Search results for: student performance prediction
16504 Impact of Schools' Open and Semi-Open Spaces on Student's Studying Behavior
Authors: Chaithanya Pothuganti
Abstract:
Open and semi-open spaces in educational buildings like corridors, mid landings, seating spaces, lobby, courtyards are traditionally have been the places of social communion and interaction which helps in promoting the knowledge, performance, activeness, and motivation in students. Factors like availability of land, commercialization, of educational facilities, especially in e-techno and smart schools, led to closed classrooms to accommodate students thereby lack quality open and semi-open spaces. This insufficient attention towards open space design which is a means of informal learning misses an opportunity to encourage the student’s skill development, behavior and learning skills. The core objective of this paper is to find the level of impact on student learning behavior and to identify the suitable proportions and configuration of spaces that shape the schools. In order to achieve this, different types of open spaces in schools and their impact on student’s performance in various existing models are analysed using case studies to draw some design principles. The study is limited to indoor open spaces like corridors, break out spaces and courtyards. The expected outcome of the paper is to suggest better design considerations for the development of semi-open and open spaces which functions as an element for informal learnings. Its focus is to provide further thinking on designing and development of open spaces in educational buildings.Keywords: configuration of spaces and proportions, informal learning, open spaces, schools, student’s behavior
Procedia PDF Downloads 30916503 The Relationship between Class Attendance and Performance of Industrial Engineering Students Enrolled for a Statistics Subject at the University of Technology
Authors: Tshaudi Motsima
Abstract:
Class attendance is key at all levels of education. At tertiary level many students develop a tendency of not attending all classes without being aware of the repercussions of not attending all classes. It is important for all students to attend all classes as they can receive first-hand information and they can benefit more. The student who attends classes is likely to perform better academically than the student who does not. The aim of this paper is to assess the relationship between class attendance and academic performance of industrial engineering students. The data for this study were collected through the attendance register of students and the other data were accessed from the Integrated Tertiary Software and the Higher Education Data Analyzer Portal. Data analysis was conducted on a sample of 93 students. The results revealed that students with medium predicate scores (OR = 3.8; p = 0.027) and students with low predicate scores (OR = 21.4, p < 0.001) were significantly likely to attend less than 80% of the classes as compared to students with high predicate scores. Students with examination performance of less than 50% were likely to attend less than 80% of classes than students with examination performance of 50% and above, but the differences were not statistically significant (OR = 1.3; p = 0.750).Keywords: class attendance, examination performance, final outcome, logistic regression
Procedia PDF Downloads 13416502 Effects of Sports Participation on Academics Performance of Students at Yaa Asantewaa Girls’ Senior High School
Authors: Alhassan Dramani Yakubu
Abstract:
The primary purpose of this study was to analyze effects that participating in sporting activities has on academic performance among students at Yaa Asantewaa Girls’ Senior High School. To dig out the main objective of the study, descriptive survey design was employed. The study used 45 respondents comprising of 25 student – athletes and 20 non-student – athletes. The purposive sampling and stratified random sampling technique were used to sample population of 455 students involved. The academic performance of sports participants is compared with those of non – participants in terms of their outcomes in the form of grades from mathematics. Data was obtained from the sample by the use of questionnaire which was self - administered. The questionnaire sought information on level of student’s participation in sports and importance of sports participation to students. Results revealed that participation in sporting activities is associated with higher grades among students. The analysis reinforces the idea that apart from their health benefits for participants, sporting activities lead to the attainment of the performance goals to which higher institutions aspire. The findings also implies that, mathematics teachers and other subject teachers should not fend off students from participating in sporting activities with the trepidation that participating in sports inflame academic performance. This study recommend that, educational programs about sports should be provided for students’ through the educational system to bring about positive academic performance.Keywords: physical activity, physical education, intra mural, extra mural
