Search results for: sugar beet lime
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 695

Search results for: sugar beet lime

605 Simulating Studies on Phosphate Removal from Laundry Wastewater Using Biochar: Dudinin Approach

Authors: Eric York, James Tadio, Silas Owusu Antwi

Abstract:

Laundry wastewater contains a diverse range of chemical pollutants that can have detrimental effects on human health and the environment. In this study, simulation studies by Spyder Python software v 3.2 to assess the efficacy of biochar in removing PO₄³⁻ from wastewater were conducted. Through modeling and simulation, the mechanisms involved in the adsorption process of phosphate by biochar were studied by altering variables which is specific to the phosphate from common laundry phosphate detergents, such as the aqueous solubility, initial concentration, and temperature using the Dudinin Approach (DA). Results showed that the concentration equilibrate at near the highest concentrations for Sugar beet-120 mgL⁻¹, Tailing-85 mgL⁻¹, CaO- rich-50 mgL⁻¹, Eggshell and rice straw-48 mgL⁻¹, Undaria Pinnatifida Roots-190 mgL⁻¹, Ca-Alginate Granular Beads -240 mgL⁻¹, Laminaria Japonica Powder -900 mgL⁻¹, Pinesaw dust-57 mgL⁻¹, Ricehull-190 mgL⁻¹, sesame straw- 470 mgL⁻¹, Sugar Bagasse-380 mgL⁻¹, Miscanthus Giganteus-240 mgL⁻¹, Wood Bc-130 mgL⁻¹, Pine-25 mgL⁻¹, Sawdust-6.8 mgL⁻¹, Sewage Sludge-, Rice husk-12 mgL⁻¹, Corncob-117 mgL⁻¹, Maize straw- 1800 mgL⁻¹ while Peanut -Eucalyptus polybractea-, Crawfish equilibrated at near concentration. CO₂ activated Thalia, sewage sludge biochar, Broussonetia Papyrifera Leaves equilibrated just at the lower concentration. Only Soyer bean Stover exhibited a sharp rise and fall peak in mid-concentration at 2 mgL⁻¹ volume. The modelling results were consistent with experimental findings from the literature, ensuring the accuracy, repeatability, and reliability of the simulation study. The simulation study provided insights into adsorption for PO₄³⁻ from wastewater by biochar using concentration per volume that can be adsorbed ideally under the given conditions. Studies showed that applying the principle experimentally in real wastewater with all its complexity is warranted and not far-fetched.

Keywords: simulation studies, phosphate removal, biochar, adsorption, wastewater treatment

Procedia PDF Downloads 141
604 Chemical Amelioration of Expansive Soils

Authors: B. R. Phanikumar, Sana Suri

Abstract:

Expansive soils swell when they absorb water and shrink when water evaporates from them. Hence, lightly loaded civil engineering structures found in these soils are subjected to severe distress. Therefore, there is a need to ameliorate or improve these swelling soils through some innovative methods. This paper discusses chemical stabilisation of expansive soils, a technique in which chemical reagents such as lime and calcium chloride are added to expansive soils to reduce the volumetric changes occurring in expansive soils and also to improve their engineering behaviour.

Keywords: expansive soils, swelling, shrinkage, amelioration, lime, calcium chloride

Procedia PDF Downloads 315
603 Development of Environmentally Clean Construction Materials Using Industrial Waste from Kazakhstan

Authors: Galiya Zhanzakovna Alzhanova, Yelaman Kanatovich Aibuldinov, Zhanar Baktybaevna Iskakova, Gaziz Galymovich Abdiyussupov, Madi Toktasynuly Omirzak, Aizhan Doldashevna Gazizova

Abstract:

The sustainable use of industrial waste has recently increased due to increased environmental problems in landfills. One of the best ways to utilise waste is as a road base material. Industrial waste is a less costly and more efficient way to strengthen local soils than by introducing new additive materials. This study explored the feasibility of utilising red mud, blast furnace slag, and lime production waste to develop environmentally friendly construction materials for stabilising natural loam. Four different ratios of red mud (20, 30, and 40%), blast furnace slag (25, 30, and 35%), lime production waste (4, 6, and 8%), and varied amounts of natural loam were combined to produce nine different mixtures. The results showed that the sample with 40% red mud, 35% blast furnace slag, and 8% lime production waste had the highest strength. The sample's measured compressive strength for 90 days was 7.38 MPa, its water resistance for the same period was 7.12 MPa, and its frost resistance for the same period was 7.35 MP; low linear expansion met the requirements of the Kazakh regulations for first-class building materials. The study of mineral composition showed that there was no contamination with heavy metals or dangerous substances. Road base materials made of red mud, blast furnace slag, lime production waste, and natural loam mix can be employed because of their durability and environmental performance. The chemical and mineral composition of raw materials was determined using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy dispersive spectroscopy, atomic absorption spectroscopy, and axial compressive strength were examined.

