMOD. Significantly different dispersion patterns of NOX have been noticed between summer and winter months. The simulated NOX concentration is validated with available six monitoring stations of Central Pollution Control Board, India. Statistical analysis of model evaluated concentrations with the observations reveals that WRF-ARW of YSU scheme with AERMOD has shown better performance. The deteriorated air quality locations are identified over Visakhapatnam based on the validated model simulations of NOX concentrations. The present study advocates the utility of tNumerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Studyhe developed gridded emission inventory of NOX with coupled WRF-AERMOD modeling system for air quality assessment over the study region.Keywords: WRF-ARW, AERMOD, planetary boundary layer, air quality
Procedia PDF Downloads 28217209 Continuous Catalytic Hydrogenation and Purification for Synthesis Non-Phthalate
Authors: Chia-Ling Li
Abstract:
The scope of this article includes the production of 10,000 metric tons of non-phthalate per annum. The production process will include hydrogenation, separation, purification, and recycling of unprocessed feedstock. Based on experimental data, conversion and selectivity were chosen as reaction model parameters. The synthesis and separation processes of non-phthalate and phthalate were established by using Aspen Plus software. The article will be divided into six parts: estimation of physical properties, integration of production processes, purification case study, utility consumption, economic feasibility study and identification of bottlenecks. The purities of products was higher than 99.9 wt. %. Process parameters have important guiding significance to the commercialization of hydrogenation of phthalate.Keywords: economic analysis, hydrogenation, non-phthalate, process simulation
Procedia PDF Downloads 277