Procedia PDF Downloads 6516501 The Predictors of Student Engagement: Instructional Support vs Emotional Support
Authors: Tahani Salman Alangari
Abstract:
Student success can be impacted by internal factors such as their emotional well-being and external factors such as organizational support and instructional support in the classroom. This study is to identify at least one factor that forecasts student engagement. It is a cross-sectional, conducted on 6206 teachers and encompassed three years of data collection and observations of math instruction in approximately 50 schools and 300 classrooms. A multiple linear regression revealed that a model predicting student engagement from emotional support, classroom organization, and instructional support was significant. Four linear regression models were tested using hierarchical regression to examine the effects of independent variables: emotional support was the highest predictor of student engagement while instructional support was the lowest.Keywords: student engagement, emotional support, organizational support, instructional support, well-being
Procedia PDF Downloads 8116500 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus
Procedia PDF Downloads 41016499 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 9716498 Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah
Authors: N. Bolong, J. Makinda, I. Saad
Abstract:
Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via hands-on by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback.Keywords: engineering education, open-ended laboratory, environmental engineering lab
Procedia PDF Downloads 31716497 Perspectives of Saudi Students on Reasons for Seeking Private Tutors in English
Authors: Ghazi Alotaibi
Abstract:
The current study examined and described the views of secondary school students and their parents on their reasons for seeking private tutors in English. These views were obtained through two group interviews with the students and parents separately. Several causes were brought up during the two interviews. These causes included difficulty of the English language, weak teacher performance, the need to pass exams with high marks, lack of parents’ follow-up of student school performance, social pressure, variability in student comprehension levels at school, weak English foundation in previous school years, repeated student absence from school, large classes, as well as English teachers’ heavy teaching loads. The study started with a description of the EFL educational system in Saudi Arabia and concluded with recommendations for the improvement of the school learning environment.Keywords: english, learning difficulty, private tutoring, Saudi, teaching practices, learning environment
Procedia PDF Downloads 45616496 A Prediction Model of Adopting IPTV
Authors: Jeonghwan Jeon
Abstract:
With the advent of IPTV in the fierce competition with existing broadcasting system, it is emerged as an important issue to predict how much the adoption of IPTV service will be. This paper aims to suggest a prediction model for adopting IPTV using classification and Ranking Belief Simplex (CaRBS). A simplex plot method of representing data allows a clear visual representation to the degree of interaction of the support from the variables to the prediction of the objects. CaRBS is applied to the survey data on the IPTV adoption.Keywords: prediction, adoption, IPTV, CaRBS
Procedia PDF Downloads 41516495 Multivariate Analysis of Student’s Performance in Statistic Courses in Humanities Sciences
Authors: Carla Silva
Abstract:
The aim of this research is to study the relationship between the performance of humanities students in different statistics classes and their performance in their specific courses. Several factors are been studied, such as gender and final grades in statistics and math. Participants of this study comprised a sample of students at a Lisbon University during their academic year. A significant relationship tends to appear between these factors and the performance of these students. However this relationship tends to be stronger with students who had previous studied calculus and math.Keywords: education, performance, statistic, humanities
Procedia PDF Downloads 32516494 Prediction of Conducted EMI Noise in a Converter
Abstract:
Due to higher switching frequencies, the conducted Electromagnetic interference (EMI) noise is generated in a converter. It degrades the performance of a switching converter. Therefore, it is an essential requirement to mitigate EMI noise of high performance converter. Moreover, it includes two types of emission such as common mode (CM) and differential mode (DM) noise. CM noise is due to parasitic capacitance present in a converter and DM noise is caused by switching current. However, there is dire need to understand the main cause of EMI noise. Hence, we propose a novel method to predict conducted EMI noise of different converter topologies during early stage. This paper also presents the comparison of conducted electromagnetic interference (EMI) noise due to different SMPS topologies. We also make an attempt to develop an EMI noise model for a converter which allows detailed performance analysis. The proposed method is applied to different converter, as an example, and experimental results are verified the novel prediction technique.Keywords: EMI, electromagnetic interference, SMPS, switch-mode power supply, common mode, CM, differential mode, DM, noise