Keywords: blast furnace slag, lime production waste, natural loam stabilizing, red mud, road base material

Procedia PDF Downloads 111
602 Storage Study of Bael (Aegle marmelos Correa.) Fruit and Pulp of Cv. Pant Sujata

Authors: B. R. Jana, Madhumita Singh

Abstract:

Storage study of bael fruit and pulp were conducted at ICAR-RCER, Research Centre Ranchi to find out suitable storage life to extent the availability of the fruit and produce the value added product in form of fruit. The cultivar under storage is Pant Sujata. CFB box packing resulted in minimum 21 % PLW during 2010-11 during its 28-35 days storage under ambient temperature. CFB box and Gunny bag retains maximum total sugar (17.3-17.4 °B) after 28 days storage. Bael pulp of cultivar Pant Sujata can be stored up to 2 months at 4 °C with good quality condition. Treatments were highly significant in the characters such as T.S.S., acidity, reducing sugar and total sugar. Storage conditions and treatments interaction were insignificant in all characters except acidity. The maximum T.S.S. of 21.87 °B has been found in sample treated with 800 ppm benzoic acid when kept for two months at 4 °C temperature. This treatment also resulted in retaining the maximum reducing sugar (8.09 %) and total sugar content (9.52 %) at same storage condition than other treatments. From the present experiments, it is concluded that CFB box packing and pulp storage with 800 ppm benzoic acid at 4 °C are important to extent the availability of bael for two months.

Keywords: bael, storage, fruits, pulp, benzoic acid

Procedia PDF Downloads 247
601 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constraints. Therefore, the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.

Keywords: laser cleavage, stress analysis, crack visualization, laser

Procedia PDF Downloads 436
600 Physical-Chemical Parameters of Latvian Apple Juices and Their Suitability for Cider Production

Authors: Rita Riekstina-Dolge, Zanda Kruma, Daina Karklina, Fredijs Dimins

Abstract:

Apple juice is the main raw material for cider production. In this study apple juices obtained from 14 dessert and crab variety apples grown in Latvia were investigated. For all samples soluble solids, titratable acidity, pH and sugar content were determined. Crab apples produce more dry matter, total sugar and acid content compared to the dessert apples but it depends on the apple variety. Total sugar content of crab apple juices was 1.3 to 1.8 times larger than in dessert apple juices. Titratable acidity of dessert apple juices is in the range of 4.1g L-1 to 10.83g L-1 and in crab apple juices titratable acidity is from 7.87g L-1 to 19.6g L-1. Fructose was detected as the main sugar whereas glucose level varied depending on the variety. The highest titratable acidity and content of sugars was detected in ‘Cornelia’ apples juice.

Keywords: apple juice, hierarchical cluster analysis, sugars, titratable acidity

Procedia PDF Downloads 244
599 Shear Strength Envelope Characteristics of LimeTreated Clays

Authors: Mohammad Moridzadeh, Gholamreza Mesri

Abstract:

The effectiveness of lime treatment of soils has been commonly evaluated in terms of improved workability and increased undrained unconfined compressive strength in connection to road and airfield construction. The most common method of strength measurement has been the unconfined compression test. However, if the objective of lime treatment is to improve long-term stability of first-time or reactivated landslides in stiff clays and shales, permanent changes in the size and shape of clay particles must be realized to increase drained frictional resistance. Lime-soil interactions that may produce less platy and larger soil particles begin and continue with time under the highly alkaline pH environment. In this research, pH measurements are used to monitor chemical environment and progress of reactions. Atterberg limits are measured to identify changes in particle size and shape indirectly. Also, fully softened and residual strength measurements are used to examine an improvement in frictional resistance due to lime-soil interactions. The main variables are soil plasticity and mineralogy, lime content, water content, and curing period. Lime effect on frictional resistance is examined using samples of clays with different mineralogy and characteristics which may react with lime to various extents. Drained direct shear tests on reconstituted lime-treated clay specimens with various properties have been performed to measure fully softened shear strength. To measure residual shear strength, drained multiple reversal direct shear tests on precut specimens were conducted. This way, soil particles are oriented along the direction of shearing to the maximum possible extent and provide minimum frictional resistance. This is applicable to reactivated and part of first-time landslides. The Brenna clay, which is the highly plastic lacustrine clay of Lake Agassiz causing slope instability along the banks of the Red River, is one of the soil samples used in this study. The Brenna Formation characterized as a uniform, soft to firm, dark grey, glaciolacustrine clay with little or no visible stratification, is full of slickensided surfaces. The major source of sediment for the Brenna Formation was the highly plastic montmorillonitic Pierre Shale bedrock. The other soil used in this study is one of the main sources of slope instability in Harris County Flood Control District (HCFCD), i.e. the Beaumont clay. The shear strengths of untreated and treated clays were obtained under various normal pressures to evaluate the shear envelope nonlinearity.

Keywords: Brenna clay, friction resistance, lime treatment, residual

Procedia PDF Downloads 159
598 Sustainable Manufacturing Industries and Energy-Water Nexus Approach

Authors: Shahbaz Abbas, Lin Han Chiang Hsieh

Abstract:

The significant population growth and climate change issues have contributed to the natural resources depletion and their sustainability in the future. Manufacturing industries have a substantial impact on every country’s economy, but the sustainability of the industrial resources is challenging, and the policymakers have been developing the possible solutions to manage the sustainability of industrial resources such as raw material, energy, water, and industrial supply chain. In order to address these challenges, nexus approach is one of the optimization and modelling techniques in the recent sustainable environmental research. The interactions between the nexus components acknowledge that all components are dependent upon each other, and they are interrelated; therefore, their sustainability is also associated with each other. In addition, the nexus concept does not only provide the resources sustainability but also environmental sustainability can be achieved through nexus approach by utilizing the industrial waste as a resource for the industrial processes. Based on energy-water nexus, this study has developed a resource-energy-water for the sugar industry to understand the interactions between sugarcane, energy, and water towards the sustainable sugar industry. In particular, the focus of the research is the Taiwanese sugar industry; however, the same approach can be adapted worldwide to optimize the sustainability of sugar industries. It has been concluded that there are significant interactions between sugarcane, energy consumption, and water consumption in the sugar industry to manage the scarcity of resources in the future. The interactions between sugarcane and energy also deliver a mechanism to reuse the sugar industrial waste as a source of energy, consequently validating industrial and environmental sustainability. The desired outcomes from the nexus can be achieved with the modifications in the policy and regulations of Taiwanese industrial sector.

Keywords: energy-water nexus, environmental sustainability, industrial sustainability, natural resource management

Procedia PDF Downloads 125
597 Prevention of Cellulose and Hemicellulose Degradation on Fungal Pretreatment of Water Hyacinth Using Phanerochaete Chrysosporium

Authors: Eka Sari

Abstract:

Potential degradation of cellulose and hemicellulose during the fungal pretreatment of lignocellulose has led to fermentable sugar yield will be low. This potential is even greater if the pretreatment of lignocellulosic that have low lignin such as water hyacinth. In order to prepare lignocellulose that have low lignin content, especially water hyacinth efforts are needed to prevent the degradation of cellulose and cellulose. One attempt to prevent the degradation of cellulose and hemicellulose is to replace the substrate needed by the addition of a simple carbon compounds such as glucose. Glucose sources used in this study is molasses. The purpose of this research to get the right of concentration of molasses to reduce the degradation of cellulose and hemicellulose during the pretreatment process and obtain fermentable sugar yields on high. The results showed that the addition of molasses with a concentration of 2% is able to reduce the degradation of cellulose from 25.53% to 10% and hemicellulose degradation of 20.12% to 10.89%. Fermentable sugar yields produced only reached 43.91%. To improve the yield of glucose is then performed additional combonation of molasses of 2% molasses and co-factor Mn2+ 0.5%. Fermentable sugar yield increased to 67.66% and the degradation of cellulose and hemicellulose decreased to 2.44% and 2.71%, respectively.

Keywords: water hyacinth, cellulose, hemicelulose, degradation, pretreatment, fungus

Procedia PDF Downloads 558
596 Thermochemical and Biological Pretreatment Study for Efficient Sugar Release from Lignocellulosic Biomass (Deodar and Sal Wood Residues)

Authors: Neelu Raina, Parvez Singh Slathia, Deepali Bhagat, Preeti Sharma

Abstract:

Pretreatment of lignocellulosic biomass for generating suitable substrates (starch/ sugars) for conversion to bioethanol is the most crucial step. In present study waste from furniture industry i.e sawdust from softwood Cedrus deodara (deodar) and hardwood Shorea robusta (sal) was used as lignocellulosic biomass. Thermochemical pretreatment was given by autoclaving at 121°C temperature and 15 psi pressure. Acids (H2SO4,HCl,HNO3,H3PO4), alkali (NaOH,NH4OH,KOH,Ca(OH)2) and organic acids (C6H8O7,C2H2O4,C4H4O4) were used at 0.1%, 0.5% and 1% concentration without giving any residence time. 1% HCl gave maximum sugar yield of 3.6587g/L in deodar and 6.1539 g/L in sal. For biological pretreatment a fungi isolated from decaying wood was used , sawdust from deodar tree species was used as a lignocellulosic substrate and before thermochemical pretreatment sawdust was treated with fungal culture at 37°C under submerged conditions with a residence time of one week followed by a thermochemical pretreatment methodology. Higher sugar yields were obtained with sal tree species followed by deodar tree species, i.e., 6.0334g/L in deodar and 8.3605g/L in sal was obtained by a combined biological and thermochemical pretreatment. Use of acids along with biological pretreatment is a favourable factor for breaking the lignin seal and thus increasing the sugar yield. Sugar estimation was done using Dinitrosalicyclic assay method. Result validation is being done by statistical analysis.

Keywords: lignocellulosic biomass, bioethanol, pretreatment, sawdust

Procedia PDF Downloads 414
595 Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests

Authors: Nacim Khelil, Amar Kahil, Said Boukais

Abstract:

The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.