Procedia PDF Downloads 121116493 Performance Prediction Methodology of Slow Aging Assets
Authors: M. Ben Slimene, M.-S. Ouali
Abstract:
Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation
Procedia PDF Downloads 11216492 Investigating the Effect of Study Plan and Homework on Student's Performance by Using Web Based Learning MyMathLab
Authors: Mohamed Chabi, Mahmoud I. Syam, Sarah Aw
Abstract:
In Summer 2012, the Foundation Program Unit of Qatar University has started implementing new ways of teaching Math by introducing MML (MyMathLab) as an innovative interactive tool to support standard teaching. In this paper, we focused on the effect of proper use of the Study Plan component of MML on student’s performance. Authors investigated the results of students of pre-calculus course during Fall 2013 in Foundation Program at Qatar University. The results showed that there is a strong correlation between study plan results and final exam results, also a strong relation between homework results and final exam results. In addition, the attendance average affected on the student’s results in general. Multiple regression is determined between passing rate dependent variable and study plan, homework as independent variable.Keywords: MyMathLab, study plan, assessment, homework, attendance, correlation, regression
Procedia PDF Downloads 41916491 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.Keywords: decision tree, genetic algorithm, machine learning, software defect prediction
Procedia PDF Downloads 33016490 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 16416489 The Factor Affecting the Students’ Participation and Satisfaction in Activities of Student Affairs in Faculty of Management Science
Authors: Natthiya Nuchanang, Pannarunsri Inpayung
Abstract:
The study of participation in student affair activity, Faculty of Management Science of Suan Sunandha Rajabhat University, these objective were 1) to study of need and attention activity of SUT student 2) to study of participation and sufficient of student affair activity and advantage of student participation. The populations were 400 undergrad students year 1st-4th. The data were analyzed by descriptive statistics. The result found that; 1. The need of participate activity of students was medium level. Environment Conservation club and Badminton club were high level of experience for student. 2. The need and attention of activity were sufficient for student. Almost problems were not having enough time. 3. The advantages of activity were high level.4. The satisfaction of students for student affair unit was high level. Major problem that students do not attend, the tired from studying, Where the activity is not permitting, activities are not interesting and activity implementation overhead.Keywords: faculty of management science, Suan Sunandha Rajabhat university, satisfaction in activities of student affairs, students’ participation
Procedia PDF Downloads 35716488 The Effectiveness of Gamified Learning on Student Learning in Computer Science Education: A Systematic Review (2010-2018)
Authors: Shurui Bai, Biyun Huang, Khe Foon Hew
Abstract:
Gamification is defined as the use of game design elements in non-game contexts. The primary purpose of using gamification in an educational context is to engage students in school activities such that their likelihood of completion is increased. But how actually effective is gamification in improving student learning? In order to answer this question, this paper provides a systematic review of prior research studies on gamification in K-12 and university contexts limited to computer science discipline. Unlike other published gamification review works, we specifically analyzed comparison-based studies in quasi-experiment, historical control, and randomization rather than studies with mere anecdotal or phenomenological results. The main purpose for this is to discuss possible causal effects of gamified practices on student performance, behavior change, and perceptual skills following an integrative model. Implications for practice are discussed, along with several suggestions for future research studies.Keywords: computer science, gamification, learning performance, systematic review
Procedia PDF Downloads 13216487 Transnational Higher Education: Developing a Transnational Student Success Signature for Clinical Medical Students an Action Research Project
Authors: Wendy Maddison
Abstract:
This paper describes an Action Research project which was undertaken to inform professional practice in order to develop a newly created Centre for Student Success in the specific context of transnational medical and nursing education in the Middle East. The objectives were to enhance the academic performance, persistence, integration and personal and professional development of a multinational study body, in particular in relation to preclinical medical students, and to establish a comfortable, friendly and student-driven environment within an Irish medical university recently established in Bahrain. Expatriating a new part of itself into a corner of the world and within a context which could be perceived as the antithesis of itself, in particular in terms of traditional cultural and organisational values, the university has had to innovate in the range of services, programmes and other offerings which engages and supports the academic success of medical and nursing students as they “encounter the world in the classroom” in the context of an Arab Islamic culture but within a European institution of transnational education, engaging with a global learning environment locally. The outcomes of the project resulted in the development of a specific student success ‘signature’ for this particular transnational higher education context.Keywords: transnational higher education, medical education, action research, student success, Middle Eastern context, student persistence in the global-local, student support mechanisms
Procedia PDF Downloads 69616486 Using Neural Networks for Click Prediction of Sponsored Search
Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov
Abstract:
Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate
Procedia PDF Downloads 57416485 Model of Monitoring and Evaluation of Student’s Learning Achievement: Application of Value-Added Assessment
Authors: Jatuphum Ketchatturat
Abstract:
Value-added assessment has been used for developing the model of monitoring and evaluation of student's learning achievement. The steps of model development consist of 1) study and analyisis of the school and the district report system of student achievement and progress, 2) collecting the data of student achievement to develop the value added indicator, 3) developing the system of value-added assessment by participatory action research approach, 4) putting the system of value-added assessment into the educational district of secondary school, 5) determining the quality of the developed system of value-added assessment. The components of the developed model consist of 1) the database of value-added assessment of student's learning achievement, 2) the process of monitoring and evaluation the student's learning achievement, and 3) the reporting system of value-added assessment of student's learning achievement.Keywords: learning achievement, monitoring and evaluation, value-added assessment
Procedia PDF Downloads 42516484 Design and Burnback Analysis of Three Dimensional Modified Star Grain
Authors: Almostafa Abdelaziz, Liang Guozhu, Anwer Elsayed
Abstract:
The determination of grain geometry is an important and critical step in the design of solid propellant rocket motor. In this study, the design process involved parametric geometry modeling in CAD, MATLAB coding of performance prediction and 2D star grain ignition experiment. The 2D star grain burnback achieved by creating new surface via each web increment and calculating geometrical properties at each step. The 2D star grain is further modified to burn as a tapered 3D star grain. Zero dimensional method used to calculate the internal ballistic performance. Experimental and theoretical results were compared in order to validate the performance prediction of the solid rocket motor. The results show that the usage of 3D grain geometry will decrease the pressure inside the combustion chamber and enhance the volumetric loading ratio.Keywords: burnback analysis, rocket motor, star grain, three dimensional grains
Procedia PDF Downloads 24516483 Effects of a Student-Centered Approach to Assessment on Students' Attitudes towards 'Applied Statistics' Course
Authors: Anduela Lile
Abstract:
The purpose of this cross sectional study was to investigate the effectiveness of teaching and learning Statistics from a student centered perspective in higher education institutions. Statistics education has emphasized the application of tangible and interesting examples in order to motivate students learning about statistical concepts. Participants in this study were 112 bachelor students enrolled in the ‘Applied Statistics’ course in Sports University of Tirana. Experimental group students received a student-centered teaching approach; Control group students received an instructor-centered teaching approach. This study found student-centered approach student group had statistically significantly higher assessments scores (52.1 ± 18.9) at the end of the evaluation compared to instructor-centered approach student group (61.8 ± 16.4), (t (108) = 2.848, p = 0.005). Results concluded that student-centered perspective can improve student positive attitude to statistical methods and to motivate project work. Therefore, findings of this study may be very useful to the higher education institutions to establish their learning strategies especially for courses related to Statistics.Keywords: student-centered, instructor-centered, course assessment, learning outcomes, applied statistics