Keywords: compressive strength, condensed silica fume, hydrated lime, pozzolanic reaction, UPV testing

Procedia PDF Downloads 149
594 Parental Diet Effects on Offspring Body Size and Pathogen Resistance in Bactrocera tryoni

Authors: Hue Dinh, Binh Nguyen, Vivian Mendez, Phillip W. Taylor, Fleur Ponton

Abstract:

Better understanding of how parental diet affects offspring traits is an important ecological and evolutionary question. In this study, we explored how maternal diet influences offspring physiology and resistance to infection using Bactrocera tryoni (Q-fly) as a system model. Female Q-flies were fed one of six single diets varying in their yeast-to-sugar ratio yielding six protein-to-carbohydrate ratios. As controls, we used females that were given a choice between yeast and sugar. Males were reared on a choice diet and allowed to mate with females 14 days post-emergence. Results showed that while maternal diet does not influence offspring developmental time, it has a strong effect on larval body weight. Mother fed either high-protein or high-sugar diet produced larger progeny. By challenging offspring with the bacterium Serratia marcescens, we found that female offspring from mothers fed high-sugar diet survived better the infection compared to those from mothers fed low-sugar diet. In contrast, male offspring produced by mother fed high-protein diet showed better resistance to the infection compared to those produced by mother fed low-protein diet. These results suggested sex-dependent transgenerational effects of maternal nutrition on offspring physiology and immunity.

Keywords: bacterial infection, Bactrocera tryoni, maternal diet, offspring, Serretia marcescens

Procedia PDF Downloads 143
593 Intercropping Sugarcane and Soybean in Lowland and Upland to Support Self Sufficiency of Soybean in Indonesia

Authors: Mohammad Saeri, Zainal Arifin

Abstract:

The purpose of this study is to obtain information on technical and social-economic feasibility of sugarcane-soybean. To achieve these objectives, soybeans intercropping study was conducted in sugar cane crops. This assessment was conducted in two locations with different agroecosystem,ie lowland of low plain in Mojokerto, East Java, with altitude of 50m above sea level and upland of medium plain in Malang, East Javawithaltitude of 500 m above the sea level. The design used was Split plot, with the main plots, is the soybean varieties, consisting of: (a) Anjasmoro, (b) Argomulyo, and (c) Dena-1, while the subplot is bio-fertilizer, consisting of : (1) Agrimeth, (2) Agrisoy, and (3) Biovarm. The variables observed were growth, yield and yield components and economic analysis. The yield of soybean in lowland reached 0.74 t/ha of seeds with farm profit of Indonesian Rupiah 359.200. This result is relatively low due to the delay of soybean cultivation from sugar cane soup time so that sugar cane cover soybean cultivation, while in upland obtained 0.92t/ha seeds with farm profit of Indonesian Rupiah 2,015,000. Therefore, it is suggested that soybeans are planted immediately after ratoon cane so that soybean growth can be optimal before the growth of sugarcane cover the soil surface. The yield of sugar cane in the lowland reached 124.5 tons with a profit of Indonesian Rupiah. 21,200,000,- while in upland obtained by sugarcane yield equal to 78,5 ton with profit equal to Indonesian Rupiah 8,900,000,-.

Keywords: intercropping, sugar cane, soybean, profit, farming

Procedia PDF Downloads 161
592 Neutral Sugar Contents of Laurel-leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined using the Waksman’s approximation analysis to clarify relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2) trees for analysis. The water and HCl soluble neutral sugars increased microbial biomass of the laurel-leaved forest soil. Arabinose, xylose, and galactose of the HCl soluble fraction were used immediately in comparison with other neutral sugars. Rhamnose, glucose, and fructose of the HCl soluble fraction were re-composed by the microbes.

Keywords: forest soil, neutral sugaras, soil organic matter, Waksman’s approximation analysis

Procedia PDF Downloads 310
591 Stabilization of Lateritic Soil Sample from Ijoko with Cement Kiln Dust and Lime

Authors: Akinbuluma Ayodeji Theophilus, Adewale Olutaiwo

Abstract:

When building roads and paved surfaces, a strong foundation is always essential. A durable material that can withstand years of traffic while staying trustworthy must be used to build the foundation. A frequent problem in the construction of roads and pavements is the lack of high-quality, long-lasting materials for the pavement structure (base, subbase, and subgrade). Hence, this study examined the stabilization of lateritic soil samples from Ijoko with cement kiln dust and lime. The study adopted the experimental design. Laboratory tests were conducted on classification, swelling potential, compaction, California bearing ratio (CBR), and unconfined compressive tests, among others, were conducted on the laterite sample treated with cement kiln dust (CKD) and lime in incremental order of 2% up to 10% of dry weight soft soil sample. The results of the test showed that the studied soil could be classified as an A-7-6 and CL soil using the American Association of State Highway and transport officials (AASHTO) and the unified soil classification system (USCS), respectively. The plasticity (PI) of the studied soil reduced from 30.5% to 29.9% at the application of CKD. The maximum dry density on the application of CKD reduced from 1.9.7 mg/m3 to 1.86mg/m3, and lime application yielded a reduction from 1.97mg/m3 to 1.88.mg/m3. The swell potential on CKD application was reduced from 0.05 to 0.039%. The study concluded that soil stabilizations are effective and economic way of improving road pavement for engineering benefit. The degree of effectiveness of stabilization in pavement construction was found to depend on the type of soil to be stabilized. The study therefore recommended that stabilized soil mixtures should be used to subbase material for flexible pavement since is a suitable.

Keywords: lateritic soils, sand, cement, stabilization, road pavement

Procedia PDF Downloads 91
590 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning

Authors: Juan Harold Sosa-Arnao, Daniel José de Oliveira Ferreira, Caice Guarato Santos, Justo Emílio Alvarez, Leonardo Paes Rangel, Song Won Park

Abstract:

A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.

Keywords: comprehensive CFD model, sugar-cane bagasse combustion, swirl burner, contributions

Procedia PDF Downloads 440
589 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils

Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen

Abstract:

Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.

Keywords: copper, Klara, lime, N100, phytoextraction

Procedia PDF Downloads 146
588 Sugar-Induced Stabilization Effect of Protein Structure

Authors: Mitsuhiro Hirai, Satoshi Ajito, Nobutaka Shimizu, Noriyuki Igarashi, Hiroki Iwase, Shinichi Takata

Abstract:

Sugars and polyols are known to be bioprotectants preventing such as protein denaturation and enzyme deactivation and widely used as a nontoxic additive in various industrial and medical products. The mechanism of their protective actions has been explained by specific bindings between biological components and additives, changes in solvent viscosities, and surface tension and free energy changes upon transfer of those components into additive solutions. On the other hand, some organisms having tolerances against extreme environment produce stress proteins and/or accumulate sugars in cells, which is called cryptobiosis. In particular, trehalose has been drawing attention relevant to cryptobiosis under external stress such as high or low temperature, drying, osmotic pressure, and so on. The function of cryptobiosis by trehalose has been explained relevant to the restriction of the intra-and/or-inter-molecular movement by vitrification or from the replacement of water molecule by trehalose. Previous results suggest that the structure and interaction between sugar and water are a key determinant for understanding cryptobiosis. Recently, we have shown direct evidence that the protein hydration (solvation) and structural stability against chemical and thermal denaturation significantly depend on sugar species and glycerol. Sugar and glycerol molecules tend to be preferentially or weakly excluded from the protein surface and preserved the native protein hydration shell. Due to the protective action of the protein hydration shell by those molecules, the protein structure is stabilized against chemical (guanidinium chloride) and thermal denaturation. The protective action depends on sugar species. To understand the above trend and difference in detail, it is essentially important to clarify the characteristics of solutions containing those additives. In this study, by using wide-angle X-ray scattering technique covering a wide spatial region (~3-120 Å), we have clarified structures of sugar solutions with the concentration from 5% w/w to 65% w/w. The sugars measured in the present study were monosaccharides (glucose, fructose, mannose) and disaccharides (sucrose, trehalose, maltose). Due to observed scattering data with a wide spatial resolution, we have succeeded in obtaining information on the internal structure of individual sugar molecules and on the correlation between them. Every sugar gradually shortened the average inter-molecular distance as the concentration increased. The inter-molecular interaction between sugar molecules was essentially showed an exclusive tendency for every sugar, which appeared as the presence of a repulsive correlation hole. This trend was more weakly seen for trehalose compared to other sugars. The intermolecular distance and spread of individual molecule clearly showed the dependence of sugar species. We will discuss the relation between the characteristic of sugar solution and its protective action of biological materials.

Keywords: hydration, protein, sugar, X-ray scattering

Procedia PDF Downloads 156
587 Neutral Sugars in Two-Step Hydrolysis of Laurel-Leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest, which is a World Heritage Site in Nara, Japan consisting of lowland laurel-leaved forest where natural conditions have been preserved for more than 1,000 years, were examined using the two-step hydrolysis to clarify the source of the neutral sugar and relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil (L, F, H and A horizons) surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2 and PW) trees for analysis. The neutral sugars were one factor of increasing the fungal and bacterial biomass in the laurel-leaved forest soil (BB-1). The more neutral sugar contents in the Cryptomeria japonica forest soil (PW) contributed to the growth of the bacteria and fungi than those of in the Cryptomeria japonica forest soil (BB-2). The neutral sugars had higher correlation with the numbers of bacteria and fungi counted by the dilution plate count method than by the direct microscopic count method. The numbers of fungi had higher correlation with those of bacteria by the dilution plate method.

Keywords: forest soil, neutral sugars, soil organic matter, two-step hydrolysis

Procedia PDF Downloads 272
586 Comparison of Acid and Base Pretreatment of Switchgrass (Panicum virgatum L.) for Bioethanol Production

Authors: Mustafa Ümi̇t Ünal, Nafi̇z Çeli̇ktaş, Aysun Şener, Sara Betül Dolgun, Duygu Keser

Abstract:

The aim of this study was to compare acid and base pretreatment of switchgrass for bioethanol production. Switchgrass was pretreated with sulfuric acid and sodium hydroxide at 0.5, 1.0 and 1.5% (v/v) at 120, 140, 180 °C for 10, 60 and 90. Optimization of enzymatic hydrolysis of the pretreated switchgrass samples were carried out using three different enzyme mixtures (22.5 mg cellulase and 75 mg cellobiase /g biomass; 45 mg cellulase and 150 mg cellobiase /g biomass; 90 mg cellulase and 300 mg cellobiase /g biomass). Samples were removed at 24-h interval for fermentable sugar analyses with HPLC. The results showed that use of 90 mg cellulase and 300 mg cellobiase/g biomass resulted in the highest fermentable sugar formation. Furthermore, the highest fermentable sugar yield was obtained by pretreatment at 120 °C for 10 min using 1.0 % sodium hydroxide.