Procedia PDF Downloads 28116482 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach
Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.Keywords: chaotic approach, phase space, Cao method, local linear approximation method
Procedia PDF Downloads 33216481 Methodology for Developing an Intelligent Tutoring System Based on Marzano’s Taxonomy
Authors: Joaquin Navarro Perales, Ana Lidia Franzoni Velázquez, Francisco Cervantes Pérez
Abstract:
The Mexican educational system faces diverse challenges related with the quality and coverage of education. The development of Intelligent Tutoring Systems (ITS) may help to solve some of them by helping teachers to customize their classes according to the performance of the students in online courses. In this work, we propose the adaptation of a functional ITS based on Bloom’s taxonomy called Sistema de Apoyo Generalizado para la Enseñanza Individualizada (SAGE), to measure student’s metacognition and their emotional response based on Marzano’s taxonomy. The students and the system will share the control over the advance in the course, so they can improve their metacognitive skills. The system will not allow students to get access to subjects not mastered yet. The interaction between the system and the student will be implemented through Natural Language Processing techniques, thus avoiding the use of sensors to evaluate student’s response. The teacher will evaluate student’s knowledge utilization, which is equivalent to the last cognitive level in Marzano’s taxonomy.Keywords: intelligent tutoring systems, student modelling, metacognition, affective computing, natural language processing
Procedia PDF Downloads 20316480 Evaluation of Student Satisfaction Level Towards Anadolu University E-Services through E-Government Model and Importance Performance Analysis Method
Authors: Emrah Ayhan, Puspa Saananta Irfani, Ömer Doğukan Şahin
Abstract:
Public services, which are important for the order and continuity of social life, have begun to transform into electronic services (E-service) with the development of information and communication technologies in recent years. In particular, as a result of the widespread use of the internet and the increase in citizen demands, it has become necessary to provide public services electronically. In addition to facilitating traditional public services, new types of e-services strengthen the interaction, cooperation, accessibility, transparency, citizen participation (e-governance) and accountability between citizens and the state. In this context, the factors in the literature that are considered to influence the citizens’ satisfaction towards e-services will be examined through the example of student satisfaction with the e-services (Anasis, Mergen, E-mail, library, cafeteria and other transactions) offered by Anadolu University (Eskişehir, Türkiye) through university website and mobile application. The data for the analysis will be obtained from the survey research that will be used to measure user satisfaction with university e-services of 1,000 students studying at 9 different faculties and graduate schools of Anadolu University. These data will be analyzed with a unique methodology that uses the E-GovQual model and Importance Performance Analysis (IPA) methods together. The e-GovQual model serves as a framework for evaluating the quality of e-services, allowing a detailed understanding of students' perceptions. On the other hand, the IPA method will be used to determine the performance level of Anadolu University in the provision of e-services and to understand the areas that require improvement and student expectations. Strategic goals and suggestions will be made to decision-makers, students, and researchers in line with the findings obtained in the research. Thus, it is planned to contribute to e-governance and user satisfaction in educational institutions and to reveal practical implications for optimizing online platforms to better serve student needs.Keywords: e-service, Anadolu university, student satisfaction, e-governance, e-govqual, importance performance analysis
Procedia PDF Downloads 5716479 Immersive Block Scheduling in Higher Education: A Case Study in Curriculum Reform and Increased Student Success
Authors: Thomas Roche, Erica Wilson, Elizabeth Goode
Abstract:
Universities across the globe are considering how to effect meaningful change in their higher education (HE) delivery in the face of increasingly diverse student cohorts and shifting student learning preferences. This paper reports on a descriptive case study of whole-of-institution curriculum reform at one regional Australian university, where more traditional 13-week semesters were replaced with a 6-week immersive block model drawing on active learning pedagogy. Based on a synthesis of literature in best practice HE pedagogy and principles, the case study draws on student performance data and senior management staff interviews (N = 5) to outline the key changes necessary for successful HE transformation to deliver increased student pass rates and retention. The findings from this case study indicate that an institutional transformation to an immersive block model requires both a considered change in institutional policy and process as well as the appropriate resourcing of roles, governance committees, technical solutions, and, importantly, communities of practice. Implications for practice at higher education institutions considering reforming their curriculum model are also discussed.Keywords: student retention, immersive scheduling, block model, curriculum reform, active learning, higher education pedagogy, higher education policy
Procedia PDF Downloads 7716478 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.Keywords: classification, machine learning, time representation, stock prediction
Procedia PDF Downloads 14716477 Restructuring the College Classroom: Scaffolding Student Learning and Engagement in Higher Education
Authors: Claire Griffin
Abstract:
Recent years have witnessed a surge in the use of innovative teaching approaches to support student engagement and higher-order learning within higher education. This paper seeks to explore the use of collaborative, interactive teaching and learning strategies to support student engagement in a final year undergraduate Developmental Psychology module. In particular, the use of the jigsaw method, in-class presentations and online discussion fora were adopted in a ‘lectorial’ style teaching approach, aimed at scaffolding learning, fostering social interdependence and supporting various levels of student engagement in higher education. Using the ‘Student Course Engagement Questionnaire’, the impact of such teaching strategies on students’ college classroom experience was measured, with additional qualitative student feedback gathered. Results illustrate the positive impact of the teaching methodologies on students’ levels of engagement, with positive implications emerging across the four engagement factors: skills engagement, emotional engagement, participation/interaction engagement and performance engagement. Thematic analysis on students’ qualitative comments also provided greater insight into the positive impact of the ‘lectorial’ teaching approach on students’ classroom experience within higher level education. Implications of the findings are presented in terms of informing effective teaching practices within higher education. Additional avenues for future research and strategy usage will also be discussed, in light of evolving practice and cutting edge literature within the field.Keywords: learning, higher education, scaffolding, student engagement
Procedia PDF Downloads 37916476 External Validation of Risk Prediction Score for Candidemia in Critically Ill Patients: A Retrospective Observational Study
Authors: Nurul Mazni Abdullah, Saw Kian Cheah, Raha Abdul Rahman, Qurratu 'Aini Musthafa
Abstract:
Purpose: Candidemia was associated with high mortality in critically ill patients. Early candidemia prediction is imperative for preemptive antifungal treatment. This study aimed to externally validate the candidemia risk prediction scores by Jameran et al. (2021) by identifying risk factors of acute kidney injury, renal replacement therapy, parenteral nutrition, and multifocal candida colonization. Methods: This single-center, retrospective observational study included all critically ill patients admitted to the intensive care unit (ICU) in a tertiary referral center from January 2018 to December 2023. The study evaluated the candidemia risk prediction score performance by analyzing the occurrence of candidemia within the study period. Patients’ demographic characteristics, comorbidities, SOFA scores, and ICU outcomes were analyzed. Patients who were diagnosed with candidemia before ICU admission were excluded. Results: A total of 500 patients were analyzed with 2 dropouts due to incomplete data. Validation analysis showed that the candidemia risk prediction score has a sensitivity of 75.00% (95% CI: 59.66-86.81), specificity of 65.35% (95% CI: 60.78-69.72), positive predictive value of 17.28, and negative predictive value of 96.44. The incidence of candidemia was 8.86% with no significant differences in the demographic and comorbidities except higher SOFA scoring in the candidemia group. The candidemia group showed significantly longer ICU and hospital LOS and higher ICU and in-hospital mortality. Conclusion: This study concluded the candidemia risk prediction score by Jameran et al (2021) had good sensitivity and a high negative prediction value.Keywords: candidemia, intensive care, clinical prediction rule, incidence
Procedia PDF Downloads 2016475 Inferring Human Mobility in India Using Machine Learning
Authors: Asra Yousuf, Ajaykumar Tannirkulum
Abstract:
Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.Keywords: development, migration, internal migration, machine learning, prediction
Procedia PDF Downloads 271