Keywords: switchgrass, acid pretreatment, enzymatic hydrolysis, base pretreatment, ethanol production

Procedia PDF Downloads 532
585 Formulation and Nutrition Analysis of Low-Sugar Snack Bars

Authors: S. Kongtun-Janphuk, S. Niwitpong Jr., J. Saengsai

Abstract:

Low-sugar snack bars were formulated with 3 main formulas depending on the main ingredient, which were peanut-green bean-sesame, apple, and prune. The most acceptable formula of each group was obtained by sensory evaluation using a nine-point hedonic scale. The moisture content, total ash, protein, fat and fiber were analyzed by the standard methods of AOAC. The peanut-mung bean-sesame snack bar showed the highest protein content (88.32%) and total fat (0.48%) with the lowest of fiber content (0.01%) while the prune formula showed the lowest protein content (71.91%) and total fat (0.21%) with the highest of fiber content (0.03%). This result indicated that the prune formula could be used as diet food to assist in weight loss program.

Keywords: low-sugar snack bar, diet food, nutrition analysis, food formulation

Procedia PDF Downloads 398
584 Energy Analysis of Sugarcane Production: A Case Study in Metehara Sugar Factory in Ethiopia

Authors: Wasihun Girma Hailemariam

Abstract:

Energy is one of the key elements required for every agricultural activity, especially for large scale agricultural production such as sugarcane cultivation which mostly is used to produce sugar and bioethanol from sugarcane. In such kinds of resource (energy) intensive activities, energy analysis of the production system and looking for other alternatives which can reduce energy inputs of the sugarcane production process are steps forward for resource management. The purpose of this study was to determine input energy (direct and indirect) per hectare of sugarcane production sector of Metehara sugar factory in Ethiopia. Total energy consumption of the production system was 61,642 MJ/ha-yr. This total input energy is a cumulative value of different inputs (direct and indirect inputs) in the production system. The contribution of these different inputs is discussed and a scenario of substituting the most influential input by other alternative input which can replace the original input in its nutrient content was discussed. In this study the most influential input for increased energy consumption was application of organic fertilizer which accounted for 50 % of the total energy consumption. Filter cake which is a residue from the sugar production in the factory was used to substitute the organic fertilizer and the reduction in the energy consumption of the sugarcane production was discussed

Keywords: energy analysis, organic fertilizer, resource management, sugarcane

Procedia PDF Downloads 159
583 Filler for Higher Bitumen Adhesion

Authors: Alireza Rezagholilou

Abstract:

Moisture susceptibility of bituminous mixes directly affect the stripping of asphalt layers. The majority of relevant test methods are mechanical methods with low repeatability and consistency of results. Thus, this research aims to evaluate the physicochemical interactions of bitumen and aggregates based on the wettability concept. As such, the surface energies of components at the interface are measured by contact angle method. That gives an opportunity to investigate the adhesion properties of multiple mineral fillers at various percentages to explore the best dosage in the mix. Three types of fillers, such as hydrated lime, ground lime and rock powder, are incorporated into the bitumen mix for a series of sessile drop tests for both aggregates and binders. Results show the variation of adhesion properties versus filler (%).

Keywords: adhesion, contact angle, filler, surface energy, moisture susceptibility

Procedia PDF Downloads 77
582 The Impact of Glass Additives on the Functional and Microstructural Properties of Sand-Lime Bricks

Authors: Anna Stepien

Abstract:

The paper presents the results of research on modifications of sand-lime bricks, especially using glass additives (glass fiber and glass sand) and other additives (e.g.:basalt&barite aggregate, lithium silicate and microsilica) as well. The main goal of this paper is to answer the question ‘How to use glass additives in the sand-lime mass and get a better bricks?’ The article contains information on modification of sand-lime bricks using glass fiber, glass sand, microsilica (different structure of silica). It also presents the results of the conducted compression tests, which were focused on compressive strength, water absorption, bulk density, and their microstructure. The Scanning Electron Microscope, spectrum EDS, X-ray diffractometry and DTA analysis helped to define the microstructural changes of modified products. The interpretation of the products structure revealed the existence of diversified phases i.e.the C-S-H and tobermorite. CaO-SiO2-H2O system is the object of intensive research due to its meaning in chemistry and technologies of mineral binding materials. Because the blocks are the autoclaving materials, the temperature of hydrothermal treatment of the products is around 200°C, the pressure - 1,6-1,8 MPa and the time - up to 8hours (it means: 1h heating + 6h autoclaving + 1h cooling). The microstructure of the products consists mostly of hydrated calcium silicates with a different level of structural arrangement. The X-ray diffraction indicated that the type of used sand is an important factor in the manufacturing of sand-lime elements. Quartz sand of a high hardness is also a substrate hardly reacting with other possible modifiers, which may cause deterioration of certain physical and mechanical properties. TG and DTA curves show the changes in the weight loss of the sand-lime bricks specimen against time as well as the endo- and exothermic reactions that took place. The endothermic effect with the maximum at T=573°C is related to isomorphic transformation of quartz. This effect is not accompanied by a change of the specimen weight. The next endothermic effect with the maximum at T=730-760°C is related to the decomposition of the calcium carbonates. The bulk density of the brick it is 1,73kg/dm3, the presence of xonotlite in the microstructure and significant weight loss during DTA and TG tests (around 0,6% after 70 minutes) have been noticed. Silicate elements were assessed on the basis of their compressive property. Orthogonal compositional plan type 3k (with k=2), i.e.full two-factor experiment was applied in order to carry out the experiments both, in the compression strength test and bulk density test. Some modification (e.g.products with barite and basalt aggregate) have improved the compressive strength around 41.3 MPa and water absorption due to capillary raising have been limited to 12%. The next modification was adding glass fiber to sand-lime mass, then glass sand. The results show that the compressive strength was higher than in the case of traditional bricks, while modified bricks were lighter.

Keywords: bricks, fiber, glass, microstructure

Procedia PDF Downloads 347
581 Effect of Heat Treatment on Nutrients, Bioactive Contents and Biological Activities of Red Beet (Beta Vulgaris L.)

Authors: Amessis-Ouchemoukh Nadia, Salhi Rim, Ouchemoukh Salim, Ayad Rabha, Sadou Dyhia, Guenaoui Nawel, Hamouche Sara, Madani Khodir

Abstract:

The cooking method is a key factor influencing the quality of vegetables. In this study, the effect of the most common cooking methods on the nutritional composition, phenolic content, pigment content and antioxidant activities (evaluated by DPPH, ABTS, CUPRAC, FRAP, reducing power and phosphomolybdene method) of fresh, steamed, and boiled red beet was investigated. The fresh samples showed the highest nutritional and bioactive composition compared to the cooked ones. The boiling method didn’t lead to a significant reduction (p< 0.05) in the content of phenolics, flavonoids, flavanols and DPPH, ABTS, FRAP, CUPRAC, phosphomolybdeneum and reducing power capacities. This effect was less pronounced when steam cooking was used, and the losses of bioactive compounds were lower. As a result, steam cooking resulted in greater retention of bioactive compounds and antioxidant activity compared to boiling. Overall, this study suggests that steam cooking is a better method in terms of retention of pigments and bioactive compounds and antioxidant activity of beetroot.

Keywords: beta vulgaris, cooking methods, bioactive compounds, antioxidant activities

Procedia PDF Downloads 62
580 Antidiabetic Effect of Aqueous Extract of Cedrus deodara Roxb. Heartwood in Alloxan-Induced Diabetic Rats

Authors: Sourabh Jain, Vikas Jain, Dharmendar Kumar

Abstract:

The present study investigated the antidiabetic potential of Cedrus deodara heart wood aqueous extract. Aqueous extract of Cedrus deodara was found to reduce blood sugar level in alloxan induced diabetic rats. Reduction in blood sugar could be seen from 5th day after continuous administration of the extract and on 21st day sugar levels were found to be reduced by 40.20%. Oxidative stress produced by alloxan was found to be significantly lowered by the administration of Cedrus deodara aqueous extract (500 mg/kg). This was evident from a significant decrease in lipid per oxidation level in liver induced by alloxan. The level of Glutathione, Catalase, Superoxide dismutase and Glutathione-S-Transferase in liver, kidney and pancreas tissue were found to be increased significantly after drug administration. The results obtained in the present study suggest that the Cedrus deodara aqueous extract effectively and significantly reduced the oxidative stress induced by alloxan and produced a reduction in blood sugar level.

Keywords: Cedrus deodara, heartwood, antioxidant, anti-diabetic, anti-inflammatory

Procedia PDF Downloads 390
579 Effect of High Volume processed Fly Ash on Engineering Properties of Concrete

Authors: Dhara Shah, Chandrakant Shah

Abstract:

As everyone knows, fly ash is a residual material we get upon energy production using coal. It has found numerous advantages for use in the concrete industry like improved workability, increased ultimate strength, reduced bleeding, reduced permeability, better finish and reduced heat of hydration. Types of fly ash depend on the type of coal and the coal combustion process. It is a pozzolanic material and has mainly two classes, F and C, based on the chemical composition. The fly ash used for this experimental work contains significant amount of lime and would be categorized as type F fly ash. Generally all types of fly ash have particle size less than 0.075mm. The fineness and lime content of fly ash are very important as they will affect the air content and water demand of the concrete, thereby affecting the durability and strength of the concrete. The present work has been done to optimize the use of fly ash to produce concrete with improved results and added benefits. A series of tests are carried out, analyzed and compared with concrete manufactured using only Portland cement as a binder. The present study is carried out for concrete mix with replacement of cement with different proportions of fly ash. Two concrete mixes M25 and M30 were studied with six replacements of cement with fly ash i.e. 40%, 45%, 50%, 55%, 60% and 65% for 7-day, 14-day, 28-day, 56-day and 90-day. Study focused on compressive strength, split tensile strength, modulus of elasticity and modulus of rupture of concrete. Study clearly revealed that cement replacement by any proportion of fly ash failed to achieve early strength. Replacement of 40% and 45% succeeded in achieving required flexural strength for M25 and M30 grade of concrete.

Keywords: processed fly ash, engineering properties of concrete, pozzolanic, lime content

Procedia PDF Downloads 335
578 Antidiabetic Activity of Cedrus deodara Aqueous Extract and Its Relationship with Its Antioxidant Properties

Authors: Sourabh Jain, Vikas Jain, Dharmendra Kumnar

Abstract:

The present study investigated the antidiabetic potential of Cedrus deodara heart wood aqueous extract and its relationship in alloxan-induced diabetic rats. Aqueous extract of Cedrus deodara was found to reduce blood sugar level in alloxan induced diabetic rats. Reduction in blood sugar could be seen from 5th day after continuous administration of the extract and on 21st day sugar levels were found to be reduced by 40.20%. Oxidative stress produced by alloxan was found to be significantly lowered by the administration of Cedrus deodara aqueous extract (500 mg/kg). This was evident from a significant decrease in lipid per oxidation level in liver induced by alloxan. The level of Glutathione, Catalase, Superoxide dismutase and Glutathione-S-Transferase in liver, kidney and pancreas tissue were found to be increased significantly after drug administration. The results obtained in the present study suggest that the Cedrus deodara aqueous extract effectively and significantly reduced the oxidative stress induced by alloxan and produced a reduction in blood sugar level.

Keywords: Cedrus deodara, heartwood, antioxidant, anti-diabetic, anti-inflammatory

Procedia PDF Downloads 410
577 Microwave-Assisted Inorganic Salt Pretreatment of Sugarcane Leaf Waste

Authors: Preshanthan Moodley, E. B. Gueguim-Kana

Abstract:

The objective of this study was to develop a method to pretreat sugarcane leaf waste using microwave-assisted (MA) inorganic salt. The effects of process parameters of salt concentration, microwave power intensity and pretreatment time on reducing sugar yield from enzymatically hydrolysed sugarcane leaf waste were investigated. Pretreatment models based on MA-NaCl, MA-ZnCl2 and MA-FeCl3 were developed. Maximum reducing sugar yield of 0.406 g/g was obtained with 2 M FeCl3 at 700W for 3.5 min. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major changes in lignocellulosic structure after MA-FeCl3 pretreatment with 71.5 % hemicellulose solubilization. This pretreatment was further assessed on sorghum leaves and Napier grass under optimal MA-FeCl3 conditions. A 2 fold and 3.1-fold increase in sugar yield respectively were observed compared to previous reports. This pretreatment was highly effective for enhancing enzymatic saccharification of lignocellulosic biomass.

Keywords: acid, pretreatment, salt, sugarcane leaves

Procedia PDF Downloads 455
576 Eating Patterns and Food Coping Strategy for Students of Prof. Dr. Hamka University During Covid-19 Pandemic

Authors: Chica Riska Ashari, Yoli Farradika

Abstract:

Background: Nutritional problems arise due to food security problems in the family, such as the ability of families to obtain food which is common in poor people due to lack of economic access to buy food. For this reason, it is hoped that there will be actions or behaviors that can be taken to fulfill their food or known as the Food Coping Strategy. The purpose of this study is to identify the eating patterns and Food Coping strategies of household students of prof. DR. HAMKA Muhammadiyah University Jakarta during the covid-19 pandemic. Methods: This study is a quantitative observational study with a cross-sectional approach. The dependent variable in this study is food coping strategies and eating patterns. The location of this research is Prof. DR. Hamka Muhammadiyah University. The population in this study were all students of Prof. DR. HAMKA Muhammadiyah University. The sampling technique is purposive sampling. The minimum number of samples in this study is 97 people with a response rate or drop out an estimate of 10%, so the total number of samples was 107 people. Statistical analysis with descriptive analysis. Results: The results showed that most of the food coping strategies were carried out by the students of the household of Prof. DR. HAMKA Muhammadiyah University, were buying the cheaper food (91.6%), then changing the priority of buying food (75.7%) and household members who carry out this food coping strategy are mothers (59.8%) then followed by students themselves (57, 9%). The diet of most students at the Prof. DR. HAMKA Muhammadiyah University in a day was fond of consuming sugar and foods containing sugar (candy, sugar, honey, sweet drinks) (98.1%) then eggs (97.2%). Conclusion: Food coping strategies are mostly used by households students at Prof. DR. HAMKA Muhammadiyah University who were buying the cheaper food and the member who did this behavior the most were the mothers. The diet of most students at Prof. DR. HAMKA Muhammadiyah University in a day was fond of consuming sugar and foods containing sugar (candy, sugar, honey, sweet drinks).

Keywords: behavior, eating patterns, food coping strategies, food security, students

Procedia PDF Downloads 185